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Abstract

This thesis presents the classical theory of modular forms and modular symbols

and explains the relations between these mathematical objects.

Modular forms are holomorphic functions defined on the complex upper

half-plane which transform in a certain way under the action of some group

of matrices. The orbit space of this action on the upper half-plane admits a

structure of Riemann surface and so is called a modular curve. The spaces

of modular forms are finite-dimensional complex vector spaces which can be

identified with certain spaces of differential forms on the corresponding modular

curve.

There is a very important family of operators acting on the space of modular

forms, the Hecke operators. One of their main properties is that there exist

bases of modular forms consisting of eigenvectors of most Hecke operators; these

modular forms are known as eigenforms.

Finally, modular symbols can be thought of as formal symbols satisfying

certain algebraic relations and which provide a simple way to represent elements

of the first homology group of modular curves (regarded as compact surfaces).

The pairing given by integration of a form along a path provides a duality

between modular forms and modular symbols. Therefore, Hecke operators also

act on the space of modular symbols. One can recover information about the

modular forms from the action of Hecke operators on the modular symbols.

In conclusion, modular symbols constitute an appropriate setting to perform

computations with modular forms and Hecke operators.

Keywords: Hecke operators, modular curves, modular forms, modular sym-

bols, number theory

MSC2010: 11F11, 11F67, 11F25
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Preface

This thesis covers the classical theory of modular forms and introduces modular

symbols with an emphasis on their computational aspects.

Many areas of mathematics come together in the theory of modular forms:

complex analysis, algebraic topology, algebraic geometry and representation

theory, to name just a few. Thus, modular forms arise naturally in many problems

originating from a wide range of contexts in mathematics (and even in some

branches of modern physics such as string theory). My interest, however, lies

in the numerous applications of modular forms to number theory, a very active

field of research in which this topic has gained much attention over the last

decades.

Modular forms are analytic functions in the complex upper half-plane which

transform in a certain way under the action of a group of matrices. Therefore,

modular forms satisfy many symmetries which endow them with a very rich

structure. In particular, modular forms have a Fourier series expansion. The

Fourier coefficients of certain modular forms carry a large amount of arithmetic

information. For instance, modular forms occur as generating functions of num-

bers of representations of integers by positive definite quadratic forms, special

values of L–functions or invariants in algebraic number theory such as class

numbers. But, without a doubt, one of the most celebrated arithmetic results

involving modular forms is the modularity theorem, which states that every

elliptic curve is associated with a modular form in some sense and illustrates a

strong connection between modular forms and Galois representations. The proof

by Wiles of this theorem for a large class of elliptic curves led to the conclusion

of the proof of Fermat’s last theorem after more than three centuries. All these

are but a few examples of why modular forms play an essential role in modern

number theory.

Despite their utmost importance, modular forms appear to be rather abstract

objects and seem difficult to construct considering only their definition. Modular

symbols are much more concrete objects which can be described algebraically.

Thus, modular symbols provide a simple presentation of the space of modular

forms with which one can perform all kinds of computations with ease. Also,

modular symbols offer greater insight into the structure of modular forms,

so they have been used to obtain some difficult results concerning modular

ix
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forms. Nevertheless, the theory of modular symbols is relatively unknown (in

comparison with the theory of modular forms).

Professor Jordi Quer introduced me to this subject and proposed it as a topic

for my Bachelor’s degree thesis, arguing that it would be a great opportunity to

learn at least some elementary aspects of a very active field of current research.

As a matter of fact, the ultimate goal he had in mind was an open problem:

finding an explicit way to express twists of modular forms by characters in the

language of modular symbols in order to perform this kind of computations

efficiently. Admittedly, this was too ambitious for a Bachelor’s degree thesis, but

the initial idea was to pose the problem and start thinking about it. In the end, I

took a different approach and decided to study the subject of modular forms in

greater detail, even at the cost of not getting that far in the theory of modular

symbols.

In writing this thesis, I have made an effort to keep the prerequisites to a

minimum. However, the knowledge which can be acquired in the Bachelor’s

degree (including the elective subjects) is assumed. In particular, a certain degree

of understanding of complex analysis, abstract algebra, algebraic geometry and

general and algebraic topology is required. In contrast, the theory of modular

forms and modular symbols is explained from scratch.

Chapter 1 introduces the modular group and its action on the Poincaré upper

half-plane in order to define modular forms. After giving the basic definitions,

modular forms of level 1 are studied in detail: this case is so simple that modular

symbols are not needed at all.

Chapter 2 describes the structure of Riemann surfaces of modular curves.

This chapter involves a lot of geometry and topology but little arithmetic.

Moreover, the proofs are quite technical (in fact, most of the references in

the bibliography skip these proofs).

Chapter 3 explains Hecke operators from two different viewpoints: using

modular points and using double cosets. In both approaches, Hecke operators

are presented as very concrete objects by restricting the definitions to certain

subgroups of matrices instead of explaining a much more general but abstract

theory. This chapter plays a prominent role in the thesis because Hecke operators

are the most important nexus between modular forms and modular symbols: a

certain space of modular symbols constitutes a Hecke module which is dual to

some space of modular forms.

In chapter 4, modular symbols are finally defined. The structure of the space
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of modular symbols is completely determined with an algebraic presentation

of the homology of the corresponding modular curve: this is the central result

contained in this thesis. All this theory to characterise modular symbols and

find the relations which they satisfy corresponds essentially to the first part of

Manin’s original paper [5] (although some explanations have been extended and

reorganised here). Actually, most of the other references dealing with modular

symbols do not include the proofs of the main facts (which are quite technical

and involve, again, a lot of topology) and just cite this paper.

Finally, chapter 5 serves as a brief summary of the theory of modular symbols,

greatly emphasising the computational aspects. Most of this chapter is devoted

to the explanation of algorithms to compute the Fourier series of modular forms

using modular symbols. These algorithms, along with the properties of modular

symbols, are further illustrated with the detailed analysis of some examples

computed using Sage [15].

I am indebted to Professor Jordi Quer for many things. First, for having

introduced me to the fascinating subject of number theory in general and, more

specifically, for the choice of the topic of this thesis. Second, for all the time he

spent explaining things which I had not had the opportunity to learn before to

me, even about topics which are not strictly related to the thesis. And last, but

not least, for his careful reading of all this work and his valuable suggestions

and comments, many of which have been incorporated in the final version of

the thesis. Even so, needless to say, I alone am responsible for any deficiencies

which may remain. These humble words cannot do justice to his indefatigable

dedication, for which I am extremely grateful.

I would also like to express my gratitude to CFIS, its sponsors and all the

people who make this project possible, for I have been able to study for two

Bachelor’s degrees at UPC for the last four years at essentially no cost (thanks to

its excellence scholarships).

Francesc Gispert

Barcelona, Catalonia
April 2016
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Chapter 1

Modular forms (of level 1)

This chapter introduces the central objects of the thesis: modular forms. The

basic definitions which appear in the classical theory of modular forms are

introduced in general. Then, we study in more detail the situation for modular

forms of level 1 (the easiest case in some sense) in order to provide the necessary

motivation for the more technical constructions developed in further chapters.

The presentation of the material in this chapter follows closely Serre’s ex-

cellent exposition in the last chapter of his book [11], complemented with the

relevant parts of the books [3] by Koblitz, [4] by Lang and [2] by Diamond and

Shurman. The motivation for certain definitions is based on Milne’s notes [8].

1.1 The modular group

In this section, we explain the concepts which will lead to the definition of

modular forms. Modular forms are a kind of analytic functions with a certain

“invariance” condition (up to some factor). We focus first on their domain of

definition and develop the language used in the proper definition of classical

modular forms.

Definition 1.1. The complex upper half-plane or Poincaré half-plane is the set H of

complex numbers with positive imaginary part:

H = {z ∈ C :=(z) > 0 } .

The extended upper half-plane is the union of H with the set of cusps P1
Q = Q∪{∞},

and we refer to it as H∗.

We observe that H admits a natural structure of Riemann surface. Actually, it

is one of the only three simply connected Riemann surfaces, up to biholomorphic

isomorphism (the other two being the complex plane and the Riemann sphere).

Our interest at the moment, though, resides in the structure given by the

action of certain multiplicative groups of matrices on these domains.

1



2 MODULAR FORMS (OF LEVEL 1)

Several groups of matrices (sometimes regarded as groups of automorphisms

of certain Riemann surfaces) are going to appear throughout this work, so we

introduce some notation here. Let A be a commutative ring with identity (in

this work, A will be one of Z, Q, R and C) and let n ∈ N. The general linear

group GLn(A) is the group of n × n invertible matrices with entries in A with

the operation of matrix multiplication. The special linear group SLn(A) is the

subgroup of GLn(A) consisting of those matrices with determinant 1. We also

consider the projective general linear group PGLn(A) and the projective special

linear group PSLn(A): these groups are obtained as quotients of GLn(A) and

SLn(A), respectively, by the subgroups consisting of the scalar matrices contained

in their respective groups. That is, PGLn(A) = GLn(A) / {λ · 1 ∈GLn(A) : λ ∈ A× }
and, similarly, PSLn(A) = SLn(A) / {λ · 1 ∈ SLn(A) : λ ∈ A× and λn = 1 }. (Notice

that we use the symbol 1 to refer to both the identity element in A and to the

identity matrix in GLn(A): the context should make clear the intended meaning.)

Moreover, if A ⊆ R, we write GL+
n(A) for the subgroup of GLn(A) consisting of

those matrices with positive determinant. In this case as well, the orthogonal

group On(A) is the subgroup of GLn(A) consisting of orthogonal matrices (i.e.,

matrices whose transposes are equal to their inverses) and the special orthogonal

group SOn(A) is SLn(A)∩On(A).

Definition 1.2. The group GL2(C) acts on P1
C = C∪{∞} (which we identify with

the Riemann sphere as a Riemann surface) by linear fractional transformations
(also known as Möbius transformations) in the following way:

GL2(C)×P1
C P1

C

(γ, z) γ(z) =
az + b
cz + d

where γ =
(
a b
c d

)
.

In the preceding definition, we adopt the convention that

a∞+ b
c∞+ d

= lim
z→∞

az + b
cz + d

=
a
c

and
w
0

=∞ for all w ∈ P1
C .

Now one checks easily that this indeed defines a left action. That is to say,

1(z) =
(

1 0
0 1

)
z = z
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and

γ1(γ2(z)) =
a1

(
a2z+b2
c2z+d2

)
+ b1

c1

(
a2z+b2
c2z+d2

)
+ d1

=
(a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2)

= (γ1γ2)(z)

for all z ∈ P1
C and all γ1 =

(
a1 b1
c1 d1

)
,γ2 =

(
a2 b2
c2 d2

)
∈GL2(C).

We can consider the induced action of subgroups of GL2(C) or quotients of

GL2(C) by normal subgroups which act trivially. Similarly, there is an action of

such groups on stable subsets of P1
C too. In particular, we observe that a matrix

γ ∈GL2(C) acts on P1
C in the same way as λγ for any λ ∈ C×. Therefore, there is

an induced action of PGL2(C) on P1
C (these are precisely the automorphisms of

the Riemann sphere).

We want to obtain an action on H. In this case, we restrict the coefficients of

the matrices to real numbers. That is, we consider the action of GL2(R) on P1
C

given by linear fractional transformations. As before, the action of a matrix is

invariant under multiplication of the matrix by a non-zero scalar. In particular,

for all γ ∈GL2(R) we can consider the matrix det(γ)−
1
2 · γ which acts in the same

way as γ but has determinant ±1. This means that we can focus solely on the

action of matrices with determinant ±1. Finally, a straight-forward computation

yields the following result.

Lemma 1.3. If γ =
(
a b
c d

)
∈GL2(R) and if z = x+ iy ∈ C where x,y ∈ R, then

γ(z) =

(
ac|z|2 + bd + (ad + bc)x

)
+ i(ad − bc)y

|cz + d|2

and, in particular,

=(γ(z)) = det(γ) · =(z)

|cz + d|2
.

The second assertion in lemma 1.3 tells us that H is stable under the action

of GL+
2 (R) by linear fractional transformations and that, contrariwise, matrices

with negative determinant map the upper half-plane to the lower half-plane.

Thus, the (left) action of SL2(R) on H by linear fractional transformations is

well-defined.

Furthermore, the element −1 ∈ SL2(R) acts trivially on H, and no elements

of SL2(R) other than ±1 do so. Indeed, if γ =
(
a b
c d

)
∈ SL2(R) acts trivially on H,

we have that cz2 + (d − a)z − b = 0 for all z ∈H, which implies that b = c = 0 and

a = d = ±1. Also, for every z = x + iy ∈ H (where x,y ∈ R and y > 0) there is a
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matrix γ = y−
1
2 ·

(
y x
0 1

)
∈ SL2(R) which maps i to z. We can then consider that it is

the group PSL2(R) = SL2(R) / {±1 } which operates, and this action is faithful and

transitive (in fact, this is precisely the group of analytic automorphisms of H).

Hence, we usually identify the elements of SL2(R) with their images in PSL2(R)

under the canonical projection. When we want to make this explicit, we will use

a bar to denote the projection in PSL2(R): we will write γ for the image of an

element γ ∈ SL2(R) in PSL2(R) and Γ for the image of a subgroup Γ ⊆ SL2(R).

The classical theory of modular forms concerns itself with the action of

certain subgroups of SL2(R) and their images in PSL2(R). Let us be more precise.

SL2(R) is a Lie group and, in particular, it is equipped with a topology (which

coincides with the induced topology when we identify it with a subset of R4 in

the obvious way). Therefore, SL2(R) and PSL2(R) are topological groups. The

interesting groups in our context are certain discrete subgroups of SL2(R) which

are called Fuchsian groups of the first kind. Nevertheless, we restrict our study

even further to some subgroups arising in number theory (although there are

others).

Definition 1.4. The group SL2(Z) is called the full modular group.

SL2(Z) is obviously a discrete subgroup of SL2(R), and so are all its subgroups

as a consequence.

In the next section, we will be interested in the behaviour of certain functions

“at infinity” (we visualise ∞ as a point at the end of the imaginary axis and

sometimes write i∞ to make it explicit). But the elements of SL2(Z) map∞ to

rational numbers. Even more is true: every rational number can be expressed as
a
c with a,c ∈ Z such that (a,c) = 1, and in this situation there exist b,d ∈ Z such

that ad − bc = 1 (Bézout’s identity); then,
(
a b
c d

)
·∞ = a

c . That is why the extended

upper half-plane was defined to include the rational numbers Q as well as the

point∞. This means that SL2(Z) acts on H∗.
The subgroups studied in this work are subgroups of finite index of the

modular group.

Definition 1.5. For any positive integer N, we define

Γ (N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
and call it the principal congruence subgroup of level N. A congruence subgroup
of SL2(Z) is a subgroup Γ containing Γ (N) for some N: the minimum such N is

called the level of Γ .



1.1. The modular group 5

Example 1.6. The most important families of congruence subgroups treated in

this work are

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(∗ ∗
0 ∗

)
(mod N)

}
and

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
for any positive integer N, which is the level of both subgroups. (Here, ∗means

any integer entry.)

Γ (1) = Γ0(1) = Γ1(1) = SL2(Z) is the only congruence subgroup of level 1.

Proposition 1.7. Let N be a positive integer. The principal congruence subgroup
Γ (N) is a normal subgroup of SL2(Z) of finite index.

Proof. By definition, Γ (N) is the kernel of the morphism SL2(Z)→ SL2(Z / NZ)

obtained by reducing entries modulo N. Therefore, Γ (N) is normal. Moreover,

this morphism gives an exact sequence

1 Γ (N) SL2(Z) SL2(Z / NZ)

and the quotient group SL2(Z) / Γ (N) must be isomorphic to some subgroup of

SL2(Z / NZ). We conclude that [SL2(Z) : Γ (N)] ≤ |SL2(Z / NZ)| < N3 <∞.

We obtain as an immediate corollary that all congruence subgroups have

finite index in SL2(Z).

As a matter of fact, the exact sequence in the proof of proposition 1.7 can

be extended to a short exact sequence (the morphism SL2(Z)→ SL2(Z / NZ) is

surjective). This provides a method of computing explicitly the index of Γ (N) in

SL2(Z) (we can just count the number of elements in SL2(Z / NZ)), but we only

need to know that it is finite.

Definition 1.8. Let Γ be a discrete subgroup of SL2(R). A fundamental domain
for the action of Γ on H is a closed subset D of H such that every orbit of Γ has

an element in D and two points in D are in the same orbit only if they lie on the

boundary ∂D. That is, every point z ∈H is Γ –equivalent to a point in D, but no

two distinct points z1, z2 in the interior D̊ of D are Γ –equivalent.

Even if we do not require it in the definition, we usually want simply connec-

ted (or at least connected) fundamental domains. Thus, the fundamental domain
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for a group Γ is “almost” a set of representatives of Γ \H which, moreover, has

a “reasonable” topological structure. Let us find fundamental domains for the

congruence subgroups of SL2(Z).

Theorem 1.9. Let F =
{
z ∈H : |z| ≥ 1 and |<(z)| ≤ 1

2

}
and consider the matrices

S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

(1) F is a fundamental domain for SL2(Z). Moreover, two distinct points z and z′

of F are equivalent under SL2(Z) if and only if
(i) <(z) = ±1

2 and z = z′ ± 1, in which case z = T(z′) or z′ = T(z), or
(ii) |z| = 1 and z′ = −1

z = S(z).
(2) Let z ∈ F. The stabiliser of z is {±1 } except in the following three cases:

(i) z = i, with SL2(Z)i = 〈S〉, so PSL2(Z)i has order 2;
(ii) z = ρ = eπi/3, with SL2(Z)ρ = 〈TS〉, so PSL2(Z)ρ has order 3;

(iii) z = ρ2 = e2πi/3, with SL2(Z)ρ2 = 〈ST〉, so PSL2(Z)ρ2 has order 3.
(3) SL2(Z) is generated by S and T.

Proof. Let Γ be the subgroup of SL2(Z) generated by S and T, and let z ∈ H.

We shall show that there exists some γ ∈ Γ such that γ(z) ∈ F. Recall that, if

α =
(
a b
c d

)
∈ Γ , then

=(α(z)) =
=(z)
|cz + d|2

.

Since c and d are both integers, the number of pairs (c,d) such that |cz + d| is less

than a given number is finite. Consequently, there exists some α ∈ Γ such that

=(α(z)) is maximum among elements in the orbit Γ z. Choose now some integer

n such that z′ = Tn(α(z)) satisfies that −1
2 ≤<(z′) ≤ 1

2 . I claim that z′ belongs to

F. Indeed, if that were not the case, we would have |z′ | < 1 and

=(S(z′)) ==
(−1
z′

)
=
=(z′)
|z′ |2

>=(z′) ==(α(z)) ,

which contradicts our choice of α. Therefore, the element γ = Tn · α has the

desired property.

Now consider z ∈ F and α =
(
a b
c d

)
∈ SL2(Z) such that α(z) ∈ F as well. Assume

that=(α(z)) ≥=(z) (up to replacing (z,α) by (α(z),α−1)). This means that

|cz + d|2 = (c<(z) + d)2 + (c=(z))2 ≤ 1
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and this is impossible if |c| ≥ 2 (because=(z) ≥ 3
4 ). This leaves only the cases

c = 0,1,−1.

• If c = 0, then d = ±1 and α =
(
±1 b
0 ±1

)
, so α(z) = z ± b. Since both z and α(z)

are in F, this implies that either b = 0 (and α = ±1) or b = ±1. In this last

case, one of the numbers<(z) and<(α(z)) must be equal to −1
2 and the

other to 1
2 .

• If c = 1, the fact that |z + d| ≤ 1 implies that d = 0 unless z = ρ, in which

case d = 0 or −1, or z = ρ2, in which case d = 0 or 1. If d = 0, we have that

|z| ≤ 1 and, therefore, |z| = 1; on the other hand, α =
(
a −1
1 0

)
and α(z) = a− 1

z .

In this situation, the first part of the discussion proves that a = 0 unless

<(z) = ±1
2 , which is to say, z = ρ (and a = 0 or 1) or z = ρ2 (and a = 0 or −1).

If d = −1 and z = ρ, then −a− b = 1 and α(z) = aρ+b
ρ−1 = a− 1

ρ−1 = a+ ρ; this is

only possible for a = 0 or −1. Similarly, if d = 1 and z = ρ2, then a− b = 1

and α(z) = aρ2+b
ρ2+1 = a− 1

ρ2+1 = a+ ρ2; this is only possible for a = 0 or 1.

• Finally, the case c = −1 is reduced to the case c = 1 by changing the signs of

a, b, c and d (this does not change α(z)).

This completes the proof of (1) and (2) of the theorem.

It remains to prove that Γ = SL2(Z). Let α ∈ SL2(Z) and choose a point z0

interior to F (for instance, z0 = 2i). Consider z = α(z0). We proved that there

exists some γ ∈ Γ such that γ(z) ∈ F. Now z0 and γ(z) = (γ ·α)(z0) are equivalent

under the action of SL2(Z) and z0 ∈ F̊, so (1) tells us that z0 = (γ · α)(z0) and

γ ·α ∈ SL2(Z)z0
= {±1 } by (2). That is, α and γ−1 are equal in PSL2(Z).

In fact, one can show that 〈S,T | (S)2, (ST)3〉 is a presentation of PSL2(Z). That

is to say, PSL2(Z) is the free product of 〈S〉 (cyclic of order 2) and 〈ST〉 (cyclic of

order 3).

Figure 1.1 shows F and its transforms by the elements 1, T, TS, ST−1S, S,

ST, STS, T−1S and T−1 of PSL2(Z). This kind of pictures become a useful tool

for computing explicitly fundamental domains for congruence subgroups. The

following result tells us how.

Proposition 1.10. Let Γ = SL2(Z) and let F be the fundamental domain for Γ de-
scribed in theorem 1.9. Let Γ ′ be a congruence subgroup of Γ and choose a set of
representatives α1, . . . ,αn of the left cosets of Γ ′ in Γ , so that

Γ =
n⊔

j=1

αj Γ
′ =

n⊔
j=1

Γ ′α−1
j .
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i
ρ

ρ2

i∞

1 TT−1

ST−1S TS

STS ST ST−1 ST−1S

0−1 −1
2

1
2

1

Figure 1.1: The fundamental domain F for SL2(Z) described in theorem 1.9 and
some of its transforms.

(Recall that a bar denotes the image in PSL2(R).) Then

F′ =
n⋃

j=1

α−1
j (F)

is a fundamental domain for Γ ′ (possibly non-connected).

Proof. Let z ∈ H. Since F is a fundamental domain for Γ , there exist z′ ∈ F and

γ ∈ Γ such that z′ = γ(z), and we can write γ = ±αj · γ′ for some γ′ ∈ Γ ′ and some

j. Therefore, γ′(z) ∈ α−1
j (F) ⊆ F′.

If z1 = γ′(z2) for some z1 ∈ α−1
j (F) ⊆ F′ and z2 ∈ α−1

k (F) ⊆ F′ and some γ′ ∈ Γ ′,
then αj(z1) =

(
αj · γ′ ·α−1

k

)
(αk(z2)) and αj(z1),αk(z2) ∈ F. Since F is a fundamental

domain for Γ , either αj · γ′ ·α−1
k = ±1 (in which case j = k, γ′ = ±1 and z1 = z2) or

αj(z1),αk(z2) ∈ ∂F. In the latter case, we have that z1 ∈ ∂
(
α−1
j F

)
and z2 ∈ ∂

(
α−1
k F

)
because the elements of SL2(R) are diffeomorphisms of H. We must prove that

both z1 and z2 are in the boundary of F′ except if z1 = z2. To this aim, suppose

that z2 is interior to F′. Then there is an open neighbourhood U of z2 in F′ and,

as a consequence, γ′(U) is an open neighbourhood of z1 which might not be

contained in F′. But at least we know that γ′(U)∩α−1
k (F̊) , ∅. Therefore, we can

choose z0 ∈ F̊ such that α−1
k (z0) ∈ γ′(U), so α−1

k (z0) = γ′
(
α−1
l (z′0)

)
for some z′0 ∈ F

and some l (here α−1
l (z′0) ∈ U ⊆ F′). Again, since F is a fundamental domain,

z0 = z′0, α−1
k · γ

′ ·α−1
l = −1, k = l and γ′ = ±1. In particular, z1 = z2.
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The result of proposition 1.10 can be improved: one can choose α1, . . . ,αn so

that F′ is also connected. This gives an explicit way to compute a fundamental

domain F′ for Γ ′, as long as we can compute a set of representatives for SL2(Z) / Γ ′.

Fundamental domains are useful for visualising the geometric structure of the

quotient Γ ′ \H. This is further formalised in chapter 2, where this set of orbits is

given the structure of a Riemann surface.

1.2 Modular forms

Throughout this section, Γ will be a congruence subgroup of level N and k will

be an integer. After introducing the action of Γ on H∗ and having obtained a

special set of representatives of the set of orbits Γ \H, the next natural step is to

study functions which are invariant under the action of Γ . However, it is difficult

to construct them directly. It is easier to construct functions which transform in

a certain way under the action of Γ . Then, the quotient of two functions which

transform in the same way will be invariant under the action of Γ .

This situation is analogous to how one might proceed in order to define

functions on projective spaces. For example, let K be an infinite field and

consider the projective line P1
K = ((K×K) \ {0 }) / K×. Let K(X,Y) be the field of

fractions of K[X,Y]. An element f ∈ K(X,Y) defines a function (a,b) 7→ f (a,b)

on some subset of K × K (where the denominator does not vanish), and this

function passes to the quotient P1
K if and only if f (λX,λY) = f (X,Y) for all

λ ∈ K×. We can obtain one such function if we consider first two homogeneous

polynomials g,h ∈ K[X,Y] of the same degree d, so that g(λX,λY) = λdg(X,Y)

and h(λX,λY) = λdh(X,Y). In this case, f = g/h satisfies the desired condition.

The previous discussion motivates the definitions in this section.

Definition 1.11. We define a right action of weight k of GL+
2 (Q) on functions

f : H∗→ P1
C in the following way:

f |[γ]
k (z) = det(γ)

k
2 j(γ, z)−kf (γ(z))

where γ =
(
a b
c d

)
∈GL+

2 (Q) and j(γ, z) = cz + d is called the automorphy factor.

This indeed defines a right action: for all γ1,γ2 ∈ Γ ,

j(γ1γ2, z) = j(γ1,γ2(z))j(γ2, z)
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and so (
f |[γ1]

k

)∣∣∣∣[γ2]

k
(z) = det(γ1)

k
2 det(γ2)

k
2 j(γ1,γ2(z))−kj(γ2, z)−kf (γ1(γ2(z)))

= det(γ1γ2)
k
2 j(γ1γ2, z)−kf ((γ1γ2)(z)) = f |[γ1γ2]

k (z) .

Definition 1.12. We say that a function f : H→ P1
C is weakly modular for Γ of

weight k if f |[γ]
k = f for all γ ∈ Γ .

The functions we will be studying should have some desirable properties.

Hence, we will impose two kinds of conditions: conditions in H and conditions

at the cusps. Let us see what that means.

Observe that, since Γ (N) ⊆ Γ , there exists a positive integer h such that

Th =
(

1 h
0 1

)
∈ {±1 } · Γ (namely, h = N). We can choose the minimum such h, which

is called the width of the cusp∞. Therefore, a meromorphic weakly modular

function f : H→ P1
C for Γ is periodic with period h (that is, invariant under Th).

Consequently, f admits a Fourier series expansion

f (z) =
∞∑

n=−∞
ane

2πinz/h .

We can then define

f̂∞(qh) =
∞∑

n=−∞
anq

n
h

(where we have made the change qh = e2πiz/h) and we call it the qh–expansion

of f at infinity. This is because the map z 7→ qh = e2πiz/h induces an analytic

isomorphism between 〈Th〉\H and the punctured disc of radius 1, and we can

extend it to an isomorphism from 〈Th〉\H∗ to the whole disc in such a way

that i∞ is mapped to 0. Now we say that f satisfies a certain property (is

meromorphic or holomorphic, or vanishes) at∞ if f̂∞ satisfies it at 0.

For a cusp s ,∞, we know that there exists α ∈ SL2(Z) such that s = α(∞). Let

g = f |[α]
k , which is weakly modular for α−1Γ α (a congruence subgroup) because

g |[α
−1γα]

k =
(
f |[α]

k

)∣∣∣∣[α−1γα]

k
= f |[γα]

k =
(
f |[γ]

k

)∣∣∣∣[α]

k
= f |[α]

k = g

for all α−1γα ∈ α−1Γ α. We say that f satisfies a certain property (is meromorphic

or holomorphic, or vanishes) at s if g satisfies the same property at ∞ (in the

above sense). We define the width of s to be the minimum positive integer h such
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that Th ∈ {±1 } ·α−1Γ α. We call ĝ∞ the qh–expansion of f at s and write f̂s = ĝ∞.

Actually, we will only need to study the behaviour of functions in a set of

representatives for the Γ –equivalence classes of cusps (and there are finitely

many of them).

Proposition 1.13. Let f be a weakly modular function for Γ . If α1(∞) = (γα2)(∞)

for some α1,α2 ∈ SL2(Z) and γ ∈ Γ , then the smallest power of qh which occurs in the
Fourier expansions of f |[α1]

k and f |[α2]
k is the same.

Proof. Since α1(∞) = (γα2)(∞), necessarily α−1
1 γα2 ∈ SL2(Z)∞ = 〈T〉. That is,

α2 = ±γ−1α1Tj for some integer j. Therefore,

f |[α2]
k = (±1)k

(
f |[α1]

k

)∣∣∣∣[Tj ]

k
= (±1)k g |[T

j ]
k

where g = f |[α1]
k . If the qh–expansion of g at∞ is g(z) =

∑
n anq

n
h , the qh–expansion

f |[α2]
k (z) = (±1)kg(z + j) = (±1)k

∑
n

ane
2πinj/Nqnh

has the same non-zero coefficients (because the coefficients of the two series

differ only by roots of unity).

Definition 1.14. A modular function for Γ is a function f : H∗ → P1
C satisfying

the following conditions:

(i) f is invariant under the action of Γ on H∗, i.e., f ◦ γ = f for all γ ∈ Γ ;

(ii) f is meromorphic in H;

(iii) f is meromorphic at the cusps.

Definition 1.15. A modular form for Γ of weight k is a function f : H∗ → P1
C

satisfying the following conditions:

(i) f is weakly modular for Γ of weight k;

(ii) f is holomorphic in H;

(iii) f is holomorphic at the cusps.

If, in addition, f vanishes at all the cusps, we call it a cusp form for Γ of weight k.

We refer to a function which satisfies (i) and also (ii) and (iii) with “holomorphic”

replaced by “meromorphic” as a meromorphic modular form for Γ of weight k.

Despite the fact that we motivated the definition of modular forms as a means

to obtain modular functions (through a relaxation of the required conditions),

modular forms are interesting on their own right and have many interesting

applications in number theory and several other areas of mathematics.
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1.3 Eisenstein series, the modular discriminant and

the modular invariant

In the remainder of this chapter, we focus on modular forms for the full modular

group SL2(Z).

The existence of (non-zero) modular forms is not obvious from definition 1.15.

In this section we study some examples of modular forms of level 1. We observe

that, since −1 ∈ SL2(Z), there are no non-zero modular forms of odd weight (in

that case, the condition of weak modularity for SL2(Z) implies in particular that

f (z) = f (−1(z)) = −f (z)). Therefore, we consider only modular forms of even

weight 2k (for some integer k).

The examples exhibited in this section also play a fundamental role in the

study of the spaces of modular forms for SL2(Z).

Definition 1.16. Let k > 1. We define the Eisenstein series of index 2k as

G2k(z) =
∑′

m,n∈Z

1
(mz +n)2k

for z ∈ H. (The symbol
∑′ means that the summation runs over all values for

which the corresponding addends “make sense”; in this case, over all pairs (m,n)

distinct from (0,0).)

Proposition 1.17. If k > 1, the Eisenstein series G2k converges to a holomorphic
function on H which can be extended to a modular form for SL2(Z) of weight 2k with
G2k(∞) = 2ζ(2k), where ζ denotes the Riemann zeta function.

Proof. Let z ∈H and let Lz =
{
mz +n : (m,n) ∈ Z2 \ { (0,0) }

}
. For every N ∈ N, we

consider the parallelogram PN whose four vertices are the points ±Nz ±N. If

r = min{ |w| : w ∈ P1 }, then |w| ≥ Nr for all w ∈ PN. Since PN ∩ Lz contains exactly

8N points for each N and Lz =
⊔

N∈N(PN ∩ Lz),∑′

m,n∈Z
|mz +n|−2k =

∑
N>0

∑
w∈PN∩Lz

|w|−2k ≤
∑
N>0

8N(Nr)−2k = 8r−2k
∑
N>0

N−2k+1

and this last series converges because −2k+1 < −1. This proves that G2k converges

absolutely.

Now we check that G2k defines a weakly modular function of weight 2k.
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Indeed, we recall that S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL2(Z) and compute

G2k(z + 1) =
∑′

m,n∈Z
(mz +m+n)−2k =

∑′

m,n∈Z
(mz +n)−2k = G2k(z) ,

G2k

(−1
z

)
=

∑′

m,n∈Z

(m
z

+n
)−2k

= z2k
∑′

m,n∈Z
(m+nz)−2k = z2kG2k(z) .

Let F be the fundamental domain for SL2(Z) defined in theorem 1.9. If z ∈ F,

we have that

|mz +n|2 = m2|z|2 + 2mn<(z) +n2 ≥m2 −mn+n2 = |mρ−n|2

where ρ = e2πi/3. But we have already proved that G2k(ρ) =
∑′(mρ − n)−2k con-

verges absolutely. This means that G2k(z) converges uniformly in F, and thus

also in each of the transforms γF (applying the result to G2k(γ−1(z))). Since these

cover H, we conclude that G2k(z) converges uniformly absolutely on compact

subsets of H. In particular, G2k defines a weakly modular function which is

holomorphic in H.

It remains to see that G2k is holomorphic at infinity. To this aim, we need to

prove that G2k has a limit for=(z)→∞. But one may suppose that z remains

in F. Since G2k converges uniformly in F, we can make the passage to the limit

term by term:

lim
z→i∞

G2k(z) =
∑′

m,n∈Z
lim
z→i∞

1
(mz +n)2k

=
∑

n∈Z\{0}

1
n2k

= 2
∞∑
n=1

1
n2k

= 2ζ(2k)

(here, we used that the terms with m , 0 tend to 0).

Proposition 1.18. For every integer k > 1, the q–expansion of the Eisenstein series
G2k is

G2k(z) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn

where
σj(n) =

∑
d|n

dj

is the sum of j–th powers of positive divisors of n and q = q(z) = e2πiz .
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Proof. We start with the well-known formula

1
z

+
∞∑
n=1

( 1
z +n

+
1

z −n

)
= πcot(πz) = π

cos(πz)
sin(πz)

= πi − 2πi
1− q

= πi − 2πi
∞∑
r=0

qr ,

which can be obtained taking the logarithmic derivative of the expression of

sin(πz) as an infinite product. By successive differentiations, we obtain the

formula ∑
n∈Z

1
(z +n)j

=
1

(j − 1)!
(−2πi)j

∞∑
r=1

rj−1qr ,

for j ≥ 2. After replacing z with mz, this becomes

∑
n∈Z

1
(mz +n)j

=
1

(j − 1)!
(−2πi)j

∞∑
r=1

rj−1qmr .

Finally, we use this to expand

G2k(z) =
∑′

m,n∈Z

1
(mz +n)2k

= 2ζ(2k) + 2
∞∑

m=1

∑
n∈Z

1
(mz +n)2k

= 2ζ(2k) +
2(−2πi)2k

(2k − 1)!

∞∑
m=1

∞∑
r=1

r2k−1qmr = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n) · qn

as required.

These explicit q–expansions can be used to derive identities relating the

arithmetic functions σj(n).

We have seen that there exists a family of non-zero modular forms, and we

have even computed their q–expansions. We next use Eisenstein series to define

a cusp form and a modular function.

Definition 1.19. We define the functions g4(z) = 60G4(z) and g6(z) = 140G6(z)

(it is convenient to choose these multiples of the corresponding Eisensten series

because of their relation to the theory of elliptic curves).

Definition 1.20. The modular discriminant is the cusp form for SL2(Z) of weight

12 defined by

∆(z) = g4(z)3 − 27g6(z)2 .

One checks that the constants in this definition are chosen so that ∆(∞) = 0.

In addition, ∆(z) is a modular form of weight 12 because the product of modular
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forms is a modular form (and its weight is the sum of weights). In conclusion,

∆(z) is a cusp form of weight 12.

The modular discriminant has also been studied for its arithmetic properties

(the coefficients of its q–expansion define the Ramanujan τ–function up to a

constant factor). We shall see that it is in fact the (non-zero) cusp form of least

possible weight. Its q–expansion can be computed using the following result,

which we state without proof (see theorem 6 of chapter VII of Serre’s book [11]

for an elementary proof).

Theorem 1.21 (Jacobi). The modular discriminant’s can be expressed as

∆(z) = (2π)12q
∞∏
n=1

(1− qn)24 , q = q(z) = e2πiz .

Corollary 1.22. ∆(z) does not vanish in H and has a simple zero at i∞.

We shall give a different proof of this corollary later.

As commented before, modular functions can be obtained as quotients of

modular forms.

Definition 1.23. The modular invariant is the modular function for SL2(Z)

j(z) = 1728
g4(z)3

∆(z)
= 1728

g4(z)3

g4(z)3 − 27g6(z)2 .

It is clear from the definition that j(z) is a modular function for SL2(Z). In

particular, it is holomorphic in H and has a simple pole at i∞. The coefficient

1728 = 2633 has been introduced in order that j(z) has a residue equal to 1 at

infinity. Furthermore, an interesting property of j is that it defines an analytic

isomorphism between SL2(Z)\H∗ and the Riemann sphere C∪ {∞}.

1.4 Structure theorem

After seeing the examples of the previous section, we are in a position to describe

explicitly the structure of the space of modular forms for SL2(Z).

Lemma 1.24. Let Γ be a congruence subgroup of SL2(Z) and let k be an integer. The
set Mk(Γ ) of modular forms for Γ of weight k is a vector space over C. Furthermore,
the set Sk(Γ ) of cusp forms for Γ of weight k is a subspace of finite codimension in
Mk(Γ ).
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Proof. On the one hand, sums and scalar multiples of holomorphic functions are

again holomorphic. Moreover, the right action of GL2(R) on functions defined

on H∗ commutes with linear combinations and, consequently, the condition of

being weakly modular of weight k is also satisfied by sums and scalar multiples

of weakly modular functions of weight k. The zero function is a modular form

of weight k too. In conclusion, Mk(Γ ) is a vector space over C.

On the other hand, consider a set C of representatives of the Γ –equivalence

classes of cusps. The kernel of the linear map f 7→ (f (s))s∈C : Mk(Γ ) → C|C|

is precisely Sk(Γ ). Therefore, Sk(Γ ) is a subspace of Mk(Γ ) and, by the first

isomorphism theorem, codim(Sk(Γ )) ≤ dim(C|C|) = |C| <∞.

Proposition 1.25. Let k > 1. The subspace S2k(SL2(Z)) has codimension 1 in
M2k(SL2(Z)) and M2k(SL2(Z)) = S2k(SL2(Z))⊕CG2k.

Proof. This is a consequence of lemma 1.24. Indeed, all the cusps are equival-

ent under SL2(Z) and the Eisenstein series G2k is an element of M2k such that

G2k(i∞) , 0. Therefore, M2k(SL2(Z)) = S2k(SL2(Z))⊕CG2k.

The last result gives us the structure of the space of modular forms for SL2(Z)

of a given weight. We shall find explicit bases of these vector spaces, but first we

study how they relate to each other.

Proposition 1.26. Let Γ be a congruence subgroup of SL2(Z). The set of modular
forms for Γ is an associative, commutative and unital graded algebra over C:

M(Γ ) =
⊕
k∈Z

Mk(Γ ) .

Proof. This result follows from lemma 1.24 and the fact that, if f and g are

modular forms for Γ of weights k and l, respectively, the product f g is a modular

form for Γ of weight k + l. Indeed, the product of holomorphic functions is

holomorphic and

(f g)(γ(z)) = f (γ(z))g(γ(z)) = (cz + d)kf (z)(cz + d)lg(z) = (cz + d)k+l(f g)(z)

for all γ =
(
a b
c d

)
∈ Γ and all z ∈H∗.

We can now state and prove the main results, which allow us to make explicit

computations with modular forms for SL2(Z). That is to say, our aim is to find a

basis of these vector spaces.
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Definition 1.27. Let f be a meromorphic modular form for a congruence sub-

group Γ , not identically zero. The order of f at a point p ∈H is the integer ordp(f )

such that f (z)(z −p)−ordp(f ) is holomorphic and non-zero at p. The order of f at a

cusp s is the integer ords(f ) such that f̂s(qh)q−ords(f )
h is holomorphic and non-zero

at 0, where f̂s is the qh–expansion of f at s (and h is the width of s).

Theorem 1.28 (valence formula). Let k be an integer and let f be a meromorphic
modular form for SL2(Z) of weight k, not identically zero. Then,

ord∞(f ) +
1
2

ordi(f ) +
1
3

ordρ(f ) +
∑∗

p

ordp(f ) =
k

12
,

where
∑∗

p means a summation over the points of SL2(Z)\H distinct from the classes
of i and ρ.

Proof. Let F be the fundamental domain for SL2(Z) described in theorem 1.9.

Observe that the sum we want to compute “makes sense” (i.e., that f has a

finite number of zeros and poles modulo SL2(Z)). Indeed, since f is meromorphic

at infinity, there exists some R > 0 such that f has neither zeros nor poles in

{z ∈H :=(z) ≥ R }. That is, the q–expansion f̂∞ of f at infinity is meromorphic

at 0 and so there exists some r > 0 such that f̂∞ has neither zeros nor poles in

the punctured disc {q : 0 < |q| ≤ r }. Here, r = e−2πR. And FR = {z ∈ F :=(z) ≤ R }
contains only a finite number of zeros and poles because it is compact and f is

meromorphic in H.

A I

B H
C G

ED i
ρ

ρ2

P

Q

−1
2

0 1
2

Figure 1.2: Contour for the proof of theorem 1.28.
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The zeros and poles of f are all equivalent to either some point in F or to

∞. The main idea of the proof is to integrate the logarithmic derivative of f

round a contour (which is similar to the boundary of F). More precisely, let C be

the contour depicted in figure 1.2: we are going to integrate the meromorphic

function f ′

f round C. The top of C is a horizontal line from I = 1
2 +iR to A = −1

2 +iR.

The rest of the contour follows round the boundary of the fundamental domain

F, except that it detours round any zero or pole on the boundary along circular

arcs of small radius ε (we are going to take the limit as ε approaches 0). This is

done in such a way as to include every equivalence class of zero or pole exactly

once inside C other than i and ρ (and so ρ2 = S(ρ)), which are left outside of C if

they are zeros or poles.

Figure 1.2 illustrates the case in which the zeros and poles on the boundary

of F (i.e., the points which have to be avoided when defining the contour C) are

precisely the points i, ρ and ρ2, one point P on the vertical boundary (and its

equivalent point on the opposite line) and one point Q on the unit circle (and its

equivalent point also on the unit circle).

By the residue theorem,

1
2πi

∫
C

f ′(z)
f (z)

dz =
∑∗

p

ordp(f ) .

We evaluate this integral dividing the contour C in parts. (See figure 1.2 for the

points used in the division of the contour.)

First of all, the integral from A to B cancels the integral from H to I because

f (z + 1) = f (z) (and the lines go in opposite directions).

To evaluate the integral from I to A, we consider the change of variables

q = e2πiz . This section of the integral is thus equal to the integral

1
2πi

∫
f̂ ′∞(q)

f̂∞(q)
dq

along the circle of radius r = e−2πR centred at the origin with negative orientation.

Therefore, the value of this integral is −ord∞(f ) (i.e., −ord0(f̂∞)).

The integral along the circle which contains DE, oriented negatively, has the

value −ordi(f ). And, as ε tends to 0, the angle ∠DiE tends to π. Hence,

1
2πi

∫ E

D

f ′(z)
f (z)

dz −
ordi(f )

2
.

ε→0+
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Similarly,

1
2πi

∫ C

B

f ′(z)
f (z)

dz −
ordρ(f )

6
and

1
2πi

∫ H

G

f ′(z)
f (z)

dz −
ordρ(f )

6
.

ε→0+ ε→0+

Finally, we observe that S =
(

0 −1
1 0

)
transforms the path from C to D into the

path from G to E. Since f (S(z)) = zkf (z),

1
2πi

(∫ D

C

f ′(z)
f (z)

dz +
∫ G

E

f ′(z)
f (z)

dz

)
=

1
2πi

∫ D

C

[
f ′(z)
f (z)

−
f ′(S(z))
f (S(z))

]
dz =

1
2πi

∫ D

C
−kdz

z

and this last integral tends to k
12 as ε tends to 0 because ∠C0D tends to π

6 .

We can use this theorem to prove a result which was stated before and which

we are going to need.

Corollary 1.22. ∆(z) does not vanish in H and has a simple zero at i∞.

Proof. Since ∆ is a cusp form of weight 12, ordp(∆) ≥ 0 for all p ∈H\SL2(Z) and

ord∞(∆) ≥ 1. By theorem 1.28, these numbers add up to 1: this is only possible

if all the inequalities are equalities.

Proposition 1.29. Let k be an integer. Multiplication by ∆ defines an isomorphism
of Mk−12(SL2(Z)) onto Sk(SL2(Z)).

Proof. Clearly, if f ∈Mk−12(SL2(Z)), then f ∆ ∈ Sk(SL2(Z)). For the converse, let

f ∈ Sk(SL2(Z)). We set g = f
∆

, which is a meromorphic modular form of weight

k − 12. Using the previous result, we obtain that ordp(g) = ordp(f ) ≥ 0 for every

p ∈H and ord∞(g) = ord∞(f )− 1 ≥ 0. In conclusion, g ∈Mk−12(SL2(Z)).

This proves that multiplication by ∆ gives a bijection between Mk−12(SL2(Z))

and Sk(SL2(Z)), and it is obviously a linear transformation.

Proposition 1.30. Let k be an integer.

(1) Mk(SL2(Z)) = 0 if k < 0, k is odd or k = 2.
(2) M0(SL2(Z)) = C (that is, the only modular forms for SL2(Z) of weight 0 are the

constants).
(3) Mk(SL2(Z)) has dimension 1 and Gk is a basis if k = 4,6,8,10 or 14.
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Proof. Recall that, if f is a non-zero modular form of weight k, then

ord∞(f ) +
1
2

ordi(f ) +
1
3

ordρ(f ) +
∑∗

p

ordp(f ) =
k

12
.

Since f is holomorphic, this means that k
12 ≥ 0. Moreover, k must be even because

the least common denominator of the left-hand side is 6 and k , 2 because 1
6

cannot be written in the form a+ b
2 + c

3 with a,b,c ≥ 0.

If k ≤ 10, we have that k − 12 < 0 and Sk(SL2(Z)) = {0 } by proposition 1.29.

Therefore, dim(Mk(SL2(Z))) ≤ 1. But we already know that 1,G4,G6,G8,G10 are

non-zero modular forms for SL2(Z) of weights 0,4,6,8,10, respectively; this

concludes the proof.

Corollary 1.31. For any integer k,

dim(Mk(SL2(Z))) =


0 if k < 0, k is odd or k = 2 ,⌊
k

12

⌋
if k ≥ 0, k is even and k

2 ≡ 1 (mod 6) ,⌊
k

12

⌋
+ 1 if k ≥ 0, k is even and k

2 . 1 (mod 6) .

Proof. The result follows by induction on k (the inductive step is performed by

increasing k to k + 12 using proposition 1.29).

Theorem 1.32. Let k ≥ 0. The vector space M2k(SL2(Z)) admits as a basis the family
of monomials Gα

4 Gβ

6 with α and β non-negative integers such that 2α+ 3β = k. As a
consequence, M(SL2(Z)) = C[G4,G6].

Proof. First, we show that these monomials generate M2k(SL2(Z)) by induction

on k. This is clear for k ≤ 3, so suppose that k ≥ 4. Choose a pair (α0,β0) of

non-negative integers such that 2α0 + 3β0 = k (this is possible for k ≥ 2). The

modular form g = Gα0
4 Gβ0

6 , of weight 2k, is not a cusp form. Let f ∈M2k(SL2(Z)).

Now f − f (∞)
g(∞)g is a cusp form and, in particular, is of the form ∆h for some

h ∈M2k−12(SL2(Z)). We can apply the induction hypothesis to h and obtain thus

f as a linear combination of the desired monomials.

Now we see that these monomials are linearly independent. Suppose, for the

sake of contradiction, that there exists a non-trivial linear combination∑
2α+3β=k

λα,βG
α
4 Gβ

6 = 0 .
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Up to multiplying this linear relation by suitable powers of G4 and of G6, we

may assume that 2k is a multiple of 12. Dividing by Gk/3
6 , we obtain that

∑
2α+3β=k

λα,β

(
G3

4

G2
6

)α
3

= 0

(where α
3 is an integer because 2α = k − 3β is a multiple of 3). That is, the

meromorphic function G3
4/G

2
6 satisfies a non-trivial algebraic equation over C

and, therefore, is constant. But this is not the case: G4(ρ) = 0 , G6(ρ) whereas

G4(i) , 0 = G6(i).

Hence, we know a basis of each space of modular forms for SL2(Z) and we

can compute the q–expansions of the elements of this basis explicitly. There is a

similar result for modular functions for SL2(Z).

Proposition 1.33. The modular invariant j defines by passage to quotient a bijection
of SL2(Z)\H∗ onto P1

C.

Proof. We already know that j has a simple pole at infinity and is holomorphic in

H. Thus, we have to prove that the modular form fλ = 1728g3
2 −λ∆ has a unique

zero modulo SL2(Z) for all λ ∈ C (recall that j = 1728g3
2 /∆). By theorem 1.28,

ord∞(fλ) +
1
2

ordi(fλ) +
1
3

ordρ(fλ) +
∑∗

p

ordp(fλ) = 1

and the only decompositions of 1 in the form a+ b
2 + c

3 with a,b,c ≥ 0 correspond

to (a,b,c) = (1,0,0), (0,2,0) or (0,0,3). In all three cases fλ vanishes at exactly one

point of SL2(Z)\H.

Actually, this bijection is an isomorphism of Riemann surfaces (with the

structure of SL2(Z)\H∗ defined in the next chapter).

Theorem 1.34. Let f be a meromorphic function on H∗. The following properties
are equivalent:

(a) f is a modular function for SL2(Z);
(b) f is a quotient of two modular forms for SL2(Z) of the same weight;
(c) f is a rational function of j.

Proof. The implications (c) =⇒ (b) =⇒ (a) are immediate.
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Now we prove that (a) =⇒ (c). After multiplying f by a suitable polynomial

in j, we may assume that f is holomorphic in H. Since ∆ is a cusp form, there

exists an integer n ≥ 0 such that g = ∆nf is holomorphic at infinity as well. Thus

g is a modular form of weight 12n and can be expressed as a linear combination

of monomials Gα
4 Gβ

6 with 2α+ 3β = 6n. By linearity, we are reduced to the case

g = Gα
4 Gβ

6. That is,

f =
Gα

4 Gβ

6

∆n =
(

G3
4

∆

)α
3
(

G2
6

∆

) β
2

=
( j

1728 · 603

)α
3
( j

1728 · 27 · 1402 −
1

27 · 1402

) β
2

and we observe that both α
3 and β

2 are integers.



Chapter 2

Modular curves as Riemann surfaces

The set of orbits of H under the action of a congruence subgroup can be endowed

with the structure of a Riemann surface. This chapter describes the construction

of this Riemann surface, which is called modular curve, and explains how it can

be compactified by adding a finite number of points. In some sense, some of the

facts presented in chapter 1 in relation to the fundamental domain for SL2(Z)

are generalised here using results from the theory of Riemann surfaces.

The exposition of this chapter is based principally on some sections of the

first half of Milne’s notes [8] as well as on the relevant chapters of the books

[12] by Shimura, [4] by Lang and [2] by Diamond and Shurman. (The first

chapter of Shimura’s book [12] gives a complete description of modular curves

for more general types of groups.) Also, Reyssat’s book [10] develops the theory

of Riemann surfaces and devotes a whole chapter to examples related to modular

curves.

2.1 Classification of Möbius transformations

Consider the action of GL2(C) on P1
C given by linear fractional transformations.

The scalar matrices
(
λ 0
0 λ

)
act as the identity transformation. Let α ∈GL2(C) and

suppose that it is not a scalar matrix. By the theory of Jordan canonical forms, α

is conjugate to a matrix of one of the following two forms:(
λ 1
0 λ

)
or

(
λ 0
0 µ

)
, λ , µ.

In the first case, α is conjugate to a transformation z 7→ z + λ−1; in the second

case, to a transformation z 7→ cz, c , 1.

Definition 2.1. A non-scalar matrix α ∈ GL2(C) (or the corresponding non-

trivial linear fractional transformation) is called

(1) parabolic if it is conjugate to a transformation of the form z 7→ z +λ−1,

(2) elliptic if it is conjugate to a transformation of the form z 7→ cz with |c| = 1,

23
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(3) hyperbolic if it is conjugate to a transformation of the form z 7→ cz with

c ∈ R+, and

(4) loxodromic otherwise.

A non-scalar α ∈ GL2(C) has one or two fixed points in P1
C depending on

whether it is parabolic or not. We will be interested in the fixed points of the

elements of SL2(R). In this case, the classification of linear fractional transform-

ations becomes simpler.

Proposition 2.2. Let α ∈ SL2(C) \ {±1 }.
(1) α is parabolic if and only if tr(α) = ±2.
(2) α is elliptic if and only if tr(α) is real and |tr(α)| < 2.
(3) α is hyperbolic if and only if tr(α) is real and |tr(α)| > 2.
(4) α is loxodromic if and only if tr(α) is not real.

Proof. Since det(α) = 1, the Jordan canonical form for α is either
(
±1 1
0 ±1

)
or

(
λ 0
0 λ−1

)
,

λ , ±1. (1) follows immediately from this.

If α is elliptic, then c = λ2 and |c| = 1, so tr(α) = λ+ λ−1 = 2<(λ) is real and

its absolute value is < 2 (because λ , ±1). Similarly, if α is hyperbolic, then

c = λ2 ∈ R+, so λ ∈ R+ \ {0,±1 }; consequently, tr(α) = λ + λ−1 is real and its

absolute value is > 2.

Conversely, suppose that α is conjugate to
(
λ 0
0 λ−1

)
and that tr(α) = λ+λ−1 is

real. If λ is real, since λ , ±1, we obtain that |tr(α)| > 2 and α must be hyperbolic

because c = λ2 ∈ R+. Otherwise, λ and λ are the roots of X2 − tr(α)X + 1 = 0;

therefore, λλ = 1 and α must be elliptic.

It is clear that there are no loxodromic elements in SL2(R). Let us study the

behaviour of the other types of transformations.

If α =
(
a b
c d

)
∈ SL2(R) \ {±1 } is parabolic, it has exactly one eigenvector (up

to scalar multiplication), which is real. Let
(
e
f

)
be this eigenvector. If f , 0, α

has a fixed point z = e
f in R which is actually the double root of az+b

cz+d = z. If,

contrariwise, f = 0, then c = 0 and α = ±
(

1 b
0 1

)
; thus, its only fixed point is∞.

If α =
(
a b
c d

)
∈ SL2(R) \ {±1 } is elliptic, its characteristic polynomial is given

by X2 − (a + d)X + 1 with |a + d| < 2. Therefore, α has two complex conjugate

eigenvectors
(
e
f

)
and

(
e
f

)
which correspond to two complex conjugate fixed

points z = e
f and z = e

f
(one of them in H).

If α =
(
a b
c d

)
∈ SL2(R) \ {±1 } is hyperbolic, its characteristic polynomial is

X2 − (a+ d)X + 1 with |a+ d| > 2. Therefore, α has two linearly independent real

eigenvectors which correspond to two distinct fixed points in R∪ {∞}.
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Proposition 2.3. Let α ∈ SL2(R) \ {±1 }.
(1) α is parabolic if and only if it has exactly one fixed point in R∪ {∞}.
(2) α is elliptic if and only if it has exactly one fixed point z in H (and the other

fixed point is z).
(3) α is hyperbolic if and only if it has two distinct fixed points in R∪ {∞}.

Corollary 2.4. Let α ∈ SL2(R)\{±1 } and let m ∈ Z such that αm , ±1. α is parabolic
(resp. elliptic or hyperbolic) if and only if αm is parabolic (resp. elliptic or hyperbolic).

We now classify the points of H and P1
R with respect to the action of a fixed

discrete subgroup Γ of SL2(R).

Definition 2.5. Consider the action of Γ given by Möbius transformations.

(1) A point z ∈ H is called an elliptic point for Γ if it is the fixed point of an

elliptic element γ of Γ .

(2) A point s ∈ P1
R = R∪ {∞} is called a cusp for Γ if it is the fixed point of a

parabolic element γ of Γ .

Proposition 2.6. If z is an elliptic point for Γ , then Γz is a cyclic group.

Proof. If α =
(
a b
c d

)
∈ SL2(R), α(i) = i if and only if ai + b = di − c. Therefore,

SL2(R)i =
{(

a b
c d

)
∈ SL2(R) : a = d, b = −c and a2 + b2 = 1

}
= SO2(R) .

Since SL2(R) acts transitively on H, there exists some σ ∈ SL2(R) such that

σ(i) = z. In this case, SL2(R)z = σ SO2(R)σ−1. Hence, Γz = σ SO2(R)σ−1 ∩ Γ and

this group is finite because Γ is discrete and SO2(R) is compact. Finally, we

observe that SO2(R) is isomorphic to R /Z and every finite subgroup of R /Z is

cyclic (in fact, every finite subgroup of R /Z is of the form n−1Z /Z where n is the

least common denominator of the elements of the subgroup).

Proposition 2.7. The elements of Γ of finite order are precisely the elliptic elements
of Γ and ±1.

Proof. Let α ∈ SL2(R) and suppose that it has finite order. By the theory of Jordan

canonical forms, α is conjugate in SL2(C) to a matrix of the form
(
ζ 0
0 ζ

)
, where ζ

is a root of unity. In this case, tr(α) = ζ+ ζ = 2<(ζ). Therefore, |tr(α)| < 2 and α

is elliptic unless ζ = ±1. The converse is a consequence of proposition 2.6.
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Proposition 2.8. Let Γ1 and Γ2 be two discrete subgroups of SL2(R). If Γ1 ∩ Γ2 is a
subgroup of finite index in both Γ1 and Γ2, then Γ1 and Γ2 have the same set of cusps.

Proof. Up to replacing Γ2 with Γ1∩ Γ2, we may assume that Γ2 ⊆ Γ1. It is clear that

a cusp for Γ2 is also a cusp for Γ1 because the parabolic elements of Γ2 are also

parabolic elements of Γ1.

If s is a cusp for Γ1, then γ(s) = s for some parabolic element of Γ1. Since

[Γ1 : Γ2] is finite, γΓ2 has finite order in Γ1 / Γ2. That is to say, there exists a positive

integer n such that γn ∈ Γ2. But γn(s) = s and γn is also parabolic by corollary 2.4.

(Note that proposition 2.7 ensures that γn , ±1.)

Example 2.9. The cusps for the full modular group SL2(Z) are exactly the ele-

ments of P1
Q (therefore, the notions of cusp given in definition 1.1 and in defini-

tion 2.5 coincide for congruence subgroups). On the one hand, ∞ is the fixed

point of the parabolic element T =
(

1 1
0 1

)
∈ SL2(Z). And we already know that, for

each s = p
q ∈Q (with (p,q) = 1), there exists γ =

(
p u
q v

)
∈ SL2(Z) such that γ(∞) = s;

therefore, s is the only fixed point of γTγ−1 (which must be parabolic). On the

other hand, a cusp s ∈ R satisfies cs2 + (a+ d)s − b = 0 for some parabolic element(
a b
c d

)
∈ SL2(Z) with a+ d = ±2 and c , 0. But the discriminant of this equation

vanishes: this means that its solution must be rational.

If γ is an elliptic element of SL2(Z), |tr(γ)| is an integer and is < 2. Therefore,

the characteristic polynomial of γ is either X2 + 1 or X2 ±X + 1 and its roots are

roots of unity lying in a quadratic field extension of Q: the only such roots of

unity have order dividing 4 or 6. In conclusion, the elliptic points for SL2(Z)

are the points of H which are SL2(Z)–equivalent to either i or ρ = 1+i
√

3
2 (by

theorem 1.9).

2.2 The topology of Γ \H∗

In the remainder of this chapter, Γ will be a congruence subgroup (we could

develop this theory for general discrete subgroups of SL2(R), as in Shimura’s

book [12], but we are only interested in congruence subgroups and in this case

some proofs are simpler).

Our objective is to endow Γ \H∗ with the structure of a compact Riemann

surface. We started in the previous section classifying the points which will

present a special behaviour. In this section, we define the topology of Γ \H∗ and

study its main properties.
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Definition 2.10. We extend the usual topology on H (as a subspace of R2) to a

topology on H∗ in the following way:

(i) a fundamental system of open neighbourhoods of∞ is formed of the sets

NC = {z ∈H :=(z) > C} ∪ {∞} for all C > 0;

(ii) if s ∈ Q is a finite cusp, there exists α ∈ SL2(Z) such that α(∞) = s and a

fundamental system of open neighbourhoods of s is formed of the sets

α(NC) for all C > 0 (α(NC) \ {s } is an open disc in H tangent to the real axis

at s).

∞

s

NC

α(NC)

Figure 2.1: Neighbourhoods of cusps described in definition 2.10.

Proposition 2.11. H∗ (with the topology described in definition 2.10) is Hausdorff,
connected and second-countable.

Proof. One checks easily that H∗ is Hausdorff (one can choose “small enough”

open neighbourhoods of any two points) and second-countable (a countable base

consists of open balls of rational radius centred at the points of (Q×Q)∩H and

neighbourhoods NC and α(NC) of the cusps as described in definition 2.10 for

C ∈Q+). To prove that it is connected, we argue by contradiction. Suppose that

H∗ = U∪V for two disjoint non-empty open sets U and V. Since H is connected,

either H∩U or H∩V is empty: we may assume that H ⊆ U and, consequently,

V ⊆ P1
Q. But, in this situation, V cannot be open unless it is empty (because P1

Q
contains no neighbourhoods of cusps).
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We observe that SL2(R) is a topological group with the subspace topology

(viewed as the closed subspace { (a,b,c,d) ∈ R4 : ad − bc = 1 } of R4). In particular,

it is Hausdorff, locally compact and second-countable. And it is easy to see that

SL2(R) acts continuously on H (the map defined by this action can be seen as a

rational function with non-vanishing denominators from a subset of R4 ×R2 to a

subset of R2).

Lemma 2.12 (Baire’s theorem). Let X be a non-empty, Hausdorff and locally com-
pact topological space. If {Vn }n∈N is a countable family of closed subsets such that
X =

⋃
n∈N Vn, then at least one of the sets Vn has an interior point.

Proof. Suppose, for the sake of contradiction, that no Vn has an interior point.

Let U1 be any non-empty open subset of X whose closure U1 is compact. Since

V1 has no interior points, U1 * V1. Therefore, U1 ∩ V1 is a proper relatively

compact subset of the locally compact space U1 and there exists a non-empty

open subset U2 of U1 such that U2 ⊆ U1 \ (U1 ∩V1). In this way, inductively, we

obtain a sequence of non-empty open sets {Un }n∈N such that Un is compact and

Un+1 ⊆ Un \ (Un ∩Vn) for all n ∈ N. The sets Un form a decreasing sequence of

non-empty compact sets and, by Cantor’s intersection theorem,
⋂

n∈N Un , ∅.
This contradicts the fact that X =

⋃
n∈N Vn.

Proposition 2.13. Let G be a topological group acting continuously and transitively
on a topological space X. If G is Hausdorff, locally compact and second-countable and
X is Hausdorff and locally compact, then the map

fx : G/ Gx −→ X

gGx 7−→ gx

is a homeomorphism for all x ∈ X.

Proof. fx is clearly a bijection and is continuous by definition (because the action

is continuous). We only have to show that it is open. Let U be an open subset of

G and let g ∈ U. We want to prove that gx is an interior point of Ux.

The map (h,k) 7→ ghk : G× G→ G is continuous and maps (1,1) to g ∈ U.

Therefore, there exists a neighbourhood V of 1, which we can take to be compact,

such that V×V is mapped into U. In particular, gVV ⊆ U and, after replacing V

with V∩V−1, we can assume that V−1 = V (where V−1 = {h−1 : h ∈ V }).
We can express G as the union of the interiors of the sets gV for g ∈ G. Now,

we fix a countable base {Wn }n∈N of G. The sets Wi contained in the interior of
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some gV form a countable cover of G and we only need to take enough sets of

the form gV to cover each of these Wi at least once. We obtain thus a sequence

{gn }n∈N such that the interiors of the sets gnV for n ∈ N form an open cover of G.

Since, for each n ∈ N, gnV is compact, its image gnVx is a compact subset of the

Hausdorff space X and, in particular, gnVx is closed. Now, by Baire’s theorem,

there exists some n ∈ N such that gnVx has an interior point. But multiplication

by gn defines a homeomorphism between Vx and gnVx, which means that Vx

has an interior point too. That is, there exist a point hx ∈ Vx and an open subset

W of X such that hx ∈W ⊆ Vx. But we can write

gx = gh−1 · hx ∈ gh−1W ⊆ gVVx ⊆ Ux

and this proves that gx is an interior point of Ux.

Proposition 2.14. Let G be a Hausdorff and locally compact topological group acting
continuously and transitively on a topological space X. Suppose in addition that, for
one (hence, for every) point x0 ∈ X, the stabiliser K of x0 in G is compact and the map
gK 7→ gx0 : G/ K→ X is a homeomorphism. The following conditions on a subgroup
H of G are equivalent:

(a) for all compact subsets A and B of X, {h ∈ H : hA∩B , ∅} is finite;
(b) H is a discrete subgroup of G.

Proof. First we prove that (a) =⇒ (b). We consider the continuous map

p : G→ X

g 7→ gx0

and we will prove that p−1(A) is compact for any compact subset A of X. Consider

an open cover G =
⋃

i∈I Vi where the sets Vi are open with compact closures Vi .

Observe that p is an open map because it is the composition of the projection

π : G� G/ K (which is open: for every open subset U of G, π−1(π(U)) =
⋃

k∈K Uk

is open) and the homeomorphism gK 7→ gx0 : G/ K→ X. Since {p(Vi) }i∈I is an

open cover of the compact set A, there is a finite subcover {p(Vj) }j∈J and we

obtain that p−1(A) ⊆
⋃

j∈J VjK ⊆
⋃

j∈J VjK, but this is a finite union of compact

sets (VjK is the image of Vj ×K under the multiplication map). In conclusion,

p−1(A) is a closed subset of a compact set and so is compact as well.

Let A and B be two compact subsets of X and let h ∈ H such that hA∩B , ∅.
Then p−1(hA∩ B) = h · p−1(A)∩ p−1(B) , ∅, whence h ∈ H ∩

[
p−1(B) · (p−1(A))−1

]
.
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But, since p−1(A) and p−1(B) are compact, p−1(B) · (p−1(A))−1 is also compact (it

is the image of p−1(B)× (p−1(A))−1 under the multiplication map). In conclusion,

H∩
[
p−1(B) · (p−1(A))−1

]
is the intersection of a discrete set with a compact set

and it must be finite.

Now we prove that (b) =⇒ (a). Let V be an open neighbourhood of 1 in

G whose closure V is compact. For all x ∈ X, {x } and Vx are compact and,

consequently, {h ∈ H : {hx } ∩ Vx , ∅} is finite. And, since H ∩ V ⊆ {h ∈ H :

hx ∈ Vx }, we conclude that H∩V is also finite. This means that 1 is an isolated

point of H (because G is Hausdorff) and, therefore, H is discrete.

Proposition 2.15. Let G be a Hausdorff and locally compact topological group acting
continuously and transitively on a topological space X. Suppose in addition that, for
one (hence, for every) point x0 ∈ X, the stabiliser K of x0 in G is compact and the
map gK 7→ gx0 : G/ K→ X is a homeomorphism (as in proposition 2.14). Let H be a
discrete subgroup of G.

(1) For every x ∈ X, {h ∈ H : hx = x } is finite.
(2) For each x ∈ X, there exists a neighbourhood U of x with the following property:

if h ∈ H and U∩ hU , ∅, then hx = x.
(3) For every two points x and y of X which are not H–equivalent, there exist

neighbourhoods U of x and V of y such that hU∩V = ∅ for all h ∈ H.

Proof. Since H is discrete, we can use the condition (a) of proposition 2.14.

(1) Consider the map p defined by g 7→ gx : G→ X. Since {x } is compact,

p−1(x) is also compact (see the proof of proposition 2.14). Now it is clear

that {h ∈ H : hx = x } = H∩p−1(x) is finite (it is the intersection of a discrete

set and a compact set).

(2) Let V be any compact neighbourhood of x. Consider the (finite) subset

H′ = {h1, . . . ,hn } = {h ∈ H : V∩ hV , ∅} of H and suppose that h1, . . . ,hr are

the elements of H′ which fix x. For each i > r, we choose neighbourhoods

Vi of x and Wi of hix such that Vi ∩Wi = ∅ (X is Hausdorff).

U = V∩

⋂
i>r

(Vi ∩ h−1
i Wi)


satisfies the required property: for i > r, hiU ⊆ Wi but Wi ∩ Vi = ∅ and

U ⊆ Vi .

(3) Let A and B be compact neighbourhoods of x and y, respectively. Consider

the (finite) subset {h1, . . . ,hn } = {h ∈ H : hA∩ B , ∅} of H. We know that,
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for each i, hix , y (because x and y are not H–equivalent), so we can

choose neighbourhoods Ui of hix and Vi of y such that Ui ∩ Vi = ∅. The

neighbourhoods U = A∩ h−1
1 U1 ∩ · · · ∩ h−1

n Un of x and V = B∩V1 ∩ · · · ∩Vn

of y satisfy the required property.

Now we find ourselves in a position to characterise the topology of the

quotient space Γ \H.

Theorem 2.16. The orbit space Γ \H (with the quotient topology) is Hausdorff,
second-countable and connected.

Proof. Let π : H� Γ \H be the projection map. Observe that π is continuous by

definition of the quotient topology and is open because π−1(π(U)) =
⋃
γ∈Γ γ(U)

for any open subset U of H. Since Γ \H = π(H), it is connected and second-

countable (because so is H).

Since SL2(R)i = SO2(R) is compact, the action of SL2(R) on H satisfies all

the hypotheses of propositions 2.13 to 2.15. And we know that Γ is a discrete

subgroup of SL2(R). Thus, by proposition 2.15, if Γ x and Γ y are two distinct

points of Γ \H, there exist neighbourhoods (in H) U of x and V of y such that

γU∩V = ∅ for all γ ∈ Γ : then π(U) and π(V) are disjoint neighbourhoods of Γ x

and Γ y, respectively. In conclusion, Γ \H is Hausdorff.

The kind of arguments which we have used can be extended to study the

topology of Γ \H∗.

Proposition 2.17. Let s be a cusp.
(1) There exists a neighbourhood U of s in H∗ with the following property: if γ ∈ Γ

and U∩ γ(U) , ∅, then γ(s) = s.
(2) For every compact subset K of H, there exists a neighbourhood V of s such that

V∩ γ(K) = ∅ for all γ ∈ Γ .

Proof. Recall that there exists α ∈ SL2(Z) such that α(∞) = s. Furthermore,

SL2(Z)∞ =
{
±
(
1 h
0 1

)
: h ∈ Z

}
and, in particular, every β =

(
a b
c d

)
∈ SL2(Z) \ SL2(Z)∞ satisfies that |c| ≥ 1 and so

=(z) ·=(β(z)) =
=(z)2

|cz + d|2
≤ 1

because=(z) ≤ |c|=(z) ≤ |cz + d|.
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(1) Let N1 = {z ∈H :=(z) > 1 } ∪ {∞}. I claim that U = α(N1) has the required

property. If U∩γ(U) , ∅, then N1∩(α−1γα)(N1) , ∅. But, for all z ∈ N1\{∞},
=(z) > 1 implies that=((α−1γα)(z)) < 1; thus, (α−1γα)(z) < N1 and also

γ(α(z)) < U.

(2) Since K is compact, 0 < A <=(α−1(z)) < B for all z ∈ K for some constants

A and B. Let C = max{B, 1
A } and let NC = {z ∈H :=(z) > C}∪{∞}. We can

choose V = α(NC). Let z ∈ K.

• If γ ∈ Γs = αΓ∞α−1, α−1γα ∈ Γ∞ and thus

=((α−1γ)(z)) ==((α−1γα)(α−1(z))) ==(α−1(z)) < B≤ C .

Consequently, (α−1γ)(z) < NC and γ(z) < V.

• If γ ∈ Γ \ Γs, we know that=((α−1γα)(α−1(z))) ·=(α−1(z)) < 1. There-

fore, =((α−1γ)(z)) < 1
A ≤ C, which implies that (α−1γ)(z) < NC and

γ(z) < V.

Theorem 2.18. The quotient space Γ \H∗ is second-countable, Hausdorff, connected
and compact.

Proof. Observe that the quotient map π : H∗� Γ \H∗ is continuous and open, as

in the proof of theorem 2.16. Since Γ \H∗ = π(H∗), Γ \H∗ is second-countable and

connected (because so is H∗).
Let us prove that Γ \H∗ is Hausdorff. Theorem 2.16 asserts that Γ \H is

Hausdorff, so we have to prove that an equivalence class of cusps can be separated

from an equivalence class of points in H and also from another equivalence class

of cusps.

If z ∈ H and s ∈ P1
Q, let K be a compact neighbourhood of z in H and there

exists a neighbourhood U of s such that U∩ γ(K) = ∅ for all γ ∈ Γ , by proposi-

tion 2.17. In this situation, π(U) and π(K) are disjoint neighbourhoods of Γ s and

Γ z, respectively.

Let s and t be two cusps in different orbits under the action of Γ and let

α,β ∈ SL2(Z) such that α(∞) = s and β(∞) = t. We take U = α(N2) and V = β(N2),

where N2 = {z ∈H :=(z) > 2 } ∪ {∞}, and claim that π(U) and π(V) are disjoint

neighbourhoods of Γ s and Γ t, respectively. Suppose, for the sake of contradiction,

that (γα)(z) = β(w) for some z,w ∈ N2 \ {∞} and some γ ∈ Γ . Then β−1γα maps

z to w. Let F be the fundamental domain for SL2(Z) described in theorem 1.9.

Observe that N2 \ {∞} is tessellated by the integer translates of F. Furthermore,
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N2 \ {∞} contains no elliptic points (the only points of H whose stabilisers under

the action of SL2(Z) are non-trivial). Therefore, β−1γαmust be of the form ±
(

1 h
0 1

)
for some h ∈ Z. In particular, (β−1γα)(∞) =∞ and so γ(s) = t, contradicting thus

our choice of s and t.

Finally, we prove that Γ \H∗ is compact. To this aim, we have to prove that

F̃ = F∪ {∞} is a compact subset of H∗. Let {Ui }i∈I be an open cover of F̃. Since

∞∈ F̃, there is some i0 ∈ I such that∞∈ Ui0 . And, by definition 2.10, there exists

some C > 0 such that NC = {z ∈ H :=(z) > C} ∪ {∞} ⊆ Ui0 . Now it is clear that

F̃ \NC is compact (since it is a closed and bounded subset of R2) and, therefore,

it has a finite subcover {Ui1 , . . . ,Uim }. As a result, F̃ ⊆ Ui0 ∪Ui1 ∪ · · · ∪Uim .

Let α1, . . . ,αn be a set of representatives of the left cosets of Γ in SL2(Z). By

proposition 1.10, we know that D =
⋃n

j=1α
−1
j F̃ contains at least one representat-

ive of each Γ –orbit. And, since α−1
j is a homeomorphism for each j, D is compact.

In conclusion, Γ \H∗ = π(D) and this is compact.

S(F̃) =

0

i
ρρ2

� � = S2

Figure 2.2: The topology of SL2(Z)\H∗.

Example 2.19. The fundamental domain F for SL2(Z) described in theorem 1.9

may be visualised as a triangle with a vertex removed in the Riemann sphere.

That is why we need to add a point (the cusp∞) to compactify it: let F̃ = F∪{∞}.
As we saw in the last part of the proof of theorem 2.18, SL2(Z)\H∗ = π(F̃), where

π : H∗� SL2(Z)\H∗ is the quotient map. Therefore, SL2(Z)\H∗ is homeomorphic

to the triangle F̃ with its sides identified according to π. Figure 2.2 illustrates

that SL2(Z)\H∗ is homeomorphic to a sphere using a translate of F̃. Thus, Γ \H∗

is also homeomorphic to a polygon with sides identified.

2.3 The complex structure on Γ \H∗

A Riemann surface is a Hausdorff and connected topological space endowed with

a complex structure. In this section, we describe explicitly an atlas of coordinate
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charts on Γ \H∗ whose changes of coordinates are analytic. The same charts also

give Γ \H a complex structure (restricting the domains and codomains when

necessary).

For any r ∈ R+, let Dr = {z ∈ C : |z| < r }. We recall some results which are

going to be useful in order to define a set of charts.

Lemma 2.20 (Schwarz). Let f : D1→ D1 be a holomorphic map such that f (0) = 0.
Then |f (z)| ≤ |z| for all z ∈ D1 and f ′(0) ≤ 1. Moreover, if |f (z0)| = |z0| for some
z0 ∈ D1 \ {0 } or |f ′(0)| = 1, f (z) = λz for some λ ∈ C with |λ| = 1.

Proof. Consider g : D1→ C defined by

g(z) =


f (z)
z if z , 0 ,

f ′(0) if z = 0 ,

which is holomorphic because f (0) = 0. For all 0 < r < 1, the maximum modulus

principle asserts that there exists zr ∈ ∂Dr such that

|g(z)| ≤ |g(zr)| =
|f (zr)|
|zr |

<
1
r
∀z ∈ Dr .

Thus, taking the limit as r→ 1−, we obtain that |g(z)| ≤ 1 for all z ∈ D1. Moreover,

if |g(z)| = 1 for some z ∈ D1, g(z) must be equal to a constant λ (again by the

maximum modulus principle) with |λ| = 1.

Lemma 2.21. The analytic automorphisms of D1 fixing 0 are the maps of the form
z 7→ λz with |λ| = 1.

Proof. If f : D1→ D1 is an analytic automorphism of D1 with f (0) = 0, Schwarz’s

lemma implies that |f (z)| ≤ |z| and |f −1(z)| ≤ |z| for all z ∈ D1. Hence, |f (z)| = |z|
and, consequently, f (z) = λz for some λ ∈ ∂D1.

Proposition 2.22. For all v ∈ H∗, there exists an open neighbourhood U of v such
that Γv = {γ ∈ Γ : γ(U)∩U , ∅}.

Proof. It is immediate from propositions 2.15 and 2.17.

Let π : H∗ � Γ \H∗ be the quotient map. Recall that π is continuous (by

definition of the quotient topology) and open (because π−1(π(U)) =
⋃
γ∈Γ γ(U)

for every open set U and each γ ∈ Γ is a diffeomorphism). Let p ∈ Γ \H∗ and
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consider v ∈ H∗ such that π(v) = p. Consider an open neighbourhood U of

v with the property that Γv = {γ ∈ Γ : γ(U) ∩ U , ∅} (proposition 2.22 asserts

the existence of such U). Assume further that U is a domain (i.e., open and

connected), up to replacing it with some fundamental open neighbourhood of v

contained in it. Now we write Γv = ({±1 } · Γv) / {±1 } (this is the associated group

of transformations of H∗). Observe that π(U) = Γ \U is an open neighbourhood

of p. Next, we are going to define a chart of X(Γ ) given by a map ϕ : Γ \U→ V

for some open subset V of C. To do so, we must distinguish three cases.

(1) If v is neither an elliptic point nor a cusp, Γv is trivial. In particular, no two

distinct points of U are Γ –equivalent, so the restricted map π|U : U→ Γ \U

is a homeomorphism. Let ϕ : Γ \U→ U be its inverse. We can take (Γ \U,ϕ)

as a chart at p.

(2) If v is an elliptic point, we know that Γv is a cyclic group of order d by

proposition 2.6 (in fact, we even know that d is 2 if v is SL2(Z)–equivalent

to i and 3 if it is SL2(Z)–equivalent to ρ, by theorem 1.9).

The linear fractional transformation corresponding to δ =
(

1 −v
1 −v

)
∈GL2(C)

defines an analytic isomorphism from H to D1 which maps v to 0. Thus,

δΓvδ
−1 is a cyclic subgroup of automorphisms of D1 of order d: lemma 2.21

implies that its elements are of the form z 7→ ζdz where ζd is a d–th root of

unity.

v

0 0

U

V

δ
ψ

z 7→ zd

Figure 2.3: Definition of local coordinates at an elliptic point.

Let ψ denote the holomorphic map z 7→ δ(z)d : U→ C, which is open by
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the open mapping theorem, and let V = ψ(U). Figure 2.3 illustrates the

situation for d = 3: the neighbourhood U is homeomorphic to a disc whose

points are grouped in Γv \U in orbits of d elements; the map δ “straightens”

the disc and the map z 7→ zd folds it identifying the points in the same way

as π, as we shall see.

For any two points z,z′ ∈ U, we have that π(z) = π(z′) if and only if z′ = γ(z)

or, equivalently, δ(z′) = (δγδ−1)(δ(z)) = ζdδ(z) (where ζd is a d–th root of

unity) for some γ ∈ Γv. That is, π(z′) = π(z) if and only if ψ(z′) = ψ(z). In

conclusion, ψ descends to the quotient (universal property of the quotient

topology): there exists a continuous bijection ϕ making the diagram

U V

Γ \U

ψ

π
ϕ

commutative. Furthermore, ϕ is open because ψ is. Thus, we take (Γ \U,ϕ)

as a chart at p.

(3) If v is a cusp, there exists some δ ∈ SL2(Z) such that δ(v) =∞. Then

{±1 } · δΓvδ−1 =
{
±
(
1 mh
0 1

)
: m ∈ Z

}
for some positive integer h because this is a subgroup of

SL2(Z)∞ =
{
±
(
1 m
0 1

)
: m ∈ Z

}
.

In particular, h = [SL2(Z)∞ : ({±1 } · δΓvδ−1)]. In this case, the order of the

stabiliser Γv is infinite; that is why we need to “measure” its size looking at

this index. Let ψ denote the holomorphic map z 7→ e2πiδ(z)/h : U→ C, which

is open by the open mapping theorem, and let V = ψ(U). Figure 2.4 illus-

trates the situation in the case in which U is a fundamental neighbourhood

of v: the points of U are grouped in Γv \U in orbits containing infinitely

many elements; the map δ translates the disc to a half plane (in which

equivalent points differ by a horizontal offset) and the map z 7→ e2πiz/h

folds it identifying the points in the same way as π, as we shall see.

For any two points z,z′ ∈ U, we have that π(z) = π(z′) if and only if z′ = γ(z)

or, equivalently, δ(z′) = (δγδ−1)(δ(z)) = δ(z) + mh (where m ∈ Z) for some

γ ∈ Γv . That is to say, π(z′) = π(z) if and only if ψ(z′) = ψ(z). In conclusion,



2.3. The complex structure on Γ \H∗ 37

. . .. . .

v

h

∞

. . . . . .
0

U

V

δ ψ

z 7→ e2πiz/h

Figure 2.4: Definition of local coordinates at a cusp.

ψ descends to the quotient (universal property of the quotient topology):

there exists a continuous bijection ϕ making the diagram

U V

Γ \U

ψ

π
ϕ

commutative. Furthermore, ϕ is open because ψ is. Thus, we take (Γ \U,ϕ)

as a chart at p.

Theorem 2.23. The charts described above endow Γ \H∗ (and also Γ \H by restric-
tion) with a complex structure.

Proof. Since the domains of the given charts form an open cover of Γ \H∗, we

only have to check that the transition maps are holomorphic.

Let v ∈H∗ and consider an open neighbourhood U of v with the property that

Γv = {γ ∈ Γ : γ(U)∩U , ∅}. Observe that, by definition, U contains no elliptic

points or cusps apart from possibly v. Now consider two distinct points p1 and

p2 of Γ \H∗. Let v1 ∈ π−1(p1) and v2 ∈ π−1(p2). Let U1 and U2 be two domains

such that vi ∈ Ui and Γvi = {γ ∈ Γ : γ(Ui) ∩ Ui , ∅} for i = 1 and 2. Consider

the two corresponding charts ϕ1 : Γ \U1 → V1 and ϕ2 : Γ \U2 → V2 (as defined

above). Write W = Γ \U1 ∩ Γ \U2. Our goal is to prove that the transition map
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φ = (ϕ1 ◦ϕ−1
2 )

∣∣∣
ϕ2(W)

: ϕ2(W)→ ϕ1(W) is holomorphic. To do so, we are going

to prove that φ is holomorphic at every point of ϕ2(W). Let x ∈W and write

x = π(z1) = π(z2) with z1 ∈ U1 and z2 ∈ U2. Then z1 = γ(z2) for some γ ∈ Γ and

U = γ−1(U1) ∩ U2 is an open neighbourhood of z2 with π(U) ⊆ W. Now we

distinguish several cases.

• If v1 and v2 are not elliptic points or cusps, V1 = U1 and V2 = U2. Each of

these two domains contains exactly one representative of every element of

W: φ maps the representative in U2 to the representative in U1. Therefore,

φ(z) = γ(z) for all z ∈ U and, in particular, φ is holomorphic in U.

• If v1 is an elliptic point (and so v2 is neither an elliptic point nor a cusp),

ϕ−1
2 coincides with π. In this case,

φ(z) = ϕ1(π(z)) = ϕ1(π(γ(z))) = ψ1(γ(z)) = (δ1(γ(z)))d1

for all z ∈ U, where δ1 =
(

1 −v1
1 −v1

)
and d1 = |Γv |. Thus, φ is holomorphic in U.

• If v2 is an elliptic point (and so v1 is neither an elliptic point nor a cusp), φ

is holomorphic because it is a bijection between open subsets of C and its

inverse φ−1 is holomorphic (by the previous case).

• If v1 is a cusp (and so v2 is neither an elliptic point nor a cusp), ϕ−1
2

coincides with π. Thus, for all z ∈ U,

φ(z) = ϕ1(π(z)) = ϕ1(π(γ(z))) = ψ1(γ(z)) = e2πiδ1(γ(z))/h1 ,

where δ1 ∈ SL2(Z) with δ1(v1) = ∞ and h1 = [SL2(Z)∞ : ({±1 } · δ1Γv1
δ−1

1 )].

Hence, φ is holomorphic in U.

• If v2 is a cusp (and so v1 is neither an elliptic point nor a cusp), φ is

holomorphic because it is a bijection between open subsets of C and its

inverse φ−1 is holomorphic (by the previous case).

• In all the other cases, W = ∅.

Definition 2.24. The modular curve Y(Γ ) is the Riemann surface Γ \H. The com-
pactified modular curve X(Γ ) is the Riemann surface Γ \H∗.

For all N ∈ N, we abbreviate Y(Γ (N)) to Y(N), X(Γ (N)) to X(N), Y(Γ0(N)) to

Y0(N), X(Γ0(N)) to X0(N), Y(Γ1(N)) to Y1(N) and X(Γ1(N)) to X1(N).

Observe that the charts at the cusps resemble the changes of variables used to

define the conditions at the cusps in section 1.2. Later we shall see that modular

forms for Γ of weight 2k can be seen as k–fold differential forms on X(Γ ).
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2.4 Dimension formulae

Since X(Γ ) is a compact Riemann surface, we can deduce important facts about

X(Γ ) and even about modular forms for Γ using results from the theory of

Riemann surfaces.

We have studied modular forms for Γ (1) = SL2(Z) in chapter 1. We are going

to use these results in order to study modular forms for Γ . One checks easily

that the natural projection

φ : X(Γ ) −→ X(1)

Γ v 7−→ Γ (1)v

is holomorphic (the arguments are analogous to those of the proof of the-

orem 2.23) and, in fact, it is a covering of degree [PSL2(Z) : Γ ]. (Recall that the

linear fractional transformations do not depend on the sign of the corresponding

matrix: as in chapter 1, a bar denotes the image of elements and subgroups of

SL2(R) in PSL2(R).) Indeed, if PSL2(Z) =
⊔m

j=1 Γ αj , then φ−1(Γ (1)v) = {Γ αj(v) }mj=1

for all v ∈H∗ (and the elements Γ αj(v) are all distinct if v is neither an elliptic

element nor a cusp). Hence, we can apply the Riemann–Hurwitz formula to φ.

Theorem 2.25. Let m = [PSL2(Z) : Γ ]. Let v2 be the number of inequivalent elliptic
points for Γ which are SL2(Z)–equivalent to i, let v3 be the number of inequivalent
elliptic points for Γ which are SL2(Z)–equivalent to ρ = eπi/3 and let v∞ be the number
of inequivalent cusps for Γ . The genus of X(Γ ) is

g = 1 +
m
12
− v2

4
− v3

3
− v∞

2
.

Proof. Since X(1) has genus 0, the Riemann–Hurwitz formula states that

2g − 2 = m(2 · 0− 2) +
∑

p∈X(Γ )

(ep(φ)− 1) ,

where ep(φ) is the ramification index of φ at p. That is,

g = 1−m+
∑

p∈X(Γ )

ep(φ)− 1

2
.

Let π : H∗→ X(Γ ) and π1 : H∗→ X(1) be the quotient maps. Since the ramific-
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ation indices are multiplicative and π1 = φ ◦π, we have that

ez(π1) = ez(π) · eπ(z)(φ)

for all z ∈H∗. If z is a cusp, this formula is not useful because ez(π1) = ez(π) =∞;

assume, thus, that z ∈H. We know that there exists some open neighbourhood

U of z such that SL2(Z)z = {α ∈ SL2(Z) : α(U)∩U , ∅}. Thus, ez(π1) = |PSL2(Z)z |.
Similarly, ez(π) = |Γ z |.

If z is not an elliptic point for SL2(Z), ez(π1) = 1 and so ez(π) = eπ(z)(φ) = 1.

Therefore, the points of the form p = π(z) for such z do not contribute to the sum∑
(ep(φ)− 1).

If z is SL2(Z)–equivalent to i, ez(π1) = 2. Therefore, either ez(π) = 2 and

eπ(z)(φ) = 1 or ez(π) = 1 and eπ(z)(φ) = 2. In the first case, z is an elliptic point for

Γ and φ is unramified at π(z); in the second case, z is not an elliptic point for Γ

and the ramification index of φ at π(z) is 2. Hence, there are exactly m−v2
2 points

of the form p = π(z) such that ep(φ) = 2.

If z is SL2(Z)–equivalent to ρ, ez(π1) = 3. Therefore, either ez(π) = 3 and

eπ(z)(φ) = 1 or ez(π) = 1 and eπ(z)(φ) = 3. In the first case, z is an elliptic point for

Γ and φ is unramified at π(z); in the second case, z is not an elliptic point for Γ

and the ramification index of φ at π(z) is 3. Hence, there are exactly m−v3
3 points

of the form p = π(z) such that ep(φ) = 3.

Finally, there are exactly v∞ inequivalent cusps for Γ , and these correspond

to the elements of φ−1(SL2(Z)∞). Therefore,
∑

p ep(φ) = m, where the sum is over

the v∞ points p of X(Γ ) \Y(Γ ).

In conclusion,

g = 1−m+
1
2

[
0 + 1

m− v2

2
+ 2

m− v3

3
+ (m− v∞)

]
= 1 +

m
12
− v2

4
− v3

3
− v∞

2
.

Next we relate (meromorphic) modular forms for Γ with the modular curve

X(Γ ) as a Riemann surface. Consider the restriction π̃ = π|H of the quotient map

π : H∗→ X(Γ ). Observe that H is an open subset of C and π̃ is holomorphic: its

expressions in local coordinates are of the form z 7→ δ(z)a for some δ ∈ GL2(C)

with δ(z) ,∞ and some a ∈ N.

Proposition 2.26. The field of modular functions for Γ and the field of meromorphic
functions on X(Γ ) are isomorphic.
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Proof. If F is a meromorphic function on X(Γ ), its pull-back f = π̃∗(F) = F ◦ π̃ is

also meromorphic in H. And, by definition, it is clear that f ◦ γ = f for all γ ∈ Γ .

Finally, let s be a cusp and let (Γ \U,ϕ) be the chart of X(Γ ) at π(s) defined in

section 2.3. We can assume, up to replacing s with γ(s) for some γ ∈ Γ , that s ∈ U.

The local expression F̂(q) = (F ◦ϕ−1)(q) is meromorphic and, in a neighbourhood

of s, f (z) = F̂(e2πiδ(z)/h) for some δ ∈ SL2(Z) such that δ(s) =∞ and some h ∈ N;

that is, f is meromorphic at s. All in all, f is a modular function for Γ .

Conversely, suppose that f is a modular function for Γ . Since f ◦ γ = f for all

γ ∈ Γ , f induces a function F on X(Γ ) such that F ◦π = f (this is well-defined).

Consider a chart (Γ \U,ϕ) of X(Γ ) at a point p as defined in section 2.3 and let

v ∈ U such that π(v) = p. We must check that F is meromorphic at p.

• If v is neither an elliptic point nor a cusp, F ◦ϕ−1 = f |U (because ϕ is a

local inverse of π) and F is clearly meromorphic at p.

• If v is an elliptic point, the local expression of F at p is F̂(τ) = f (δ−1(τ1/d))

where δ =
(

1 −v
1 −v

)
and d = |Γv |. But, since f ◦δ−1 is meromorphic and satisfies

that (f ◦ δ−1)(ζdz) = (f ◦ δ−1)(z) for any d–th root of unity ζd , we deduce

that f ◦ δ−1 has a Laurent series expansion containing only powers of zd .

Therefore, F̂(τ) is meromorphic.

• If v is a cusp, then (ϕ ◦π)(z) = e2πiδ(z)/h for all z ∈ U, with δ ∈ SL2(Z) such

that δ(v) =∞ and h = [SL2(Z)∞ : {±1 } · δΓvδ−1]. Since f is meromorphic at

v, we have that (f ◦ δ−1)(z) = f̂v(e2πiz/h), where f̂v is meromorphic at 0. In

turn, the local expression of F at p is F̂(q) = f (z) = (f ◦ δ−1)(δ(z)) = f̂v(q),

where q = e2πiδ(z)/h. Therefore, F̂(q) is meromorphic at ϕ(p).

In conclusion, F is meromorphic.

Furthermore, this correspondence preserves sums and products.

If M is a Riemann surface, it is also a smooth manifold of (real) dimension

2. Hence, for every point p ∈M, we can consider the cotangent space (i.e., the

dual space of the tangent space) at p, T∗p M, which is a real vector space with

a basis {dx,dy } (where x and y are the local coordinates at p). By extension of

scalars, we obtain the complex vector space T∗p M⊗RC. The complex structure

given by multiplication of the local coordinates by i induces a decomposition of

this space as the direct sum of the eigenspaces generated by dz = dx+ i dy and

by dz = dx − i dy (we write z = x+ iy and z = x − iy).

A differential form ω on M is a map assigning to each point p ∈M (except

for possibly a discrete set of points) an element of T∗p M⊗RC. Hence, ω can be

expressed in local coordinates as f (z)dz + g(z)dz. We say that ω is meromorphic
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(resp. holomorphic) if g(z) = 0 and f (z) is meromorphic (resp. holomorphic).

Let k ∈ N. A k–fold differential form ω on M is a map assigning to each point

p ∈M (except for possibly a discrete set of points) an element of the tensor space

(T∗p M⊗R C)⊗C
(k)· · · ⊗C (T∗p M⊗R C). If ω is meromorphic (resp. holomorphic), it

can be expressed in local coordinates as f (z)(dz)k, where f (z) is a meromorphic

(resp. holomorphic) function.

Proposition 2.27. Let k be a positive integer. There is an isomorphism between the
space of meromorphic modular forms for Γ of weight 2k and the space of meromorphic
k–fold differential forms on X(Γ ).

Proof. Let ω be a meromorphic k–fold differential form on X(Γ ). Its pull-back

π̃∗(ω) is a meromorphic k–fold differential form on H which can be written as

f (z)(dz)k. By definition, π̃∗(ω) is invariant under Γ ; that is,

f (z)(dz)k = f (γ(z))(dγ(z))k = f (γ(z))
(
d
dz
γ(z)

)k
(dz)k = f (γ(z))(cz + d)−2k(dz)k

for all γ =
(
a b
c d

)
∈ Γ . Hence, f is weakly modular for Γ of weight 2k. Finally, let s

be a cusp and let (Γ \U,ϕ) be the chart of X(Γ ) at π(s) defined in section 2.3. As-

sume, up to replacing s with γ(s) for some γ ∈ Γ , that s ∈ U. The local expression

of ω with respect to this chart is F(q)(dq)k, where F is a meromorphic function.

And recall that, in a neighbourhood of s, ϕ(π(z)) = e2πiδ(z)/h for some δ ∈ SL2(Z)

such that δ(s) =∞ and some h ∈ N. Therefore, for all z in a neighbourhood of s,

f (z)(dz)k = F(e2πiδ(z)/h)(de2πiδ(z)/h)k = F(e2πiδ(z)/h)
(2πi

h
e2πiδ(z)/hδ′(z)dz

)k
= F(e2πiδ(z)/h)

(2πi
h

e2πiδ(z)/h
)k
j(δ, z)−2k(dz)k .

Equivalently, for all z in a neighbourhood of∞,

f |[δ
−1]

2k (z) = j(δ−1, z)−2kf (δ−1(z)) = F(e2πiz/h)
(2πi

h
e2πiz/h

)k
,

which is to say that f is meromorphic at s. All in all, f is a meromorphic modular

form for Γ of weight 2k.

Conversely, suppose that f is a meromorphic modular form for Γ of weight

2k. We have to give expressions in local coordinates of a meromorphic k–fold

differential form ω on X(Γ ) which pulls back to f (z)(dz)k. Let (Γ \U,ϕ) be a chart
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of X(Γ ) at a point p as defined in section 2.3 and let v ∈ U such that π(v) = p.

• If v is neither an elliptic point nor a cusp, ω can be written as f (z)(dz)k for

z in a neighbourhood of v. In particular, ω is meromorphic at p.

• If v is an elliptic point, consider δ =
(

1 −v
1 −v

)
and d = |Γv |. Thus, the local

coordinate at π(z) is τ = δ(z)d . Write w = δ(z). We can express

f (z)(dz)k = f (δ−1(w))(dδ−1(w))k

= det(δ−1)kj(δ−1,w)−2k(f ◦ δ−1)(w)(dw)k = f |[δ
−1]

2k (w)(dw)k ,

and we have that f |[δ
−1]

2k (w)(dw)k is a meromorphic k–fold differential form

defined in the unit disc which is invariant under δΓvδ−1 (because f (z)(dz)k

is invariant under Γv). Since the elements of δΓvδ−1 correspond to the maps

w 7→ ζdw (where ζd is a d–th root of unity), we deduce that

f |[δ
−1]

2k (w)(dw)k = f |[δ
−1]

2k (ζdw)(d(ζdw))k = ζkd f |
[δ−1]
2k (ζdw)(dw)k .

Therefore, f |[δ
−1]

2k (w) = ζkd f |
[δ−1]
2k (ζdw) for every d–th root of unity ζd , which

means that wk f |[δ
−1]

2k (w) has a Laurent series expansion containing only

powers of wd . Now we can write

f (z)(dz)k = f |[δ
−1]

2k (τ1/d)(dτ1/d)k = d−kτ−k(τ1/d)k f |[δ
−1]

2k (τ1/d)(dτ)k ,

and this last expression is well-defined and meromorphic at 0 by the

previous discussion: we take this to be the local expression of ω at p with

respect to ϕ.

• If v is a cusp, then (ϕ ◦π)(z) = e2πiδ(z)/h for all z ∈ U, with δ ∈ SL2(Z) such

that δ(v) =∞ and h = [SL2(Z)∞ : {±1 } · δΓvδ−1]. Since f is meromorphic at

v, we can write f |[δ
−1]

2k (z) = f̂v(e2πiz/h), where f̂ is meromorphic at 0. Now,

if q = e2πiδ(z)/h, we obtain that

f (z)(dz)k = (f ◦ δ−1)(δ(z))j(δ, z)2k
(

h
2πiq

dq

)k
=

(
h

2πiq

)k
f |[δ

−1]
2k (δ(z))(dq)k =

(
h

2πiq

)k
f̂v(q)(dq)k

because dq = 2πi
h j(δ, z)−2e2πiδ(z)/hdz. Therefore, we take

(
h

2πi

)k
q−k f̂v(q)(dq)k

(which is meromorphic) as the local expression of ω at p with respect to ϕ.
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These local expressions are compatible because they are defined so that they pull

back to f (z)(dz)k; therefore, ω is well-defined.

One checks easily that the exhibited correspondence preserves linear trans-

formations.

Definition 2.28. Let k be a positive integer and let ω be a meromorphic k–fold

differential form on a Riemann surface M, not identically zero. Let p ∈M and

express ω as f (z)(dz)k in a neighbourhood of p, where z is a local coordinate

such that p corresponds to z0. The order of ω at p is the order of f at z0:

ordp(ω) = ordz0
(f ) .

(This definition is independent of the choice of the local coordinate.)

Lemma 2.29. Let k be a positive integer. Let f be a meromorphic modular form for
Γ of weight 2k and let ω be the corresponding meromorphic k–fold differential form
on X(Γ ). Let z ∈H∗ and let p = π(z).

(1) If z is neither an elliptic point nor a cusp, ordz(f ) = ordp(ω).
(2) If z is an elliptic point, ordz(f ) = dz ordp(ω) + k(dz − 1), where dz = |Γz |.
(3) If z is a cusp, ordz(f ) = ordp(ω) + k.

Proof. Let (Γ \U,ϕ) be the chart of X(Γ ) at p defined in section 2.3 and consider

γ ∈ Γ such that γ(z) ∈ U. We have computed explicitly the expression of ω in this

local coordinate in the proof of proposition 2.27.

(1) If z is neither an elliptic point nor a cusp, the local coordinate at p is just

τ = ϕ(p) = γ(z) and ω can be expressed as f (τ)(dτ)k. Since γ ∈ Γ and f is

weakly modular for Γ , we deduce that ordp(ω) = ordγ(z)(f ) = ordz(f ).

(2) If z is an elliptic point, the local coordinate at p is τ = ϕ(p) = δ(γ(z))dz and

ω can be written as d−kz τ
k(−1+1/dz) f |[δ

−1]
2k (τ1/dz )(dτ)k. Since δ =

(
1 −γ(z)
1 −γ(z)

)
maps

γ(z) to 0 and j(δ−1,0) = (2i=(γ(z)))−1 < {0,∞}, we conclude that

ordp(ω) =
ord0

(
f |[δ

−1]
2k

)
dz

+ k

(
1
dz
− 1

)
=

ordγ(z)(f )

dz
+ k

(
1
dz
− 1

)
=

ordz(f )
dz

+ k

(
1
dz
− 1

)
=

1
dz

[ordz(f )− k(dz − 1)] .

(3) If z is a cusp, the local coordinate at p is q = ϕ(p) = e2πiδ(γ(z))/h and ω can

be expressed as
(

h
2πi

)k
q−k f̂γ(z)(q)(dq)k. Again, since γ ∈ Γ and f is weakly

modular for Γ , we conclude that ordp(ω) = ordγ(z)(f )− k = ordz(f )− k.
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Lemma 2.30. For every positive integer k, there exists a meromorphic modular form
for Γ of weight 2k. Moreover, if g0 is a meromorphic modular form for Γ of weight
2k which is not identically zero, all the others are of the form f g0, where f is some
modular function for Γ .

Proof. Since X(Γ ) is a compact Riemann surface, there exists a non-constant

meromorphic function F0 defined on X(Γ ) (this is a fundamental and non-trivial

theorem from the theory of compact Riemann surfaces), and this corresponds

to a modular function for Γ , say h0. In fact, in our case we can take f0 = j (the

modular invariant; see definition 1.23).

Now let f1 = f ′0 , which is clearly meromorphic in H. By the chain rule, f1 is

also weakly modular for Γ of weight 2. Finally, if s is a cusp, let α ∈ SL2(Z) such

that α(∞) = s and consider the qh–expansion f̂s of f0 at s. That is, f0(α(z)) = f̂s(qh),

where qh = e2πiz/h. Then,

f1|
[α]
2 (z) = f ′0(α(z))α′(z) = f̂ ′s (qh)

2πi
h

qh ,

which means that f1 is also meromorphic at s. All in all, f1 is a meromorphic

modular form for Γ of weight 2. Therefore, one checks easily that fk = (f1)k is

a meromorphic modular form for Γ of weight 2k (this is analogous to proposi-

tion 1.26).

Let g0 be a meromorphic modular form for Γ of weight 2k, not identically

zero. If f is a modular function for Γ , it is clear that f g0 is also a meromorphic

modular form for Γ of weight 2k. Conversely, let g be another meromorphic

modular form for Γ of weight 2k and define f = g
g0

. Again, f is meromorphic

both in H and at the cusps (because it is a quotient of meromorphic functions)

and f ◦ γ = f for all γ ∈ Γ (because g and g0 transform in the same way under Γ ).

Therefore, f is a modular function for Γ .

Theorem 2.31. Let g be the genus of X(Γ ). Let v2 be the number of inequivalent
elliptic points for Γ which are SL2(Z)–equivalent to i, let v3 be the number of inequi-
valent elliptic points for Γ which are SL2(Z)–equivalent to ρ = eπi/3 and let v∞ be the
number of inequivalent cusps for Γ . The dimension of M2k(Γ ) is

dim(M2k(Γ )) =


0 if k < 0 ,

1 if k = 0 ,

(2k − 1)(g − 1) +
⌊
k
2

⌋
v2 +

⌊
2k
3

⌋
v3 + kv∞ if k > 0;
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and the dimension of S2k(Γ ) is

dim(S2k(Γ )) =


0 if k ≤ 0 ,

g if k = 1 ,

(2k − 1)(g − 1) +
⌊
k
2

⌋
v2 +

⌊
2k
3

⌋
v3 + (k − 1)v∞ if k ≥ 2 .

Proof. Since X(Γ ) is a compact Riemann surface, a non-constant meromorphic

function on X(Γ ) takes each value in P1
C the same number of times (counting

multiplicities). But every f ∈M0(Γ ) corresponds to a holomorphic function on

X(Γ ) (by proposition 2.26) which does not take the value ∞ and so f must be

constant. That is, M0(Γ ) = C and S0(Γ ) = {0 }.
Suppose that f ∈M2k(Γ ) for some k < 0. Then, f 12∆2k ∈ S0(Γ ) = {0 }, which

means that f = 0. (∆ is the modular discriminant; see definition 1.20.) Hence,

M2k(Γ ) = S2k(Γ ) = {0 } whenever k < 0.

In the remainder of the proof, assume that k > 0. We compute dim(M2k(Γ ))

and dim(S2k(Γ )) by applying the Riemann–Roch theorem to X(Γ ). The divisor of

a meromorphic function F: X(Γ )→ P1
C is

div(F) =
∑

p∈X(Γ )

ordp(F)p ;

similarly, the divisor of a meromorphic k–fold differential form ω on X(Γ ) is

div(ω) =
∑

p∈X(Γ )

ordp(ω)p .

For every divisor D =
∑

p∈X(Γ )np p (where np ∈ Z for all p ∈ X(Γ ) and np = 0 for

all but finitely many p ∈ X(Γ )), let

L(D) = {0 } ∪ {F: X(Γ )→ P1
C non-zero and meromorphic : div(F) + D ≥ 0 } .

Define l(D) to be the dimension of L(D) (as a complex vector space) and write

deg(D) =
∑

p∈X(Γ )np (this number is called the degree of D).

It is well-known that a canonical divisor K (i.e., the divisor of a non-zero

meromorphic differential form) satisfies that l(K) = g and deg(K) = 2g − 2 (it is a

consequence of the Riemann–Roch theorem). Therefore, the degree of a non-zero

meromorphic k–fold differential form is k(2g − 2) (because it corresponds to the

product of k meromorphic differential forms, by proposition 2.27). We fix a
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(non-zero) meromorphic k–fold differential form ω0 (lemma 2.30 guarantees its

existence).

Let f ∈ M2k(Γ ) and let ω be the corresponding k–fold differential form on

X(Γ ). Write ω = hω0, where h is a meromorphic function on X(Γ ). By lemma 2.29,

for all z ∈H∗ with π(z) = p,

0 ≤ ordz(f ) =


dz ordp(ω) + k(dz − 1) if z is an elliptic point ,

ordp(ω) + k if z is a cusp ,

ordp(ω) otherwise ,

or, equivalently (using that ordp(ω) = ordp(h) + ordp(ω0)),

0 ≤


ordp(h) + ordp(ω0) + k

(
1− 1

dz

)
if z is an elliptic point ,

ordp(h) + ordp(ω0) + k if z is a cusp ,

ordp(h) + ordp(ω0) otherwise .

All the terms appearing in these inequalities are integers except for possibly

k
(
1− 1

dz

)
and so we can replace it with its floor. Adding up the inequalities

corresponding to a set of representatives of Γ \H∗, we obtain that div(h) + D ≥ 0,

where D = div(ω0) +
∑

p kp +
∑

pbk(1 − 1/dp)cp (here, the first sum is over the

images of the cusps and the second sum is over the images of the elliptic points;

moreover, dp = dz = |Γz | for z ∈ π−1(p)). Conversely, if h ∈ L(D), the meromorphic

modular form corresponding to hω0 is, in fact, holomorphic. Therefore, M2k(Γ )

and L(D) are isomorphic (as complex vector spaces). Since deg(D) > 2g − 2, we

have that L(K−D) = {0 }. Thus, by the Riemann–Roch theorem,

dim(M2k(Γ )) = l(D) = deg(D) + 1− g + l(K−D)

= (2k − 1)(g − 1) + kv∞ +
⌊
k
2

⌋
v2 +

⌊
k
3

⌋
v3 .

The dimension of S2k(Γ ) can be computed in a similar way. In this case, we

have that S2k(Γ ) is isomorphic to L(D̃), where D̃ = D−
∑

p p (here, the sum is over

the images of the cusps). Indeed, the only inequalities that have changed are

those corresponding to cusps, which have become ordp(h) + ordp(ω0) + k − 1 ≥ 0.

If k ≥ 2, then deg(D̃) > 2g−2 and L(K− D̃) = {0 }, so we can compute l(D̃) directly

using the Riemann–Roch theorem (as before). Finally, for k = 1, D̃ = div(ω0) and

this is a canonical divisor; thus, dim(S2(Γ )) = l(D̃) = l(K) = g.
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There are similar formulae for the dimensions of Mk(Γ ) and Sk(Γ ) when k is

odd. However, the proofs are a bit more involved and, therefore, we omit them.

Proposition 2.32. Let g be the genus of X(Γ ) and let v∞ be the number of inequival-
ent cusps for Γ . If f is a meromorphic modular form for Γ of weight 2k, not identically
zero, then ∑

z

[
ordz(f )

dz
− k

(
1− 1

dz

)]
= k(2g − 2) + kv∞ ,

where the sum is over a set of representatives of Γ \H∗ and either dz = |Γz | if z ∈H or
dz = 1 if z is a cusp.

Proof. Let ω be the meromorphic k–fold differential form on X(Γ ) associated

with f . By lemma 2.29, we know that

ordz(f )
dz

− k
(
1− 1

dz

)
=

ordπ(z)(ω) if z ∈H ,

ordπ(z)(ω) + k if z is a cusp .

Therefore, summing over a set of representatives of Γ \H∗, we obtain that

∑
z

[
ordz(f )

dz
− k

(
1− 1

dz

)]
= deg(div(ω)) + kv∞ = k(2g − 2) + kv∞ .

All these formulae generalise results which were proved in a more elementary

way for SL2(Z) in chapter 1.



Chapter 3

Hecke operators

Hecke operators are averaging operators acting on the space of modular forms.

They are multiplicative and satisfy certain recurrence relations. These properties

can be summarised in certain formal Euler products. One can then show that

the coefficients of the Fourier expansions of Hecke eigenforms (i.e., eigenvectors

of the Hecke operators) satisfy similar relations.

This chapter presents the basic theory of Hecke operators for some special

congruence subgroups (including those of interest to us). We prove that Hecke

operators are self-adjoint with respect to a certain Hermitian inner product on

the spaces of cusp forms and, consequently, there are bases of Hecke eigenforms

for these spaces.

The contents of this chapter are based principally on the sections dedicated

to Hecke operators of Koblitz’s book [3] and Milne’s notes [8].

3.1 The Petersson inner product

The upper half-plane H can be regarded as a model for hyperbolic plane geometry.

The corresponding metric (called the Poincaré metric) is given by the tensor

(ds)2 =
(dx)2 + (dy)2

y2 =
dz dz

y2 ,

where we write z = x+ iy with x,y ∈ R. This metric induces a volume form

Ω = y−2dx∧ dy =
i
2

(=(z))−2dz ∧ dz ,

which is invariant under GL+
2 (R). Indeed, for all α =

(
a b
c d

)
∈ GL+

2 (R), a straight-

forward computation yields

dα(z) =
det(α)

(cz + d)2 dz , dα(z) =
det(α)

(cz + d)2 dz and =(α(z)) =
det(α)
|cz + d|2

=(z) ;

49
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hence, i
2(=(α(z)))−2dα(z)∧dα(z) = i

2(=(z))−2dz∧dz. On the other hand, since

the set of cusps P1
Q is a countable set, it has measure zero and so Ω can be used

to integrate over subsets of the extended upper half-plane H∗.
Let Γ be a congruence subgroup of SL2(Z). Consider the fundamental domain

F =
{
z ∈H : |z| ≥ 1 and |<(z)| ≤ 1

2

}
for SL2(Z). Also, let α1, . . . ,αn ∈ SL2(Z) be

representatives of the left cosets of Γ in PSL2(Z) so that

FΓ =
n⋃

j=1

α−1
j (F)

is a fundamental domain for Γ (by proposition 1.10).

Proposition 3.1. Define

µ(Γ ) =
∫

FΓ

dx∧ dy
y2 .

(1) The integral which defines µ(Γ ) converges and is independent of the choice of
the fundamental domain FΓ .

(2) n = [PSL2(Z) : Γ ] = µ(Γ )/µ(SL2(Z)).
(3) If α ∈GL+

2 (Q) and α−1Γ α ⊆ SL2(Z), then [PSL2(Z) : Γ ] = [PSL2(Z) : α−1Γ α].

Proof. First, observe that

µ(SL2(Z)) =
∫

F
y−2dx∧ dy =

∫ 1
2

− 1
2

∫ ∞
√

1−x2
y−2dy dx =

∫ 1
2

− 1
2

dx
√

1− x2
=
π

3
<∞

(where the last integral can be evaluated using the change of variables x = sin(t)).

Now, for each j ∈ {1, . . . ,n }, we make the change of variables z 7→ αj(z):∫
α−1
j (F)

y−2dx∧ dy =
∫

F
y−2dx∧ dy .

Therefore, the integral which defines µ(Γ ) converges and, if µ is well-defined, we

have that µ(Γ ) = nµ(SL2(Z)).

Moreover, if F′
Γ

is another fundamental domain for Γ , we can divide it into

regions Ri such that βi(Ri) ⊆ FΓ for some βi ∈ Γ . In this situation, the invariance

of y−2dx∧ dy implies that the integrals over Ri and over βi(Ri) coincide. This

proves that µ(Γ ) is well-defined.

Finally, observe that α−1(FΓ ) is a fundamental domain for α−1Γ α. Therefore,

µ(α−1Γ α) = µ(Γ ).
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Let k be a positive integer and let f ,g ∈Mk(Γ ).

Lemma 3.2. Let H(f ,g)(z) = f (z)g(z)(=(z))k. For all α ∈GL+
2 (Q),

H(f ,g) ◦α = H
(
f |[α]

k , g |[α]
k

)
.

Proof. A straight-forward computation yields

H(f ,g)(α(z)) = f (α(z))g(α(z))(=(α(z)))k = f (α(z))g(α(z))
[

det(α)
|j(α, z)|2

=(z)
]k

= f |[α]
k (z)g |[α]

k (z)(=(z))k = H
(
f |[α]

k , g |[α]
k

)
(z) ,

as claimed.

Lemma 3.3. If at least one of f and g is a cusp form, then the integral∫
FΓ
f (z)g(z)yk

dx∧ dy
y2

converges absolutely and does not depend on the choice of the fundamental domain
FΓ . (Here, we write z = x+ iy with x,y ∈ R.)

Proof. In each region α−1
j (F), we make the change of variables z 7→ α−1

j (z) and,

by lemma 3.2, the integral becomes

n∑
j=1

∫
F
f |

[α−1
j ]

k (z)g |
[α−1

j ]

k (z)yk
dx∧ dy

y2 .

Since f |
[α−1

j ]

k , g |
[α−1

j ]

k ∈Mk(α−1
j Γ αj), we can express

f |
[α−1

j ]

k (z) =
∞∑
n=0

anq
n
hj

and g |
[α−1

j ]

k (z) =
∞∑
n=0

bnq
n
hj
,

where qhj = e2πiz/hj , for some hj ∈ N. These qhj–expansions are holomorphic at 0

and, by hypothesis, a0 = 0 or b0 = 0. Hence,

f |
[α−1

j ]

k (z)g |
[α−1

j ]

k (z) = qhjψj(qhj )

for some function ψj holomorphic at 0, which implies that |qhjψj(qhj )| � e−cy for
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some constant c > 0 (if y is sufficiently large). But
∫

F
e−cyyk−2dxdy <∞, so the

integral in the statement of the lemma is absolutely convergent.

Now suppose that F′
Γ

is another fundamental domain for Γ . We can divide F′
Γ

into regions Ri such that βi(Ri) ⊆ Fγ with βi ∈ Γ and, since f (z)g(z)yky−2dx∧ dy
is invariant under Γ , the integrals over Ri and over βi(Ri) coincide. That is, the

integral in the statement of the lemma is independent of the choice of FΓ .

From here on, assume further that at least one of f and g is a cusp form.

Definition 3.4. The Petersson inner product of f and g is defined to be

〈f ,g〉Γ =
1

[PSL2(Z) : Γ ]

∫
FΓ
f (z)g(z)yk

dx∧ dy
y2 ,

where z = x+ iy. It is immediate from this definition that

〈 · , · 〉Γ : Sk(Γ )× Sk(Γ ) −→ C

(f1, f2) 7−→ 〈f1, f2〉Γ

is a Hermitian inner product on Sk(Γ ); that is to say, 〈 · , · 〉Γ is:

(i) linear in the first variable and antilinear in the second;

(ii) antisymmetric;

(iii) positive definite.

Since y−2dx∧ dy is invariant under Γ , we could use it to define a measure on

X(Γ ) (see section 2.5 of Shimura’s book [12] for the details). Lemma 3.2 shows

that f (z)g(z)(=(z))k induces a function on X(Γ ); thus, 〈f ,g〉Γ corresponds (up to

the constant factor [PSL2(Z) : Γ ]) to the integral of this function over X(Γ ). That

is why we may write

〈f ,g〉Γ =
1

[PSL2(Z) : Γ ]

∫
X(Γ )

f (z)g(z)yk
dx∧ dy

y2

when we do not want to make the choice of the fundamental domain explicit.

This notation is justified by lemma 3.3.

In the following sections, we are going to define operators T(n) for all n ∈ N
acting on Mk(Γ ). We are going to prove that (most of) these operators are self-

adjoint with respect to the Petersson inner product. Our interest will then

lie in the computation of a basis of Sk(Γ ) consisting of cusp forms which are

eigenvectors (eigenforms) of all these operators.
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Lemma 3.5. Let V be a finite-dimensional vector space over C with a Hermitian
inner product 〈 · , · 〉.

(1) If ϕ : V → V is a self-adjoint linear map, then V has a basis consisting of
mutually orthogonal eigenvectors of ϕ.

(2) Let ϕ1,ϕ2, . . . be a sequence of commuting self-adjoint endomorphisms. There
is a basis of V consisting of vectors which are eigenvectors of every ϕn (n ∈ N).
(That is, ϕ1,ϕ2, . . . are simultaneously diagonalisable.)

Proof. If V = {0 }, the result is trivial. Hence, assume that dim(V) = d ≥ 1.

Every endomorphism of V has at least one eigenvalue because C is algebraic-

ally closed (and so the characteristic polynomial has at least one root). Therefore,

ϕ has an eigenvector e1. If d = 1, we are done. Otherwise, let V1 = (Ce1)⊥. Since

ϕ is self-adjoint, V1 is stable under ϕ and we can apply the same argument to

ϕ
∣∣∣
V1

to obtain another eigenvector e2. Now let V2 = (Ce1 + Ce2)⊥ and we can

continue in this manner until we obtain a basis e1, e2, . . . , ed of V.

If ϕ1,ϕ2, . . . are commuting self-adjoint endomorphisms, we can express

V =
⊕

i V(λi), where the λi are the distinct eigenvalues of ϕ1 and the V(λi) are

the corresponding eigenspaces. For all n ∈ N, since ϕn commutes with ϕ1, ϕn

preserves each V(λi): if v ∈ V(λi), then ϕ1(ϕn(v)) = ϕn(ϕ1(v)) = λiϕn(v) and so

ϕn(v) ∈ V(λi) as well. Therefore, we can decompose each V(λi) further into a

sum of eigenspaces of ϕ2; then, we decompose the resulting spaces into a sum of

eigenspaces of ϕ3, and so on. Since V is finite-dimensional, after finitely many

steps this process must stop giving us any new smaller spaces. The resulting

decomposition is V =
⊕

i Vi such that each ϕn acts as a scalar on each Vi . Now

choose a basis for each Vi and take their union.

Finally, we study some properties of 〈 · , · 〉Γ which are going to be useful after

we define the Hecke operators.

Proposition 3.6. If Γ ′ is another congruence subgroup of SL2(Z) and f ,g ∈Mk(Γ ′)

as well, then 〈f ,g〉Γ = 〈f ,g〉Γ ′ .

Proof. First assume that Γ ′ ⊆ Γ . In this case, consider a set of representatives

β1, . . . ,βm of the left cosets of Γ ′ in Γ and choose

FΓ ′ =
m⋃
j=1

β−1
j (FΓ )
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as a fundamental domain for Γ ′. Since f ,g ∈Mk(Γ ), we have that f |
[β−1

j ]

k = f and

g |
[β−1

j ]

k = g for all j. Therefore,

〈f ,g〉Γ ′ =
1

[PSL2(Z) : Γ ′]

m∑
j=1

∫
β−1
j (FΓ )

f (z)g(z)yk
dx∧ dy

y2

=
1

[PSL2(Z) : Γ ] · [Γ : Γ ′]

m∑
j=1

∫
FΓ
f (z)g(z)yk

dx∧ dy
y2 = 〈f ,g〉Γ .

In general, we define Γ ′′ = Γ ∩ Γ ′ and, by the case proved in the previous

paragraph, 〈f ,g〉Γ = 〈f ,g〉Γ ′′ = 〈f ,g〉Γ ′ .

Since 〈f ,g〉Γ is independent of the choice of Γ , we can omit the subgroup

from the notation and write 〈f ,g〉 = 〈f ,g〉Γ as long as there is a sufficiently small

congruence subgroup Γ so that f ,g ∈Mk(Γ ).

Lemma 3.7. Let α ∈GL+
2 (Q) and set Γ ′ = α−1Γ α∩ SL2(Z). Then, Γ ′ is a congruence

subgroup of SL2(Z) and the map f 7→ f |[α]
k takes Mk(Γ ) to Mk(Γ ′) and Sk(Γ ) to Sk(Γ ′).

Proof. Observe that α can be multiplied by a positive scalar without affecting

the action of |[α]
k . Therefore, we may assume that α has integer entries.

Let D = det(α) and suppose that Γ (N) ⊆ Γ for some N ∈ N. We are going to

prove that Γ (ND) ⊆ Γ ′. Indeed, for all γ ∈ Γ (ND), we can write γ = 1 + NDβ for

some matrix β with integer coefficients. Hence, αγα−1 = 1 + Nαβ(Dα−1) ∈ Γ (N)

(note that det(αγα−1) = det(α) = 1), which implies that γ ∈ α−1Γ (N)α ⊆ α−1Γ α

and so γ ∈ Γ ′ too.

It is clear that, if f ∈ Mk(Γ ), then f |[α]
k is weakly modular for Γ ′ of weight

k and holomorphic in H. For all β ∈ SL2(Z), it is possible to put αβ into upper

triangular form by using elementary operations of the following types: adding a

multiple of one row to another and swapping two rows. Therefore, there exists

γ0 ∈ SL2(Z) such that γ−1
0 αβ =

(
a b
0 d

)
, where a and d are positive. If

f |[γ0]
k (z) =

∞∑
n=n0

xne
2πinz/h ,

then we have a Fourier expansion of f |[α]
k at β(∞) given by

(
f |[α]

k

)∣∣∣∣[β]

k
(z) = (ad)

k
2d−k

∞∑
n=n0

xne
2πin(az+b)/(dh) =

∞∑
n=an0

yne
2πinz/(dh) ,
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where

yn =


0 if a

∣∣∣- n,( a
d

) k
2
xn/a e

2πibn/(adh) if a
∣∣∣ n.

Thus, if f ∈Mk(Γ ) (resp. f ∈ Sk(Γ )), then f |[α]
k ∈Mk(Γ ′) (resp. f |[α]

k ∈ Sk(Γ ′)).

Proposition 3.8. Let α ∈GL+
2 (Q) and let α′ = det(α)α−1.

(1) 〈f |[α]
k , g |[α]

k 〉 = 〈f ,g〉.
(2) 〈f |[α]

k , g〉 = 〈f , g |[α
′]

k 〉.
(3) 〈f |[α]

k , g〉 depends only on the double coset Γ αΓ . That is to say, for all γ1,γ2 ∈ Γ ,

〈f |[γ1αγ2]
k , g〉 = 〈f |[α]

k , g〉.

Proof. Assume (up to multiplication by a suitable integer) that α has integer

entries (and so α′ too).

Let Γ ′ = Γ ∩αΓ α−1. Γ ′ is a congruence subgroup of SL2(Z) because it is the

intersection of the congruence subgroups Γ and SL2(Z)∩αΓ α−1. We also know

that f ,g ∈Mk(Γ ) ⊆Mk(Γ ′) and f |[α]
k , g |[α]

k ∈Mk(α−1Γ α∩ SL2(Z)) ⊆Mk(α−1Γ ′α), by

lemma 3.7. On the other hand, if F′ is a fundamental domain for Γ ′, α−1(F′) is a

fundamental domain for α−1Γ ′α. Therefore,

〈f |[α]
k , g |[α]

k 〉 =
1

[PSL2(Z) : α−1Γ ′α]

∫
α−1(F′)

f |[α]
k (z)g |[α]

k (z)yk
dx∧ dy

y2

=
1

[PSL2(Z) : Γ ′]

∫
F′
f (z)g(z)yk

dx∧ dy
y2 = 〈f ,g〉

because [PSL2(Z) : α−1Γ ′α] = [PSL2(Z) : Γ ′] (by proposition 3.1).

Applying the previous result with g replaced by g |[α
−1]

k (which is the same as

g |[α
′]

k ), we obtain that 〈f |[α]
k , g〉 = 〈f , g |[α

−1]
k 〉 = 〈f , g |[α

′]
k 〉. And, since f ,g ∈Mk(Γ ),

〈f |[γ1αγ2]
k , g〉 =

〈(
f |[γ1]

k

)∣∣∣∣[α]

k
, g |[γ

−1
2 ]

k

〉
= 〈f |[α]

k , g〉 for all γ1,γ2 ∈ Γ .

3.2 Hecke operators for SL2(Z)

Hecke operators play a fundamental role in the theory of modular forms. In this

section, we introduce Hecke operators for the full modular group and briefly

explain some basic facts.

Hecke operators were first introduced in order to study some properties of

the Ramanujan τ–function, which is related to the q–expansion of the modular
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discriminant∆(z). These results, which are omitted from this work, are explained

in detail in Serre’s book [11] and in Milne’s notes [8], for instance.

Recall that a lattice in C is a subgroup of the form Λ =Λ(ω1,ω2) = Zω1⊕Zω2

where ω1 and ω2 are complex numbers which are linearly independent over R.

We shall always assume (up to interchanging ω1 and ω2) that=
(
ω1
ω2

)
> 0. Let

L denote the set of lattices in C. One checks easily that Λ(ω1,ω2) =Λ(ω′1,ω
′
2) if

and only if ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 for some
(
a b
c d

)
∈ SL2(Z).

Every lattice Λ has associated with it an elliptic curve EΛ = C /Λ. One

can show that two elliptic curves C /Λ and C /Λ′ are isomorphic if and only if

Λ = λΛ′ for some λ ∈ C×. Therefore, we consider the (left) action of C× on L
by homotheties and a lattice Λ(ω1,ω2) is equivalent to Λ(τ,1) in C× \L, where

τ = ω1
ω2
∈H. Thus, we writeΛ(τ) =Λ(τ,1) for all τ ∈H. We see thatΛ(τ) andΛ(τ′)

coincide in C× \L if and only if there exists
(
a b
c d

)
∈ SL2(Z) such that τ′ = aτ+b

cτ+d .

Hence, there is a bijective correspondence between the elements of SL2(Z)\H
and the isomorphism classes of elliptic curves. SL2(Z)\H is said to be a moduli

space of elliptic curves.

Throughout this section, k will be an integer.

Lemma 3.9. Let F: L→ P1
C be a homogeneous function of degree −2k (that is, such

that F(λΛ) = λ−2kF(Λ) for all λ ∈ C× and all Λ ∈ L). The function

f : H −→ P1
C

z 7−→ f (z) = F(Λ(z,1))

is weakly modular for SL2(Z) of weight 2k. Moreover, the map F 7→ f is a bijection
between functions of lattices which are homogeneous of degree −2k and weakly
modular functions for SL2(Z) of weight 2k.

Proof. We write F(ω1,ω2) = F(Λ(ω1,ω2)). Note that F(λω1,λω2) = λ−2kF(ω1,ω2)

for all λ ∈ C× and F(aω1+bω2, cω1+dω2) = F(ω1,ω2) for all
(
a b
c d

)
∈ SL2(Z). We see

thus that the product ω2k
2 F(ω1,ω2) depends only on ω1

ω2
and, consequently, there

is a function f (z) such that F(ω1,ω2) = ω−2k
2 f

(
ω1
ω2

)
. Thus, for all

(
a b
c d

)
∈ SL2(Z),

(cω1 + dω2)−2kf

(
aω1 + bω2

cω1 + dω2

)
= ω−2k

2 f

(
ω1

ω2

)
or, equivalently, (cz + d)−2kf

(
az+b
cz+d

)
= f (z).
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Conversely, given a weakly modular function f for SL2(Z) of weight 2k, we

can define F(ω1,ω2) = ω−2k
2 f

(
ω1
ω2

)
, which is homogeneous of degree −2k.

We are going to use this interpretation of modular forms to define Hecke

operators. To this aim, we first define operators on L, which define operators on

functions on L.

LetL be the free abelian group generated by the elements of L.

Definition 3.10. For every n ∈ N, the Hecke operator T(n) : L →L is the only

Z–linear operator which maps each lattice Λ to the sum of all of its sublattices

of index n:

T(n)Λ =
∑

[Λ:Λ′]=n

Λ′ .

(This sum is finite because any such sublattice Λ′ contains nΛ and Λ / nΛ is

finite.)

We also consider the homothety operators R(n) : L → L , which are the

linear maps defined by R(n)Λ = nΛ for all Λ ∈ L.

Proposition 3.11. The Hecke operators and the homothety operators (as endomorph-
isms ofL ) satisfy the following identities:

(1) R(m) ◦R(n) = R(n) ◦R(m) = R(mn) for all m,n ∈ N;
(2) R(m) ◦T(n) = T(n) ◦R(m) for all m,n ∈ N;
(3) T(m) ◦T(n) = T(n) ◦T(m) = T(mn) for all m,n ∈ N such that (m,n) = 1;
(4) T(pn) ◦T(p) = T(pn+1) + pR(p) ◦T(pn−1) for all primes p and all n ∈ N.

Proof. The first two identities are trivial.

To prove the third identity, fix a lattice Λ. For every sublattice Λ′′ of Λ of

index mn, there exists a unique sublattice Λ′ of Λ containing Λ′′ and such that

[Λ : Λ′] = n and [Λ′ : Λ′′] = m. Indeed, Λ /Λ′′ is an abelian group of order mn

which decomposes uniquely as the direct sum of a group of order m and a group

of order n (because (m,n) = 1). Therefore, T(mn)Λ = (T(m) ◦T(n))Λ.

Finally, we prove the last identity with a similar argument. Let Λ be a lattice.

We observe that (T(pn) ◦T(p))Λ, T(pn+1)Λ and (R(p) ◦T(pn−1))Λ are all sums of

sublattices of Λ of index pn+1. One such sublattice Λ′′ occurs exactly a times in

the first sum, exactly once in the second sum and exactly b times in the third

sum, so we have to prove that a = 1 + pb. To do so, we distinguish two cases.

If Λ′′ is not contained in pΛ, it is clear that b = 0. On the other hand, a is the

number of sublattices Λ′ of Λ containing Λ′′ and of index p in Λ. Such a lattice
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Λ′ contains pΛ, and its image in Λ / pΛ is of order p and contains the image of

Λ′′ (which is also of order p). Thus, there is exactly one possible Λ′ with these

properties, which means that a = 1.

If Λ′′ is contained in pΛ, we have that b = 1. But every sublattice Λ′ of Λ of

index p contains pΛ and so Λ′′ too. Therefore, a coincides with the number of

sublattices of Λ of index p (or, equivalently, with the number of subgroups of

Λ / pΛ ' (Z / pZ)2 of index p), and this is p2−1
p−1 = p+ 1.

Corollary 3.12. The Z–algebra generated by the T(p) and R(p) for p prime is com-
mutative and contains all the T(n) for n ∈ N.

Definition 3.13. There is an action of Hecke operators and homothety operators

on the set of functions F: L→ P1
C which are homogeneous of degree −2k: for all

n ∈ N, we define T(n) F and R(n) F to be the functions given by

T(n) F(Λ) = F(T(n)Λ) =
∑

[Λ:Λ′]=n

F(Λ′) and R(n) F(Λ) = F(R(n)Λ) = n−2kF(Λ)

for all Λ ∈ L.

Proposition 3.14. Let F: L→ P1
C be a homogeneous function of degree −2k. For all

n ∈ N, T(n) F : L→ P1
C is also homogeneous of degree −2k. Moreover,

(1) T(m) T(n) F = T(mn) F for all m,n ∈ N such that (m,n) = 1, and
(2) T(p) T(pn) F = T(pn+1) F + p1−2k T(pn−1) F for all primes p and all n ∈ N.

Proof. It is immediate from the definition of T(n) F and proposition 3.11.

Definition 3.15. Let f : H → P1
C be a weakly modular function for SL2(Z) of

weight 2k and let F: L→ P1
C be the associated homogeneous function of degree

−2k (as in lemma 3.9). For every n ∈ N, we define T(n)f : H → P1
C to be the

function associated with n2k−1 T(n) F:

T(n)f (z) = n2k−1 T(n) F(Λ(z,1)) .

(The factor n2k−1 is introduced so that some formulae have integer coefficients.)

Proposition 3.16. If f : H→ P1
C is weakly modular for SL2(Z) of weight 2k, then

T(n)f : H → P1
C is also weakly modular for SL2(Z) of weight 2k for every n ∈ N.

Moreover,
(1) T(m) T(n)f = T(mn)f for all m,n ∈ N such that (m,n) = 1, and
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(2) T(p) T(pn)f = T(pn+1)f + p2k−1 T(pn−1)f for all primes p and all n ∈ N.

Proof. It is immediate from the definition of T(n)f and proposition 3.14 (taking

into account the additional factor).

We have defined the action of Hecke operators on weakly modular functions

and so, in particular, on modular forms. Nevertheless, the definition is quite

abstract and the properties of the functions obtained in this way are not obvious.

The following results provide simpler descriptions of these functions and even

precise formulae to compute them.

Lemma 3.17. Let A be a 2× 2 matrix with entries in Z and det(A) = n > 0. There
exists U ∈ SL2(Z) such that UA =

(
a b
0 d

)
with ad = n, a ≥ 1 and 0 ≤ b < d. Moreover,

the integers a, b and d are uniquely determined.

Proof. It is possible to put A into upper triangular form by using elementary

operations of the following types: adding a multiple of one row to another and

swapping two rows. Since these operations are invertible, they correspond to

left multiplication by a matrix in SL2(Z). We can assume, up to multiplication

by −1 ∈ SL2(Z), that the diagonal entries are positive. Finally, adding a suitable

multiple of the second row to the first one, we obtain a matrix UA =
(
a b
0 d

)
with

the required properties.

For the uniqueness, observe that a is the greatest common divisor of the

elements in the first column of A (the operations performed to obtain an upper

triangular form coincide with Euclid’s algorithm). Now, d = n
a and b is obviously

uniquely determined modulo d.

Lemma 3.18. Let n ∈ N and let M(n) be the set of 2×2 matrices with integer entries
and determinant n. Let X(n) be the subset of M(n) consisting of matrices of the form(
a b
0 d

)
with a ≥ 1 and 0 ≤ b < d. If Λ =Λ(ω1,ω2), then the sublattices of Λ of index n

are precisely those of the form Λ(aω1 + bω2,dω2) for
(
a b
0 d

)
∈ X(n).

Proof. If
(
a b
0 d

)
∈ X(n), then Λ(aω1 + bω2,dω2) has index n in Λ because ad = n.

Conversely, if Λ′ is a sublattice of Λ of index n, then every basis of Λ′ must be of

the form (ω′1,ω
′
2) = (aω1 + bω2, cω1 + dω2) for some

(
a b
c d

)
∈M(n). By lemma 3.17,(

a b
c d

)
is SL2(Z)–equivalent to exactly one element of X(n). On the other hand, if

there are two matrices α =
(
a b
0 d

)
and β =

(
a′ b′
0 d′

)
in X(n) giving rise to the same

sublattice (i.e., such that Λ(aω1 + bω2,dω2) =Λ(a′ω1 + b′ω2,d
′ω2)), then α = uβ

for some u ∈ SL2(Z) and so α = β (by lemma 3.17).
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Proposition 3.19. Let n be a positive integer and let M(n) be the set of 2×2 matrices
with integer entries and determinant n. Let f : H→ P1

C be a weakly modular function
for SL2(Z) of weight 2k. We have that

T(n)f (z) = n2k−1
∑
a,b,d

d−2kf

(
az + b
d

)
= nk−1

∑
δ

f |[δ]2k (z) ,

where the first sum is over the triples of integers a, b and d such that a ≥ 1, ad = n

and 0 ≤ b < d and the last sum is over a set of representatives of SL2(Z)\M(n).

Proof. The first equality is a direct consequence of lemma 3.18, while the second

is a consequence of lemma 3.17.

Corollary 3.20. Let f : H→ P1
C be a weakly modular function for SL2(Z) of weight

2k. If f is holomorphic (resp. meromorphic) in H, then T(n)f is also holomorphic
(resp. meromorphic) in H for every n ∈ N.

Proposition 3.21. Let f : H∗→ P1
C be a meromorphic modular form (resp. modular

form or cusp form) for SL2(Z) of weight 2k and consider its q–expansion at∞

f̂∞(q) =
∑
m∈Z

c(m)qm .

For all n ∈ N, the function g = T(n)f : H∗→ P1
C is also a meromorphic modular form

(resp. modular form or cusp form) for SL2(Z) of weight 2k with q–expansion at∞

ĝ∞(q) =
∑
m∈Z

cn(m)qm

where, for all m ∈ Z, the m–th coefficient is given by

cn(m) =
∑

a|(n,m)

a2k−1c
(mn

a2

)

(the last sum is over the positive divisors of (n,m)).

Proof. We already know that g is weakly modular of weight 2k and meromorphic

(resp. holomorphic) in H. Therefore, we need to prove that it is meromorphic

(resp. holomorphic or zero) at∞: this will be immediate from the form of the

coefficients cn(m). We can write

T(n)f (z) = n2k−1
∑
a≥1

∑
ad=n

∑
0≤b<d

d−2k
∑
m∈Z

c(m)e2πim(az+b)/d .
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But, for fixed a and d, the sum
∑

0≤b<d e
2πibm/d is 0 unless d

∣∣∣m, in which case it

is d. Thus, setting m′ = m
d ,

T(n)f (z) = n2k−1
∑
a,d,m′

d−2k+1c(m′d)e2πiam′z .

In the previous expression, we can collect powers of e2πiz to compute

cn(t) =
∑
a|(n,t)

a2k−1c
(n
a
t
a

)

(the sum is over the positive divisors of (n,t)).

Corollary 3.22. Let f be a non-zero modular form for SL2(Z) of weight 2k with
q–expansion

f̂∞(q) =
∞∑

m=0

cmq
m .

If f is an eigenform of all the T(n), with T(n)f = λnf for each n ∈ N, then c1 , 0 and
cm = λmc1 for all m ∈ N.

Proof. The coefficient of q in the q–expansion of T(n)f is cn, by proposition 3.21.

But, since T(n)f = λnf , it is also λnc1. Finally, if c1 were zero, then cm would be

zero for all m ∈ N, thus contradicting the assumption that f is non-zero.

The previous result implies that the coefficients of the q–expansion of an

eigenform (of all the T(n)) satisfy the recurrence relations of proposition 3.16.

Lemma 3.23. Let p be a prime and let M(p) be the set of 2× 2 matrices with integer
entries and determinant p. There exists a common set of representatives for the set of
left orbits SL2(Z)\M(p) and for the set of right orbits M(p) / SL2(Z).

Proof. Let α,β ∈M(p). Then,

SL2(Z)αSL2(Z) = SL2(Z)βSL2(Z) = SL2(Z)
(

1 0
0 p

)
SL2(Z)

(this is the Smith normal form of every element of M(p)). In particular, β = uαv

for some u,v ∈ SL2(Z). Therefore, we can take γ = uα = βv−1 and we obtain that

SL2(Z)γ = SL2(Z)α and γ SL2(Z) = βSL2(Z).

Therefore, we can obtain representatives γ1, . . . ,γp+1 for both SL2(Z)\M(p)

and M(p) / SL2(Z) from a set of representatives α1, . . . ,αp+1 for SL2(Z)\M(p) and

a set of representatives β1, . . . ,βp+1 for M(p) / SL2(Z).
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Theorem 3.24. Let f ,g : H∗ → P1
C be two modular forms for SL2(Z) of weight 2k

and suppose in addition that at least one of them is a cusp form. For all n ∈ N, we
have that 〈T(n)f ,g〉 = 〈f ,T(n)g〉.

Proof. Lemma 3.23 says that there exists a set of representatives γ1, . . . ,γp+1 for

both SL2(Z)\M(p) and M(p) / SL2(Z). For every j, write γ′j = pγ−1
j . We have that

M(p) =
⊔

j SL2(Z)γj =
⊔

j γj SL2(Z) and so M(p) = pM(p)−1 =
⊔

j SL2(Z)γ′j too.

Now, by proposition 3.19, we obtain that

〈T(p)f ,g〉 = pk−1
p+1∑
j=1

〈f |
[γj ]
2k , g〉 = pk−1

p+1∑
j=1

〈f , g |
[γ′j ]

2k 〉 = 〈f ,T(p)g〉 ;

the general case follows from proposition 3.16.

3.3 Hecke operators using double cosets

In the previous section, we described the action of Hecke operators on modular

forms for the full modular group by interpreting them as functions on lattices.

Our objective in this section is to generalise that construction and define oper-

ators T(n) on modular forms for congruence subgroups such as Γ (N), Γ0(N) or

Γ1(N) (for N ∈ N). These Hecke operators should satisfy essentially the same

properties as Hecke operators for SL2(Z).

Nevertheless, for a general congruence subgroup Γ , the set Γ \H does not para-

metrise isomorphism classes of elliptic curves (or lattices modulo homothety)

any more. Thus, one possible approach is to use lattices in conjunction with

some additional torsion data (such as a subgroup of the lattice) in order to obtain

a bijection with Γ \H. The downside of this strategy is that we should define

what are known as modular points (lattices plus some additional structure)

specifically for each kind of congruence subgroups we want to work with. The

details of this method for Γ1(N) can be found, for instance, in the books [3] by

Koblitz and [4] by Lang.

We follow a different approach which allows us to define Hecke operators

directly on modular forms. Let f be a modular form for SL2(Z) of weight 2k.

Proposition 3.19 shows that T(n)f is a linear combination of terms of the form

f |[δ]2k with δ ∈ GL+
2 (Q) (in fact, f |[δ]2k depends only on the coset SL2(Z)δ). Thus,

if ω is the k–fold differential form on X(1) associated with f , then the k–fold

differential form on X(1) associated with T(n)f is somehow related to the k–fold
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differential forms δ∗(ω) (which are not defined on X(1) in general). We try to

understand and generalise this situation.

Let Γ be a congruence subgroup of SL2(Z). Let α ∈GL+
2 (Q), which defines the

map z 7→ α(z) : H∗→H∗. We would like to define a map α : X(Γ )→ X(Γ ). But αΓ z

is not an element of X(Γ ) and Γ α(z) depends on the choice of the representative

z. Therefore, we consider the union of the orbits meeting αΓ z, which is Γ αΓ z.

Lemma 3.25. Let Γ ′ = Γ ∩ α−1Γ α. If Γ =
⊔d

j=1 Γ
′βj , then Γ αΓ =

⊔d
j=1 Γ αβj (which

means, in particular, that Γ αΓ is the disjoint union of [Γ : Γ ′] right cosets). Conversely,
if Γ αΓ =

⊔d
j=1 Γ αβj , then Γ =

⊔d
j=1 Γ

′βj .

Proof. First, observe that Γ ′ is a congruence subgroup of SL2(Z) (in particular, of

finite index), by lemma 3.7. This means that we can find a set of d representatives

of Γ ′ \Γ , indeed.

Suppose that Γ =
⊔d

j=1 Γ
′βj . Consider an element γ1αγ2 ∈ Γ αΓ . We can write

γ2 = γ′βj with γ′ ∈ Γ ′ for some j. Since γ′ ∈ α−1Γ α, we can write γ′ = α−1γα

for some γ ∈ Γ . In this case, we have that γ1αγ2 = γ1γαβj ∈ Γ αβj . Therefore,

Γ αΓ =
⋃d

j=1 Γ αβj : we must check that these cosets are disjoint.

Suppose that γ1αβi = γ2αβj for some γ1,γ2 ∈ Γ and some i, j ∈ {1, . . . ,d }. We

deduce that βiβ
−1
j = α−1γ−1

1 γ2α ∈ α−1Γ α and, since βiβ
−1
j ∈ Γ as well, βiβ

−1
j ∈ Γ

′,

which is to say that i = j.

For the converse, assume that Γ αΓ =
⊔d

j=1 Γ αβj . Thus, if γ ∈ Γ , we can write

αγ = γ0αβj with γ0 ∈ Γ for some j. Consequently, γ = α−1γ0αβj ∈ Γ ′βj . Indeed,

this means that β−1
j γ = α−1γ0α and so this element belongs to both Γ and α−1Γ α.

In conclusion, Γ =
⋃d

j=1 Γ
′βj : we must check that these cosets are disjoint.

Suppose that γ′1βi = γ′2βj for some γ′1,γ
′
2 ∈ Γ ′ and some i, j ∈ {1, . . . ,d }. We can

write γ′1 = α−1γ1α and γ′2 = α−1γ2α with γ1,γ2 ∈ Γ . Therefore, γ−1
2 γ1αβi = αβj ,

which implies that i = j.

Let Γα = Γ ∩α−1Γ α and write Γ =
⊔d

j=1 Γαβj . By lemma 3.25, the map induced

by α (or by the double coset Γ αΓ ) on the modular curve X(Γ ) should be a “many-

valued map” sending Γ z to the d points Γ αβjz (for 1 ≤ j ≤ d). This idea can be

formalised by means of the correspondence

X(Γα)

X(Γ ) X(Γ )

ι α
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(where α(Γαz) = Γ α(z) and ι(Γαz) = Γ z). It is called the Hecke correspondence

because the action of Hecke operators on k–fold differential forms on X(Γ ) can be

defined (using appropriate matrices α) as the pull-back by α followed by the trace

given by ι in the above diagram. We could also interpret this correspondence as

a map on divisors given by Γ z 7→
∑d

j=1 Γ (αβj)(z) : Div(X(Γ ))→Div(X(Γ )).

The previous discussion leads us to define an action of double cosets on

modular forms. In the remainder of this chapter, k will be an integer.

Definition 3.26. Let Γ be a congruence subgroup of SL2(Z). We define a right

action of weight k of double cosets of the form Γ αΓ with α ∈GL+
2 (Q) on weakly

modular functions f : H→ P1
C for Γ of weight k in the following way:

f |[Γ αΓ ]
k (z) =

d∑
j=1

f |
[αj ]
k (z) ,

where Γ αΓ =
⊔d

j=1 Γ αj .

This action is well-defined. Firstly, if αj is replaced by γjαj with γj ∈ Γ , then

f |
[γjαj ]
k = f |

[αj ]
k because f is weakly modular for Γ of weight k. Secondly, if α is

replaced by α′ such that Γ αΓ = Γ α′Γ , we can still take the same decomposition

as a disjoint union of right cosets: Γ α′Γ =
⊔d

j=1 Γ αj . Finally, by lemma 3.25, we

can take αj = αβj for all j so that Γ =
⊔d

j=1 Γαβj . Let γ ∈ Γ . Since multiplication

by γ permutes the right cosets Γαβj , we conclude that

(
f |[Γ αΓ ]

k

)∣∣∣∣[γ]

k
=

d∑
j=1

f |
[αjγ]
k =

d∑
j=1

f |
[αj ]
k = f |[Γ αΓ ]

k

and so f |[Γ αΓ ]
k is weakly modular for Γ of weight k.

Proposition 3.27. Let Γ be a congruence subgroup of SL2(Z) and let α ∈GL+
2 (Q). If

f ∈Mk(Γ ), then f |[Γ αΓ ]
k ∈Mk(Γ ). Furthermore, if f ∈ Sk(Γ ), then f |[Γ αΓ ]

k ∈ Sk(Γ ).

Proof. We already know that f |[Γ αΓ ]
k is weakly modular for Γ of weight k. Fur-

thermore, f |[Γ αΓ ]
k is holomorphic in H and satisfies the required conditions at the

cusps because each f |
[αj ]
k appearing in its definition does (by lemma 3.7).

Definition 3.28. Let N be a positive integer. Let S+ be a non-trivial subgroup of

Z (i.e., S+ = MZ for some M ∈ N) and let S× be a subgroup of (Z / NZ)× (which
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we identify with its inverse image in Z under the projection modulo N). Let n be

a positive integer. We define

∆n(N,S×,S+) =
{(

a b
c d

)
: a,b,c,d ∈ Z, a ∈ S×, b ∈ S+, N

∣∣∣ c and ad − bc = n
}
.

Example 3.29. If N = 1 and S× = S+ = Z, then ∆n(N,S×,S+) is the set of 2 × 2

matrices with integer entries and determinant n.

In general, one checks easily that

∆m(N,S×,S+) ·∆n(N,S×,S+) ⊆ ∆mn(N,S×,S+) ;

moreover, ∆1(N,S×,S+) is a group (actually, a congruence subgroup, since it con-

tains Γ ([M,N]) if S+ = MZ). In particular, we can express Γ (N) = ∆1(N, {1 },NZ),

Γ0(N) = ∆1(N, (Z / NZ)×,Z) and Γ1(N) = ∆1(N, {1 },Z).

Definition 3.30. Let Γ = ∆1(N,S×,S+) (with the notation of definition 3.28) and

let n ∈ N. We define the action of the n–th Hecke operator on modular forms for Γ

of weight k, T(n) : Mk(Γ )→Mk(Γ ), as follows: for all f ∈Mk(Γ ),

T(n)f = n
k
2−1

∑
f |[Γ αΓ ]

k = n
k
2−1

∑
f |[β]

k ,

where the first sum is over all the double cosets Γ αΓ contained in ∆n(N,S×,S+)

and the second sum is over the elements Γ β of Γ \∆n(N,S×,S+).

Now that we have defined Hecke operators for a large class of congruence

subgroups, we focus on the groups Γ0(N) for N ∈ N. Fix N ∈ N. The proofs of

the following results are adapted from Miyake’s book [9] and Koblitz’s book [3]

(which deals with the case of Γ1(N)).

Lemma 3.31. We can express

∆n(N, (Z / NZ)×,Z) =
⊔
a,b,d

Γ0(N)
(
a b
0 d

)
,

where the (disjoint) union is over the triples of integers a, b and d such that a ≥ 1,
(a,N) = 1, ad = n and 0 ≤ b < d. In addition,

∆n(N, (Z / NZ)×,Z) =
⊔
a,d

Γ0(N)
(
a 0
0 d

)
Γ0(N) ,
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where the (disjoint) union is over the pairs of integers a and d such that a ≥ 1,
(a,N) = 1, ad = n and a

∣∣∣ d.

Proof. Let α =
(
a b
c d

)
∈ ∆n(N, (Z / NZ)×,Z). Let D = (a,c) and consider x,y ∈ Z such

that ax+ cy = D (Bézout’s identity). Write A = a
D and C = c

D , so that Ax+ Cy = 1.

Since (a,N) = 1 and N
∣∣∣ c, we obtain that N

∣∣∣ C and (D,N) = 1. As a consequence,

γ =
(

x y
−C A

)
∈ Γ0(N). Now observe that γα =

(
D bx+dy
0 −bC+dA

)
. Hence, ±

(
1 h
0 1

)
γα is of the

form
(
a′ b′
0 d′

)
with a′ ≥ 1, (a′,N) = 1, a′d′ = n and 0 ≤ b′ < d′ (for a suitable choice

of h).

Moreover, for any two matrices
(
a b
0 d

)
and

(
a′ b′
0 d′

)
of the desired form, we have

that
(
a b
0 d

)−1( a′ b′
0 d′

)
=

(
a−1a′ ∗

0 d−1d′

)
and this matrix is in Γ0(N) if and only if a = a′,

d = d′ and b = b′.

The proof of the first statement is complete. The second statement is analog-

ous to the existence and uniqueness of a Smith normal form.

Let α =
(
a b
c d

)
∈ ∆n(N, (Z / NZ)×,Z). We have already seen that we can trans-

form α (multiplying on the left by a matrix of Γ0(N)) into a matrix of the form(
a′ b′
0 d′

)
with |a′ | < |a| if c , 0. Similarly, we can transform it (multiplying on the

right by a matrix of Γ0(N)) into a matrix of the form
(
a′ 0
c′ d′

)
with |a′ | < |a| if b , 0.

Indeed, let D = (a,b) and write A = a
D and B = b

D . Since (a,N) = 1, we obtain that

(D,N) = (A,N) = 1. Take x,y ∈ Z such that Ax + By = 1 (Bézout’s identity) and

N
∣∣∣ y (we can do so because (A,N) = 1 and the possible choices of y differ by

multiples of A). Therefore, γ =
(
x B
y −A

)
∈ Γ0(N) and αγ =

(
D 0

cx+dy cB−dA

)
.

Alternating between these two types of transformations, we can transform

any matrix α ∈ ∆n(N, (Z / NZ)×,Z) into a matrix of the form
(
a 0
0 d

)
(because the

absolute value of the first entry of the matrix decreases at each step). Now,

multiplying on the right by
(

1 0
N 1

)
, we obtain the matrix

(
a 0

Nd d

)
. This matrix turns

into
(

(a,d) dy
0 dA

)
with a transformation of the first kind (observe that (a,d) = (a,Nd)

because (a,N) = 1) and then into
(

(a,d) 0
0 dA

)
with a transformation of the second

kind. And it is clear that (a,d)
∣∣∣ dA.

The fact that these double cosets are disjoint follows from the uniqueness of

the Smith normal form of a matrix with integer coefficients.

Proposition 3.32. Let f : H∗→ P1
C be a meromorphic modular form (resp. modular

form or cusp form) for Γ0(N) of weight k and consider its q–expansion at∞

f̂∞(q) =
∑
m∈Z

c(m)qm .
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For all n ∈ N, the function g = T(n)f : H∗→ P1
C is also a meromorphic modular form

(resp. modular form or cusp form) for Γ0(N) of weight k with q–expansion at∞

ĝ∞(q) =
∑
m∈Z

cn(m)qm

where, for all m ∈ Z, the m–th coefficient is given by

cn(m) =
∑

a|(n,m)

χN(a)ak−1c
(mn

a2

)

(the last sum is over the positive divisors of (n,m) which are prime to N: here, χN

denotes the principal Dirichlet character modulo N).

Proof. This result is analogous to proposition 3.21. By lemma 3.31, we can write

T(n)f (z) = nk−1
∑

(a,N)=1

∑
ad=n

∑
0≤b<d

d−k
∑
m∈Z

c(m)e2πim(az+b)/d

(a is positive in this sum). Since, for fixed a and d, the sum
∑

0≤b<d e
2πibm/d is 0

unless d
∣∣∣m, we set m′ = m

d and

T(n)f (z) = nk−1
∑
a,d,m′

d−k+1c(m′d)e2πiam′z .

Collecting powers of e2πiz in the previous expression, we obtain that

cn(t) =
∑

(a,N)=1
a|(n,t)

ak−1c
(nt
a2

)
=

∑
a|(n,t)

χN(a)ak−1c
(nt
a2

)

(the sum is over the positive divisors of (n,t) which are prime to N).

The previous results allow us to compute explicitly the action of Hecke

operators on modular forms for Γ0(N). Next, we are going to prove that there is a

basis of Sk(Γ0(N)) whose elements are eigenforms of many of the T(n).

Lemma 3.33. Let Γ be a congruence subgroup of SL2(Z) and let α ∈GL+
2 (Q). There

exists a common set of representatives for Γ \Γ αΓ and for Γ αΓ / Γ .

Proof. Write Γ αΓ =
⊔d

j=1 Γ αj =
⊔d

j=1βjΓ (observe that the number of left cosets

and the number of right cosets coincide: it is d = [Γ : (Γ ∩α−1Γ α)], by lemma 3.25).
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For i, j ∈ {1, . . . ,d }, Γ αi ∩ βjΓ , ∅: if that were not the case, we would have that

Γ αΓ = Γ αiΓ ⊆
⋃

l,j βlΓ , but this is impossible. Thus, we can choose an element

δj ∈ Γ αj ∩ βjΓ for each j ∈ {1, . . . ,d }. Since Γ αj = Γ δj and βjΓ = δjΓ for every j, we

conclude that Γ αΓ =
⊔d

j=1 Γ δj =
⊔d

j=1 δjΓ .

Lemma 3.34. With the notation of definition 3.28, let Γ = ∆1(N,S×,S+) and consider
∆ =

⊔
n∈N∆

n(N,S×,S+). Assume that there exists a map α 7→ αι : ∆→ ∆ satisfying
that

(i) (αβ)ι = βιαι and (αι)ι = α for all α,β ∈ ∆,
(ii) Γ ι = Γ , and

(iii) Γ αιΓ = Γ αΓ for all α ∈ ∆.
Then, for every weakly modular form f : H→ P1

C for Γ of weight k and for all m,n ∈ N,
T(m) T(n)f = T(n) T(m)f .

Proof. Let α ∈ ∆m(N,S×,S+) and β ∈ ∆n(N,S×,S+). By lemma 3.33, we can express

Γ αΓ =
⊔a

i=1 Γ αi =
⊔a

i=1αiΓ and Γ βΓ =
⊔b

j=1 Γ βj =
⊔b

j=1βjΓ . Thus, the properties

of ι imply that Γ αΓ = Γ αιΓ = (Γ αΓ )ι =
⊔a

i=1α
ι
iΓ =

⊔a
i=1 Γ α

ι
i and, analogously,

Γ βΓ =
⊔b

j=1β
ι
jΓ =

⊔d
j=1 Γ β

ι
j . Therefore,

(
f |[Γ αΓ ]

k

)∣∣∣∣[Γ βΓ ]

k
=

b∑
j=1

a∑
i=1

f |
[αiβj ]
k and

(
f |[Γ βΓ ]

k

)∣∣∣∣[Γ αΓ ]

k
=

a∑
i=1

b∑
j=1

f |
[βιjα

ι
i ]

k ;

we want to check that each coset Γ δ appears the same number of times in each

of these expressions. Indeed, αiβj ∈ Γ δΓ if and only if αiβj ∈ Γ δγ for some γ ∈ Γ
(and there are |Γ \Γ δΓ | cosets of the form Γ δγ). Hence,

c(δ) =
∣∣∣{ (i, j) : Γ αiβj = Γ δ }

∣∣∣ =

∣∣∣{ (i, j) : Γ αiβjΓ = Γ δΓ }
∣∣∣

|Γ \Γ αΓ |
=

∣∣∣{ (i, j) : Γ βιjα
ι
iΓ = Γ διΓ }

∣∣∣
|Γ \Γ διΓ |

=

∣∣∣{ (i, j) : Γ βιjα
ι
iΓ = Γ δΓ }

∣∣∣
|Γ \Γ δΓ |

=
∣∣∣{ (i, j) : Γ βιjα

ι
i = Γ δ }

∣∣∣ = c′(δ)

(here, c(δ) is the number of times Γ δ appears in the first expression and c′(δ) is

the number of times Γ δ appears in the second expression).

Since the action of Hecke operators is defined in terms of Z–linear combin-

ations of double cosets and we have proved that the actions of Γ αΓ and of Γ βΓ

commute, we conclude that T(m) T(n)f = T(n) T(m)f .

Proposition 3.35. Let f : H→ P1
C be a weakly modular form for Γ0(N) of weight k.

For all m,n ∈ N, T(m) T(n)f = T(n) T(m)f .
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Proof. Let ∆ =
⊔

n∈N∆
n(N, (Z / NZ)×,Z). Observe that the map

ι : ∆ ∆(
a b

Nc d

) ( a c
Nb d

)
satisfies the three conditions of lemma 3.34. Indeed, conditions (i) and (ii)

are obvious by definition, and condition (iii) is immediate choosing diagonal

matrices as representatives of the double cosets (as in lemma 3.31). Therefore,

the proposition is a consequence of lemma 3.34.

In fact, a stronger result holds. We state it without proof.

Proposition 3.36. Let f : H→ P1
C be a weakly modular form for Γ0(N) of weight k.

Then:
(1) T(m) T(n)f = T(mn)f for all m,n ∈ N such that (m,n) = 1;
(2) T(p) T(pn)f = T(pn+1)f + pk−1 T(pn−1)f for all prime p such that p

∣∣∣- N and
all n ∈ N;

(3) T(p) T(pn)f = T(pn+1)f for all prime p such that p
∣∣∣ N and all n ∈ N.

Theorem 3.37. Let f ,g ∈H∗→ P1
C be two modular forms for Γ0(N) of weight k and

suppose in addition that at least one of them is a cusp form. For all n ∈ N such that
(n,N) = 1, 〈T(n)f ,g〉 = 〈f ,T(n)g〉.

Proof. For every α ∈GL+
2 (Q), write α′ = det(α)α−1. Proposition 3.8 implies that

〈f |[Γ0(N)αΓ0(N)]
k , g〉 = 〈f , g |[Γ0(N)α′Γ0(N)]

k 〉.
Consider the set X(n) =

{ (
a 0
0 d

)
: ad = n and a

∣∣∣ d }
. By lemma 3.31, X(n) is

a set of representatives of the double cosets Γ0(N)αΓ0(N) in ∆n(N, (Z / NZ)×,Z).

If α =
(
a 0
0 d

)
∈ X(n), then α′ =

(
d 0
0 a

)
∈ ∆n(N, (Z / NZ)×,Z) because (n,N) = 1 and

ad = n. Moreover, the last part of the proof of lemma 3.31 shows that
(
d 0
0 a

)
can

be transformed into
(

(a,d) 0
0 ad/(a,d)

)
=

(
a 0
0 d

)
with operations which correspond to

multiplication by matrices of Γ0(N). That is, Γ0(N)α′Γ0(N) = Γ0(N)αΓ0(N).

In conclusion,

〈T(n)f ,g〉 = n
k
2−1

∑
α∈X(n)

〈f |[Γ0(N)αΓ0(N)]
k , g〉 = n

k
2−1

∑
α∈X(n)

〈f , g |[Γ0(N)α′Γ0(N)]
k 〉

= n
k
2−1

∑
α∈X(n)

〈f , g |[Γ0(N)αΓ0(N)]
k 〉 = 〈f ,T(n)g〉 ,

as claimed.
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Corollary 3.38. For every k ∈ Z, there exists a basis of the complex vector space
Sk(Γ0(N)) whose elements are eigenforms of all the T(n) for n ∈ N with (n,N) = 1.

We could also be interested in finding eigenforms of the T(n) with (n,N) > 1.

If the eigenspaces of the T(n) with (n,N) > 1 had dimension 1, then there would

be a basis of eigenforms for all the Hecke operators (because Hecke operators

commute and so preserve each eigenspace). However, this is not true in general.

To overcome this barrier, one must study which modular forms for Γ0(N) come

from lower levels. That is, if N = d1d2 and f ∈Mk(Γ0(d1)), then f (z) ∈Mk(Γ0(N))

and also g(z) = f (d2z) ∈ Mk(Γ0(N)). The subspace of Sk(Γ0(N)) spanned by the

forms obtained in these two ways from elements of Sk(Γ0(d)) for proper divisors

d of N is called the subspace of oldforms. Its orthogonal complement is called

the subspace of newforms. It can be shown that the spaces of newforms have

bases composed of eigenforms of all the T(n) (for n ∈ N).

Another question is whether there is a basis of eigenforms of Mk(Γ0(N)). In

general, we cannot use the Petersson inner product (because at least one of the

two forms must be a cusp form in order to ensure convergence). Instead, one can

define explicitly generalised Eisenstein series which are eigenforms. In this case,

Mk(Γ0(N)) can be decomposed as the orthogonal direct sum of Sk(Γ0(N)) and the

space spanned by these generalised Eisenstein series.

The theories of oldforms and newforms and of generalised Eisenstein series

are introduced, for instance, in the book [2] by Diamond and Shurman.



Chapter 4

Modular symbols

We are finally in a position to describe explicitly a basis of cusp forms by means

of the theory of modular symbols. In particular, modular symbols provide a

method of computing the Fourier expansions of the elements of a basis of cusp

forms for congruence subgroups. Furthermore, the theory of modular symbols

is an important tool in some proofs of theoretical results. As a matter of fact, the

many applications of this theory make it a valuable tool in its own right.

In this chapter, we focus on the study of S2(Γ0(N)) for any N ∈ N. This is

the simplest case, yet it exhibits the most important aspects of this theory. The

generalisation to cusp forms of weight k greater than 2 is based on the same ideas;

however, it involves the use of complex polynomials in two variables which are

homogeneous of degree k − 2, which makes the proofs more complicated.

The main ideas of this theory, with a special emphasis on computations, are

explained in the books [14] by Stein and [1] by Cremona. In a similar fashion,

Stein’s paper [13] summarises the most important results from a computational

viewpoint and Merel’s paper [6] finds simple sets of matrices which are sufficient

to perform all the computations. Also, Lang’s book [4] explains some results

related to modular symbols and some of their theoretical applications. Never-

theless, all these references skip many proofs. Thus, most of the proofs in this

chapter are adapted directly from the first half of Manin’s original paper [5].

4.1 Motivation

Throughout this chapter, let N be a positive integer. We are finally going to take

advantage of the theory explained in the previous chapters in order to find a

basis of S2(Γ0(N)).

Fix k ∈ N (in fact, we are going to be interested in the case k = 2). Corol-

lary 3.38 ensures the existence of a basis of Sk(Γ0(N)) formed of eigenforms of all

the T(n) with (n,N) = 1. Hence, the action of Hecke operators should give us a

fair amount of information about Sk(Γ0(N)).

71
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Let n ∈ N. By proposition 3.32, T(n) acts on the q–expansions (at infinity) of

modular forms for Γ0(N) of weight k in the following way:

T(n)
( ∞∑
m=0

amq
m
)

=
∞∑

m=0

∑
d|(n,m)

χN(d)dk−1amn/d2qm ,

where χN is the principal Dirichlet character modulo N and the last sum is only

over positive divisors d of (n,m). For every f ∈Mk(Γ0(N)) and all m ∈ N, we write

am(f ) for the coefficient of qm in f̂∞(q).

Lemma 4.1. Let n ∈ N. For all f ∈Mk(Γ0(N)), a1(T(n)f ) = an(f ).

Let T be the Z–algebra generated by the operators T(n) for n ∈ N acting on

Sk(Γ0(N)) (regarded as a subalgebra of End(Sk(Γ0(N))) and consider the complex

vector space TC = T⊗ZC obtained by extension of scalars.

Proposition 4.2. There is a perfect pairing of complex vector spaces given by

〈 · , · 〉 : Sk(Γ0(N))×TC −→ C

(f ,T) 7−→ 〈f ,T〉 = a1(T f )

and, thus, it defines an isomorphism between Sk(Γ0(N)) and HomC(TC,C).

Proof. This pairing is bilinear because every T ∈ TC belongs to EndC(Sk(Γ0(N)))

and a1 is also a linear map.

Let f ∈ Sk(Γ0(N)) such that 〈f ,T〉 = 0 for all T ∈ TC. By lemma 4.1, we have

that an(f ) = 〈f ,T(n)〉 = 0 for all n ∈ N, which means that f = 0.

Similarly, let T ∈ TC such that 〈f ,T〉 = 0 for all f ∈ Sk(Γ0(N)). Fix f ∈ Sk(Γ0(N)).

By proposition 3.35, TC is commutative. In particular, for all n ∈ N,

an(T f ) = a1(T(n) T f ) = a1(T T(n)f ) = 〈T(n)f ,T〉 = 0 .

That is, T f = 0. Since f was arbitrary, we conclude that T is the 0 operator.

Finally, considering that Sk(Γ0(N)) has finite dimension, the pairing must be

perfect and so induces an isomorphism between Sk(Γ0(N)) and HomC(TC,C).

Proposition 4.3. Consider the isomorphism of complex vector spaces

Ψ : Sk(Γ0(N)) −→HomC(TC,C)

f 7−→
(
T 7→ a1(T f )

)
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induced by the perfect pairing described in proposition 4.2. For every C–linear map
ϕ : TC→ C, the power series

fϕ(q) =
∞∑
n=1

ϕ(T(n))qn

is the q–expansion at infinity of the cusp form Ψ −1(ϕ).

Proof. Let g = Ψ −1(ϕ). By definition, g is the only element of Sk(Γ0(N)) such that

〈g,T〉 = ϕ(T) for all T ∈ TC. In particular, by lemma 4.1,

an(g) = a1(T(n)g) = 〈g,T(n)〉 = ϕ(T(n)) = an(fϕ)

for all n ∈ N.

Proposition 4.3 allows us to compute the q–expansions of the elements of

a basis of Sk(Γ0(N)) as long as we know a basis of HomC(TC,C). However, it

is impossible to describe explicitly the action of Hecke operators on Sk(Γ0(N))

without a precise description of Sk(Γ0(N)) (and this is our ultimate goal). Thus,

we are going to introduce another set of objects on which Hecke operators act

in the same way. That is to say, we are going to compute the action of T using a

space which contains an isomorphic copy of Sk(Γ0(N)) and on which this action

can be explicitly described in a simpler way.

To this aim, we restrict ourselves to the case in which k = 2. Let Γ be a

congruence subgroup of SL2(Z). By proposition 2.27 and lemma 2.29, there

is an isomorphism (of complex vector spaces) between S2(Γ ) and the space of

holomorphic differential 1–forms on X(Γ ), which we denote by Ω1(X(Γ )). Since

X(Γ ) is a compact Riemann surface, the complex dimension ofΩ1(X(Γ )) coincides

with g, the genus of X(Γ ). But the genus is a topological invariant: topologically,

X(Γ ) is a g–holed torus. Therefore, its first homology group H1(X(Γ ),Z) is a free

abelian group of rank 2g (there are two generators for each hole). We can now

consider the real homology H1(X(Γ ),R) = H1(X(Γ ),Z)⊗ZR, which is a real vector

space of dimension 2g. Consequently,

dimR(H1(X(Γ ),R)) = 2g = 2dimC(Ω1(X(Γ ))) = dimR(Ω1(X(Γ ))) .

In fact, the general theory of compact Riemann surfaces provides an explicit

relation between H1(X(Γ ),R) and Ω1(X(Γ )).
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Theorem 4.4. The integration pairing

I : H1(X(Γ ),R)×Ω1(X(Γ )) −→ C( r∑
i=1

λi[γi],ω
)
7−→

r∑
i=1

λi

∫
γi

ω

is non-degenerate. Consequently, it induces an isomorphism between H1(X(Γ ),R)

and HomC(Ω1(X(Γ )),C) (both regarded as real vector spaces).

Idea of the proof. First, observe that the pairing is well-defined because integrals

over homologous paths coincide. (This result is a version of the Cauchy integral

theorem for compact Riemann surfaces.) Indeed, if ω ∈Ω1(X(Γ )), then dω = 0

and so, by Stokes’s theorem, ∫
∂∆
ω =

∫
∆

dω = 0

for every 1–boundary ∂∆. We always consider representatives of the homology

classes which are (at least) rectifiable curves so that the integrals make sense.

Let a1, . . . , a2g be the fundamental cycles relative to a polygonal decomposition

of X(Γ ). The elements of H1(X(Γ ),R) are formal linear combinations

σ =
2g∑
i=1

λi[ai]

with λi ∈ R for all i. Thus, the integration pairing is given by

I(σ,ω) =
2g∑
i=1

λi

∫
ai

ω .

Using the Abel–Jacobi theorem for compact Riemann surfaces, one can check

that the Z–span of the elements I([ai], · ) (for 1 ≤ i ≤ 2g) is a lattice of maximal

rank 2g in HomC(Ω1(X(Γ )),C) � Cg � R2g (the quotient of HomC(Ω1(X(Γ )),C)

by this lattice is precisely the Jacobian of X(Γ )). In conclusion, the integration

pairing I induces an isomorphism (of real vector spaces) between H1(X(Γ ),R)

and HomC(Ω1(X(Γ )),C).

In this sense, the first homology group of X(Γ ) with real coefficients is dual

to S2(Γ ). That is why we are going to study the first homology group of X(Γ ) (by
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means of what are known as modular symbols) and how the action of Hecke

operators translates to it. We explain the results involving Hecke operators only

for Γ0(N) because we have an explicit description of T(n) in this case.

Definition 4.5. Let n ∈ N. The n–th Hecke operator acts on the first homology

group of X0(N) with real coefficients, T(n) : H1(X0(N),R) → H1(X0(N),R), in

the following way: for every σ ∈ H1(X0(N),R), T(n)σ is the only element of

H1(X0(N),R) with the property that

I(T(n)σ,ω) = I(σ,T(n)ω)

for all ω ∈Ω1(X0(N)), where I is the integration pairing described in theorem 4.4.

(Here, we identify Ω1(X0(N)) with S2(Γ0(N)).)

4.2 Homology and modular symbols

Throughout the remainder of this chapter, let Γ be a fixed congruence subgroup

of SL2(Z) and let π : H∗→ X(Γ ) be the natural projection map. We would like to

obtain an explicit description of a simple set of generators of H1(X(Γ ),Z). Such

generators are (homology classes of) paths on X(Γ ). Since X(Γ ) is defined as a

quotient of H∗, we start by considering paths on H∗ (whose images under π are

paths on X(Γ )). Since we are going to integrate differential forms along these

paths, we impose some additional conditions. That is, we are always going to

choose “regular enough” representatives of the homology classes.

Let r, s ∈H∗. By a path joining r and s in H∗, we mean a piecewise smooth (i.e.,

piecewise continuously differentiable) path lying inside H except for possibly

the endpoints. Moreover, we require that the path be smooth at the endpoints

in the following sense. If s =∞, the path leading to∞ should be contained in a

vertical strip of finite width and its image under the map z 7→ e2πiz should be a

piecewise smooth path leading to 0. If s is any other cusp, there is an element of

SL2(Z) which maps a neighbourhood of s to a neighbourhood of∞ and we can

define the condition of smoothness similarly. With this notion of path in H∗, its

projection on X(Γ ) is also a piecewise smooth path.

Lemma 4.6. Let r, s ∈ H∗. Any two paths on H∗ joining r with s are homotopic.
Consequently, the images of two such paths under π are also homotopic.
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r

s

u
u′

v v′

Wr

Ws

Figure 4.1: Two homotopic paths joining r and s.

Proof. Since H is simply connected, we only need to study the case in which at

least one of r and s is a cusp. For instance, assume that r ∈ Q and s =∞, as in

figure 4.1. The smoothness condition at the endpoints of the two paths ensures

the existence of fundamental neighbourhoods Wr of r and Ws of s which divide

each path into three portions, as illustrated in figure 4.1: there is one portion

lying in H, away from the endpoints, and the two tails leading to r and to s. Since

Wr is simply connected, the pieces between r and u and between r and u′ are

homotopic in Wr . Similarly, the pieces between v and s and between v′ and s are

homotopic in Ws because Ws is simply connected. And we have already observed

that H is also simply connected, so the remaining pieces are homotopic as well.

(In fact, all these open sets are not only simply connected, but also convex.)

Finally, since π : H∗→ X(Γ ) is continuous, the composition of π with a homo-

topy in H∗ is a homotopy in X(Γ ).

Let r, s ∈ H∗ and consider a path Pr,s from r to s in H∗. Lemma 4.6 implies

that, for every ω ∈Ω1(X(Γ )), the integral∫ s

r
π∗(ω) =

∫
Pr,s
π∗(ω)

does not depend on the choice of the path Pr,s (but only on its endpoints).

Definition 4.7. Let r, s ∈ H∗. The modular symbol {r, s} for Γ is the element of

H1(X(Γ ),R) corresponding to(
ω 7−→

∫ s

r
π∗(ω)

)
∈HomC(Ω1(X(Γ )),C)
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under the integration pairing described in theorem 4.4.

Observe that the definition of modular symbol depends on the congruence

subgroup Γ . For example, we could write {r, s}Γ instead of just {r, s} to make it

explicit. However, we are going to omit Γ from the notation because we are not

going to mix modular symbols for different congruence subgroups.

In general, the modular symbol {r, s} is an element of H1(X(Γ ),R). But, if

π(r) = π(s), a path from r to s on H∗ becomes a closed path on X(Γ ) and so

{r, s} can be regarded as an element of H1(X(Γ ),Z) (viewed as a submodule of

H1(X(Γ ),R)). The modular symbols which belong to the integral homology group

are sometimes called integral modular symbols.

Actually, we will focus on the case in which r and s are cusps. Let C(Γ )

be the image of P1
Q in X(Γ ): we call its elements the cusps of X(Γ ), since they

are the images of the cusps for Γ under π. (Also, we write C0(N) = C(Γ0(N)).)

Thus, if r, s ∈ P1
Q, {r, s} can be viewed as an element of H1(X(Γ ),C(Γ ),Z), the

first homology group of X(Γ ) relative to the cusps. Consequently, we think

of {r, s} as (the homology class of) a geodesic path from r to s in the Poincaré

upper half-plane (regarded as a model of the hyperbolic plane), as illustrated in

figure 4.2.

r s0

∞

Figure 4.2: Geodesic paths from r to s and from 0 to∞ in H∗.

Definition 4.8. We define a left action of GL+
2 (Q) on the space of modular sym-

bols for Γ in the following way:

α{r, s} = {α(r),α(s)}

for all r, s ∈H∗ and all α ∈GL+
2 (Q) and this is extended by linearity.
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Proposition 4.9. Let r, s, t ∈H∗ and let γ,γ′ ∈ Γ . We have the following identities:
(1) {r, r} = 0;
(2) {r, s}+ {s, r} = 0;
(3) {r, s}+ {s, t}+ {t, r} = 0;
(4) γ{r, s} = {r, s};
(5) {r,γ(r)} = {s,γ(s)};
(6) {r, (γγ′)(r)} = {r,γ(r)}+ {r,γ′(r)}.

Proof. (1) and (2) are immediate from the definition of modular symbols and the

properties of the integrals. For (3), observe that {r, s}+ {s, t}+ {t, r} corresponds

to integration of holomorphic functions along the boundary of a triangle with

vertices r, s and t: these integrals are always 0 by the Cauchy integral theorem.

Let Pr,s be a path from r to s in H∗. Then, γ(Pr,s) is a path from γ(r) to γ(s) and

the images of Pr,s and γ(Pr,s) under π coincide because γ ∈ Γ . This completes the

proof of (4).

Finally, (5) and (6) are a consequence of the previous identities. Indeed,

{r,γ(r)} = {r, s}+ {s,γ(s)}+ {γ(s),γ(r)} = {r, s}+ {s,γ(s)}+ {s, r} = {s,γ(s)}

and also

{r, (γγ′)(r)} = {r,γ(r)}+ {γ(r),γ(γ′(r))} = {r,γ(r)}+ {r,γ′(r)} .

Proposition 4.10. Let r ∈H∗. The map

Φ : Γ −→ H1(X(Γ ),Z)

γ 7−→ {r,γ(r)}

is a surjective group morphism which does not depend on the choice of r. Moreover,
the kernel of Φ is generated by the images of the commutators, the elliptic elements
and the parabolic elements of Γ in Γ = ({±1 } · Γ ) / {±1 }.

Proof. The identities (5) and (6) of proposition 4.9 imply that Φ is a morphism

which does not depend on the choice of r. To prove the remaining assertions, we

must use a geometric interpretation of Φ .

We can assume that r is neither an elliptic point nor a cusp. Let H0 be the

complement of the subset of elliptic points in H and let Y0(Γ ) = π(H0). Since the

ramification points of π are precisely the elliptic points and the cusps, H0 is a
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(path-connected) covering space of Y0(Γ ) with covering map π|H0 : H0→ Y0(Γ ).

Therefore, π|H0 induces a morphism Ψ from π1(Y0(Γ ),π(r)) (the fundamental

group of Y0(Γ ) with base point π(r)) to Γ as follows. Every closed path P in

Y0(Γ ) starting at π(r) has a unique lift to a path P̃ in H0 starting at r. The other

endpoint of P̃ must be of the form γ(r) for some γ ∈ Γ whose image γ in Γ is

uniquely determined. In this situation, Ψ sends the homotopy class of P to γ.

This morphism is well-defined because a homotopy of paths starting at π(r) in

Y0(Γ ) has a unique lift to a homotopy of paths starting at r in H0. Furthermore,

Ψ is surjective because H0 is path-connected and so we can always find a path

from r to γ(r) in H0.

The composite map F = Φ ◦Ψ : π1(Y0(Γ ),π(r))→ H1(X(Γ ),Z) sends the homo-

topy class of a closed path P starting at π(r) in Y0(Γ ) to the first homology class

of P in X(Γ ) (intuitively, Ψ lifts P to a path P̃ in H0 and Φ projects P̃ on X(Γ )).

That is to say, F coincides with the canonical morphism from the fundamental

group of Y0(Γ ) to the first homology group of its compactification X(Γ ). Hence,

F factors through H1(Y0(Γ ),Z).

Since Y0(Γ ) is path-connected (it is a g–holed torus minus a finite set of

points), the canonical map π1(Y0(Γ ),π(r))→ H1(Y0(Γ ),Z) is surjective and its

kernel is the commutator subgroup of π1(Y0(Γ ),π(r)). Likewise, the natural map

H1(Y0(Γ ),Z)→ H1(X(Γ ),Z) is surjective and its kernel is generated by the cycles

round the images of elliptic points and cusps under π (these cycles contract in

the compactification). In conclusion, F is surjective and its kernel is generated

by the commutator subgroup of π1(Y0(Γ ),π(r)) and by the homotopy classes of

closed paths round the images of elliptic points and cusps under π. Thus, Φ is

also surjective and its kernel is the image under Ψ of the kernel of F.

On the one hand, the image of the commutator subgroup of π1(Y0(Γ ),π(r))

under Ψ is generated by the image of the commutator subgroup of Γ in Γ . On

the other hand, (homotopy classes of) cycles round elliptic points or cusps

correspond to the elements of Γ which fix these elliptic points or cusps (that is,

the elliptic and parabolic elements of Γ ), as we saw when we defined the charts

of X(Γ ) at these points. This completes the description of the kernel of Φ .

We are going to use the previous result, corresponding to proposition 1.4 of

Manin’s paper [5], to find a simple way to represent the elements of H1(X(Γ ),Z).

Definition 4.11. The distinguished modular symbols for Γ are those of the form

{α(0),α(∞)} for some α ∈ SL2(Z). If α =
(
a b
c d

)
, then {α(0),α(∞)} =

{
b
d ,

a
c

}
.
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The following result, known in the literature as Manin’s trick, is proposition

1.6 of Manin’s paper [5].

Theorem 4.12 (Manin). Let α1, . . . ,αm be a set of representatives of the right cosets
of Γ in PSL2(Z). Every element [a] of H1(X(Γ ),Z) can be represented as a Z–linear
combination of distinguished modular symbols of the form

[a] =
m∑
j=1

λj{αj(0),αj(∞)}

with the property that

m∑
j=1

λj[π(αj(∞))−π(αj(0))] = 0

(as a 0–cycle on X(Γ )).

Proof. First, observe that αj{0,∞} is independent of the representative of the

right coset Γ αj , by the assertion (4) of proposition 4.9.

By proposition 4.10, we can write [a] = {0,γ(0)} for some γ ∈ Γ . If γ(0) =∞,

this modular symbol is distinguished and π(∞)−π(0) = 0. Otherwise, γ(0) ∈Q
and we can write γ(0) = p

q in lowest terms, with q > 0. We expand

p

q
= x0 +

1

x1 +
1

x2 +
1

. . . +
1

xn

(as a finite continued fraction) and consider the successive convergents

p−2

q−2
=

0
1
,

p−1

q−1
=

1
0
,

p0

q0
=
x0

1
,

p1

q1
=
x0x1 + 1

x1
, . . . ,

pn
qn

=
p

q

(all of them written in lowest terms and the first two included formally). In this

situation, we can express {
0,

p

q

}
=

n∑
k=−1

{
pk−1

qk−1
,
pk
qk

}
,
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by proposition 4.9. This representation satisfies the required property because

π(0) = π(γ(0)). Thus, we only need to prove that the modular symbols
{
pk−1
qk−1

, pkqk

}
are distinguished. But it is well-known that pkqk−1 − pk−1qk = (−1)k−1 and so

βk =
(
pk (−1)k−1pk−1
qk (−1)k−1qk−1

)
∈ SL2(Z) .

Consequently, we can express{
pk−1

qk−1
,
pk
qk

}
= {βk(0),βk(∞)} = {αjk (0),αjk (∞)}

for some jk ∈ {1, . . . ,m }. All these modular symbols (for k ∈ {−1,0, . . . ,n }) are

distinguished.

Proposition 4.13. Every Z–linear combination of modular symbols of the form

c =
n∑

j=1

λj{rj , sj}

with the property that

∂c =
n∑

j=1

λj[π(sj)−π(rj)] = 0

(as a 0–cycle on X(Γ )) is an element of the first integral homology group H1(X(Γ ),Z).

Proof. We have to prove that c is a Z–linear combination of homology classes of

closed paths (i.e., of 1–cycles).

We may assume that λj = ±1 for all j ∈ {1, . . . ,n } by allowing repetitions. In

fact, we may assume that λj = 1 for all j ∈ {1, . . . ,n } because {s, r} = −{r, s}. Now,

we reorder the sum and express

c =
u∑
i=1

ci =
u∑
i=1

ni∑
j=ni−1+1

{rj , sj} ,

where 0 = n0 < n1 < · · · < nu = n, so that π(sj−1) = π(rj) for all j ∈ {ni−1 + 2, . . . ,ni }
and ∂ci = 0 for all i ∈ {1, . . . ,u }. We can do so inductively: at the l–th step, if

∂
( l−1∑
j=ni−1+1

{rj , sj}
)

= 0 ,
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we set ni = l − 1 and choose {rl , sl} to be any of the remaining modular symbols;

otherwise, the coefficient of π(sl−1) in the preceding sum must be +1 and so we

can choose {rl , sl}, among the modular symbols which have not been selected in

the previous steps, satisfying that π(rl) = π(sl−1).

In conclusion, for each i ∈ {1, . . . ,u }, ci is the homology class of a closed path

in X(Γ ) obtained by concatenating the images under π of the geodesic paths (in

H∗) from rj to sj for j ∈ {ni−1 + 1, . . . ,ni }. Therefore, c ∈ H1(X(Γ ),Z).

The previous results provide a way to represent the first homology classes of

X(Γ ) in terms of a set of representatives for Γ \PSL2(Z). We are going to simplify

this representation even more by means of what are known as Manin symbols.

4.3 Manin symbols

Consider the matrices

σ =
(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
.

Observe that, with the notation of theorem 1.9, σ = S and τ = TS. In particular,

these two matrices generate SL2(Z). Moreover, σ2 = τ3 = −1.

Since σ{0,∞} = {∞,0} and τ{0,∞} = {∞,1} and τ{∞,1} = {1,0},

α{0,∞}+ασ{0,∞} = 0 and α{0,∞}+ατ{0,∞}+ατ2{0,∞} = 0

for every α ∈ SL2(Z) (by proposition 4.9). We are going to see that this system of

relations is complete in some sense.

Definition 4.14. Let α1, . . . ,αm be a set of representatives of the right cosets of Γ

in PSL2(Z). The formal symbols (αj) for j ∈ {1, . . . ,m } are called Manin symbols
for Γ . We extend this notation and write (α) = (Γ αj) = (αj) for all α ∈ Γ αj . (There

is one Manin symbol for each right coset, but we identify these right cosets with

their representatives.)

Definition 4.15. We define a right action of SL2(Z) on the set of Manin symbols

for Γ in the following way: for all α ∈ PSL2(Z) and all β ∈ SL2(Z), (α)β = (αβ).

Definition 4.16. Let Man(Γ ) be the free abelian group generated by the Manin

symbols (α) for Γ . The group of 1–chains of Manin symbols for Γ is the quotient
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C(Man(Γ )) of Man(Γ ) by the subgroup generated by the elements of the form

(α) + (α)σ and by the elements (α) such that (α) = (α)σ. The boundary of a Manin

symbol (α) is the element π(α(∞))−π(α(0)) of the free abelian group generated

by the cusps C(Γ ); we extend this boundary operator by Z–linearity to the entire

group C(Man(Γ )). Its kernel Z(Man(Γ )) is called the group of 1–cycles of Manin
symbols for Γ . The group of 1–boundaries of Manin symbols for Γ is the subgroup

B(Man(Γ )) of C(Man(Γ )) generated by the elements (α) + (α)τ + (α)τ2 and by the

elements (α) such that (α) = (α)τ.

In the previous definition, the boundary of a 1–chain of Manin symbols for Γ

is well-defined because σ interchanges 0 and∞ and, in C(Man(Γ )), (α)σ = −(α).

(We identify the elements of C(Man(Γ )) with their representatives.)

Lemma 4.17. B(Man(Γ )) is a subgroup of Z(Man(Γ )).

Proof. Let (α) be a Manin symbol. If (α) = (α)τ, then Γ α(0) = Γ α(τ(0)) = Γ α(∞)

and so the boundary of (α) is π(α(∞))−π(α(0)) = 0. Therefore, (α) ∈ Z(Man(Γ )).

Also, the element (α) + (α)τ+ (α)τ2 belongs to Z(Man(Γ )) because its boundary is

π(α(∞))−π(α(0)) +π(α(1))−π(α(∞)) +π(α(0))−π(α(1)) = 0.

Lemma 4.18. The morphism

ξ : Z(Man(Γ )) / B(Man(Γ )) −→ H1(X(Γ ),Z)
m∑
j=1

λj(αj) + B(Man(Γ )) 7−→
m∑
j=1

λj{αj(0),αj(∞)}

is well-defined and surjective.

Proof. First, observe that proposition 4.13 implies that the image of ξ is contained

in H1(X(Γ ),Z) (as long as ξ does not depend on the choice of the representative

of each element of the quotient Z(Man(Γ )) / B(Man(Γ ))). Second,

α{0,∞}+ατ{0,∞}+ατ2{0,∞} = {α(0),α(∞)}+ {α(∞),α(1)}+ {α(1),α(0)} = 0 .

Finally, if (α) = (α)τ, then 3α{0,∞} = α{0,∞}+ατ{0,∞}+ατ2{0,∞} = 0 and, since

H1(X(Γ ),R) is torsion-free, {α(0),α(∞)} = 0. In conclusion, ξ is well-defined. The

surjectivity of ξ is a direct consequence of theorem 4.12.

The following theorem is the main result of this chapter, as it gives an

algebraic presentation of the group H1(X(Γ ),Z) which is very convenient for
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computations. It corresponds to theorem 1.9 of Manin’s paper [5] (the proof here

is essentially the same, but some steps are explained in more detail).

Theorem 4.19 (Manin). The map

ξ : Z(Man(Γ )) / B(Man(Γ )) −→ H1(X(Γ ),Z)
m∑
j=1

λj(αj) + B(Man(Γ )) 7−→
m∑
j=1

λj{αj(0),αj(∞)}

is an isomorphism.

Proof. Lemma 4.18 asserts that ξ is surjective, so we have to prove that it is also

injective. To this aim, we are going to triangulate X(Γ ) in order to obtain a cell

complex L with homology Z1(L) / B1(L) (the quotient of the 1–cycles of L by the

1–boundaries of L) coinciding with H1(X(Γ ),Z). Then, we are going to embed

Z(Man(Γ )) / B(Man(Γ )) in Z1(L) / B1(L).

For any two points r, s ∈H∗, let 〈r, s〉 denote the segment joining r and s along

the geodesic in H oriented from r to s (regarding H as a model of the hyperbolic

plane: geodesics are thus semicircles and lines orthogonal to the real axis). The

polygons appearing in this proof are going to be formed by geodesic segments in

H∗ joining the vertices of these figures; we also consider their images under the

projection π.

Let E be the interior of the triangle with vertices {0,1, i∞}, shown in figure 4.3.

Let E′ be the union of the interior of the quadrilateral with vertices { i,ρ,1+ i, i∞}
and the side 〈i,ρ〉 except for the vertex i. By theorem 1.9, the closure of E′ is a

fundamental domain for SL2(Z). Moreover, none of the sides of this quadrilateral

contains two distinct points which are identified under the action of SL2(Z) (so

neither under the action of Γ ). Therefore, each of these sides can be embedded

in X(Γ ).

In E, we have the three regions E′, τ(E′) and τ2(E′) as illustrated in figure 4.3.

The closure of each of them is a fundamental domain for SL2(Z). For instance,

the closure of E′ can be obtained from F =
{
z ∈H : |z| ≥ 1 and |<(z)| ≤ 1

2

}
(which

is a fundamental domain for SL2(Z), by theorem 1.9) by translating the left

half of F under
(

1 1
0 1

)
. In addition, each of the 1–simplices appearing in the

boundaries of E′, τ(E′) and τ2(E′) (which are the half-sides and half-medians of

the triangle E) can be embedded in X(Γ ) because there are no self-identifications.

In fact, no two distinct points of one of these half-sides and half-medians are

SL2(Z)–equivalent, as can be checked using theorem 1.9. Indeed, the half-side
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i ρ

i∞

0 1

1 + i

1+i
2

E′

τ2(E′) τ(E′)

Figure 4.3: Triangulation of the region E.

〈i∞, i〉 is contained in F̊ (except for its endpoints) and the half-median 〈ρ, i〉 is on

an edge of F with no self-identifications. The other half-sides and half-medians

are SL2(Z)–equivalent to these: on the one hand, the half-sides 〈0, i〉, 〈1,1 + i〉,
〈i∞,1+i〉, 〈0, 1+i

2 〉 and 〈1, 1+i
2 〉 are the images of 〈i∞, i〉 under the linear fractional

transformations associated with σ =
(

0 −1
1 0

)
, τ =

(
1 −1
1 0

)
, τσ =

(
−1 −1
0 −1

)
, τ2 =

(
0 −1
1 −1

)
and τ2σ =

(
−1 0
−1 −1

)
, respectively; on the other hand, the half-medians 〈ρ,1 + i〉

and 〈ρ, 1+i
2 〉 are the images of 〈ρ, i〉 under the linear fractional transformations

associated with τ =
(

1 −1
1 0

)
and τ2 =

(
0 −1
1 −1

)
, respectively.

We are in a position to describe the cell complex L.

The 0–cells of L are the images in X(Γ ) of the cusps and the points which are

SL2(Z)–equivalent to i; that is, the points of π(P1
Q)∪π(SL2(Z)i). Observe that

these are the images under π of the vertices and the midpoints of the sides of

the triangles α(E) for α ∈ SL2(Z).

The 1–cells of L are the images under π of the half-sides of the triangles α(E)

for α ∈ SL2(Z) oriented from the vertices to the midpoints (i.e., from the cusps

to the points of SL2(Z)i). For every right coset Γ α in PSL2(Z), we define e1(Γ α)

to be the image of the path 〈α(∞),α(i)〉 under π. Since all the half-sides of E are

of the form 〈α(∞),α(i)〉 for some α ∈ SL2(Z), every 1–cell can be expressed as

e1(Γ α) for some right coset Γ α. By definition,

∂e1(Γ α) = π(α(i))−π(α(∞)) .

Moreover, if Γ α and Γ β are two right cosets such that e1(Γ α) = e1(Γ β), then

Γ β = Γ α. Indeed, since PSL2(Z)i = {1,σ } and π(β(i)) = π(α(i)), either Γ β = Γ α or
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Γ β = Γ ασ (otherwise, the endpoints of e1(Γ β) and of e1(Γ α) would be different).

But, if Γ α , Γ ασ, the images of α(F̊) and of ασ(F̊) under π are disjoint (see

the proof of proposition 1.10) and so the images of the paths 〈α(∞),α(i)〉 and

〈ασ(∞),ασ(i)〉 cannot coincide.

There are two types of 2–cells in L: those with 2 sides and those with 3. They

are defined as follows.

For every right coset Γ α such that Γ α = Γ ατ, we have a 2–sided 2–cell e2(Γ α)

which is π(α(E′)) with the usual orientation (induced by the positive orientation

of the complex plane). Since Γ α = Γ ατ, the image of the half-median 〈α(ρ),α(i)〉
is a line from the centre to the boundary of e2(Γ α). Thus,

∂e2(Γ α) = π(〈α(∞),α(i)〉+ 〈α(i),α(ρ)〉+ 〈α(ρ),α(1 + i)〉+ 〈α(1 + i),α(∞)〉)

= π(〈α(∞),α(i)〉)−π(〈α(∞),α(1 + i)〉) = e1(Γ α)−π(〈ατ2(∞),ατ2(1 + i)〉)

= e1(Γ α)−π(〈α(0),α(i)〉) = e1(Γ α)−π(〈ασ(∞),ασ(i)〉)

= e1(Γ α)− e1(Γ ασ) .

If Γ β is another right coset with the property that Γ βτ = Γ β and e2(Γ α) = e2(Γ β),

then Γ α = Γ β because E′ is a fundamental domain for SL2(Z) (see the proof of

proposition 1.10).

For every right coset Γ α such that Γ α , Γ ατ, we have a 3–sided 2–cell e2(Γ α)

which is π(α(E)) with the usual orientation (induced by the positive orientation

of the complex plane). In this case, the images of the three triangles α(E′), ατ(E′)

and ατ2(E′) are distinct and e2(Γ α) is their union. One checks easily that

∂e2(Γ α) =
2∑

j=0

[e1(Γ ατj)− e1(Γ ατjσ)] .

Since E′ is a fundamental domain for SL2(Z), e2(Γ β) = e2(Γ α) is only possible for

Γ β = Γ ατj with j ∈ {0,1,2 }: this is the only way to make β(E′) Γ –equivalent to

α(E′), ατ(E′) or ατ2(E′) (see the proof of proposition 1.10).

We have thus defined a cell complex L which is a triangulation of the surface

X(Γ ). Indeed, by proposition 1.10, the translates of E′ by the right cosets of

Γ in PSL2(Z) form a fundamental domain for Γ . Consequently, H1(X(Γ ),Z) is

isomorphic to the quotient of the group Z1(L) of 1–cycles of L by the group B1(L)

of 1–boundaries of L.

Let C1(L) be the group of 1–chains of the complex L. We are going to prove
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that the morphism

ϕ : C(Man(Γ )) −→ C1(L)

(α) 7−→ e1(Γ ασ)− e1(Γ α)

induces an injective morphism from Z(Man(Γ )) / B(Man(Γ )) to Z1(L) / B1(L) which

coincides with ξ.

First, observe that ϕ is well-defined. Indeed, for every Manin symbol (α),

ϕ((α) + (α)σ) = 0. Moreover, if (α) = (α)σ, Γ α = Γ ασ and so ϕ((α)) = 0 = ϕ((ασ)).

Second, we prove that ϕ is injective. Consider a 1–chain of Manin symbols

c =
∑
Γ α

n(α)(α)

(where the sum is over the right cosets of Γ in PSL2(Z)) and assume further that

this expression is normalised in the sense that n(α)n(ασ) = 0 for every Manin

symbol (α): we can do so in view of the relations (α) + (ασ) = 0 and (α) = 0 if

Γ α = Γ ασ in C(Man(Γ )). Then,

ϕ(c) =
∑
Γ α

n(α)[e1(Γ ασ)− e1(Γ α)] .

If c , 0, there is some Γ α such that n(α) , 0. In this case, Γ α , Γ ασ, which implies

that e1(Γ α) , e1(Γ ασ). Similarly, if Γ β is another right coset (distinct from Γ α)

with n(β) , 0, the 1–cells e1(Γ α), e1(Γ ασ), e1(Γ β) and e1(Γ βσ) are all distinct. As

a consequence, ϕ(c) , 0.

Third, ϕ preserves the boundaries. On the one hand, if (α) is a Manin symbol,

∂ϕ((α)) = π(ασ(i))−π(ασ(∞))−π(α(i)) +π(α(∞)) = π(α(∞))−π(α(0)) = ∂(α). In

particular, this means that ϕ(Z(Man(Γ ))) ⊆ Z1(L). On the other hand, B(Man(Γ ))

is generated by the elements (α) for the right cosets Γ α such that Γ α = Γ ατ and by

the elements (α) + (ατ) + (ατ2) for the right cosets Γ α such that Γ α , Γ ατ and, in

turn, B1(L) is generated by the elements ∂e2(Γ α) = −ϕ((α)) for the right cosets Γ α

such that Γ α = Γ ατ and by the elements ∂e2(Γ α) = −ϕ((α) + (ατ) + (ατ2)) for the

right cosets Γ α such that Γ α , Γ ατ. Thus, B1(L) = ϕ(B(Man(Γ ))) ⊆ ϕ(Z(Man(Γ ))).

All in all, ϕ induces a monomorphism ϕ̃ from Z(Man(Γ )) / B(Man(Γ )) to the

first homology group Z1(L) / B1(L) � H1(X(Γ ),Z). Finally, for every Manin symbol

(α), the 1–chain ϕ((α)) is homologous to the path corresponding to {α(0),α(∞)}.
That is to say, the boundary of the image under π of the (degenerate) triangle with
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vertices α(0), α(i) and α(∞) is ϕ((α)) +π(〈α(∞),α(0)〉). From this, we deduce that

ϕ((α)) + B1(L) = {α(0),α(∞)} in C1(L) / B1(L). Extending this result by linearity,

we obtain that ϕ̃ coincides with ξ.

The last result provides a purely algebraic description of the first homology

group H1(X(Γ ),Z) (in terms of generators and relations). If we focus on the case

in which Γ = Γ0(N), we can give an even simpler presentation.

Let A be a commutative ring with identity. Recall that the projective line P1
A

is the quotient of the set { (a,b) ∈ A×A : aA+bA = A} by the equivalence relation

∼ defined by (a,b) ∼ (λa,λb) for all λ ∈ A×. Thus, the elements of P1
A are of the

form (a : b) for a,b ∈ A with the property that the ideal generated by a and b is

the whole ring A (and with the convention that (a : b) = (λa : λb) for all λ ∈ A×;

these are projective coordinates).

Lemma 4.20. For j ∈ {1,2 }, let αj =
(
aj bj
cj dj

)
∈ SL2(Z). The following conditions are

equivalent:

(a) Γ0(N)α1 = Γ0(N)α2;
(b) c1d2 ≡ c2d1 (mod N);
(c) there exists λ ∈ Z with (λ,N) = 1 such that c1 ≡ λc2 and d1 ≡ λd2 (mod N).

Proof. We compute the matrix

α1α
−1
2 =

(
a1d2 − b1c2 b1a2 − a1b2
c1d2 − d1c2 d1a2 − c1b2

)
.

Looking at its entries, we see that α1α
−1
2 is an element of Γ0(N) if and only if

c1d2 − d1c2 ≡ 0 (mod N), which means that (a) and (b) are equivalent.

Now we prove that (a) =⇒ (c). Since α1α
−1
2 ∈ Γ0(N), the element λ = d1a2−c1b2

which appears in the diagonal of α1α
−1
2 must be prime to N (because (λ,N)

divides det(α1α
−1
2 ) = 1). Using (b), we deduce that

λc2 = a2d1c2 − b2c1c2 ≡ a2d2c1 − b2c2c1 = c1 (mod N)

and, similarly,

λd2 = a2d1d2 − b2c1d2 ≡ a2d2d1 − b2c2d1 = d1 (mod N) .

Finally, it is obvious that (c) =⇒ (b).
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Proposition 4.21. There is a bijection between the set of right cosets of Γ0(N) in
SL2(Z) and P1

Z / NZ given by

Γ0(N)
(
a b
c d

)
7−→ (c : d)

for all
(
a b
c d

)
∈ SL2(Z). (Equivalently, since −1 ∈ Γ0(N), this map gives a bijection

between the set of right cosets of Γ0(N) in PSL2(Z) and P1
Z / NZ.)

Proof. Lemma 4.20 implies that the map described in the statement of this

proposition is well-defined and injective, so we only need to prove that it is

surjective.

If (c : d) ∈ P1
Z / NZ, the greatest common divisor of c, d and N is 1 (that is to

say, the ideal generated by c + NZ and d + NZ is the whole Z / NZ). Moreover,

the integers c and d are only determined modulo N. Let M = (c,d) and write

c = Mc0 and d = Md0. Since (M,N) = 1, there exist x,y ∈ Z such that xM +yN = 1

(Bézout’s identity). In this situation,

(c : d) = (xc : xd) = (xc+ yNc0 : xd + yNd0) = (c0 : d0)

and (c0,d0) = 1 by definition. Again, there exist a,b ∈ Z such that ad0 − bc0 = 1

and so α =
(
a b
c0 d0

)
∈ SL2(Z). In conclusion, Γ0(N)α is mapped to (c : d).

One can now translate all the previous results expressed in terms of Manin

symbols to the set P1
Z / NZ and make all the computations there.

Definition 4.22. There is a right action of SL2(Z) on P1
Z / NZ given by

(c : d)α = (cp+ dr : cq+ ds)

for all (c : d) ∈ P1
Z / NZ and all α = (p q

r s ) ∈ SL2(Z).

The isomorphism described in theorem 4.19 can be expressed in terms of the

symbols (c : d) with the appropriate relations.





Chapter 5

Computations and examples

The previous chapter contains many allusions to the great importance of modular

symbols for computations related to the theory of modular forms and Hecke

operators. However, these computations have not been clearly exemplified, but

only briefly mentioned. This chapter addresses this gap by means of particular

examples and concrete computations.

In the first part of this chapter, we introduce an alternative presentation

of the spaces of modular symbols, which is more appropriate for practical

purposes, and relate it to the previous results. This leads to the discussion of

several algorithms to actually perform the theoretical constructions. Finally,

we compute the spaces of modular symbols for a couple of subgroups using

the Sage software [15], which implements more sophisticated versions of the

algorithms explained. The output of Sage is analysed in comparison with the

previous exposition in order to exemplify all the important constructions.

The exposition of the first part of this chapter is based mainly on Cremona’s

book [1]. In turn, the book [14] by Stein has been especially useful for the

examples and the concrete computations with Sage. (In fact, Stein is the lead

developer of Sage.)

5.1 Alternative presentation of modular symbols

In this section, we follow a different approach to define modular symbols in a way

which is more appropriate for computations. This offers a different perspective of

the theory of modular symbols and serves as a summary of the results developed

in chapter 4.

Definition 5.1. The space M of formal modular symbols is the free abelian group

generated by the formal symbols {r, s} for r, s ∈ P1
Q modulo the relations

{r, s}+ {s, t}+ {t, r} = 0

for all r, s, t ∈ P1
Q and modulo any torsion.

91
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Since we have defined M to be torsion-free, the relation {r, r}+ {r, r}+ {r, r} = 0

implies that {r, r} = 0 for all r ∈ P1
Q. Now, from the relation {r, r}+ {r, s}+ {s, r} = 0,

we deduce that {r, s}+ {s, r} = 0 for all r, s ∈ P1
Q.

The elements of M can be thought of as formal sums of paths between cusps

in H∗, by analogy with the definition of modular symbols given in chapter 4.

As a matter of fact, we are considering homotopy classes of paths and so, by

lemma 4.6, these are defined uniquely by their endpoints. The relations intro-

duced in the definition of M correspond to the concatenation of such paths.

Definition 5.2. We define a left action of GL+
2 (Q) on M given by

α{r, s} = {α(r),α(s)}

for all r, s ∈ P1
Q and all α ∈GL+

2 (Q) and extended linearly.

Let Γ be a congruence subgroup of SL2(Z).

Definition 5.3. The space M(Γ ) of (formal) modular symbols for Γ is the quotient

of M by the subgroup generated by the elements {r, s}−γ{r, s} for all r, s ∈ P1
Q and

all γ ∈ Γ and modulo any torsion.

Sometimes, the notation {r, s}Γ is used to refer to the image of a (formal)

modular symbol {r, s} in M(Γ ). However, we omit the subscript from the notation

as the context will make clear whether we are working with elements of M or

with elements of M(Γ ).

The group M(Γ ), along with the action of GL+
2 (Q) induced by the action of

the same group on M, satisfies all the properties of proposition 4.9. Hence, the

generators of M(Γ ) behave essentially in the same way as the modular symbols

for Γ presented in definition 4.7.

Definition 5.4. The space B(Γ ) of boundary symbols for Γ is the free abelian

group generated by C(Γ ). For each s ∈ P1
Q, we write {s} for the generator of B(Γ )

corresponding to Γ s, so {s} = {γ(s)} for all γ ∈ Γ .

Definition 5.5. The boundary map is the morphism

δ : M(Γ ) −→ B(Γ )

defined by δ({r, s}) = {s}−{r} for all {r, s} ∈M(Γ ) and extended linearly. The kernel

S(Γ ) of δ is the subspace of cuspidal modular symbols for Γ .
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Proposition 5.6. Let α1, . . . ,αm be a set of representatives of the right cosets of Γ in
PSL2(Z). Every {r, s} ∈M(Γ ) can be expressed as a Z–linear combination of the form

m∑
j=1

λj{αj(0),αj(∞)} .

Proof. We can write {r, s} = {0, s} − {0, r} and then proceed exactly as in the proof

of theorem 4.12 (using continued fractions).

Lemma 5.7. The morphism

ψ : Man(Γ ) −→M(Γ )

(α) 7−→ {α(0),α(∞)}

induces an isomorphism between C(Man(Γ )) / B(Man(Γ )) and M(Γ ) and also an iso-
morphism between Z(Man(Γ )) / B(Man(Γ )) and S(Γ ).

Proof. First, we observe that ψ is well-defined. Let (α) be a Manin symbol. Since

in M(Γ ) we have that {α(0),α(∞)} = {±γα(0),±γα(∞)} for all γ ∈ Γ , the modular

symbol ψ((α)) = {α(0),α(∞)} does not depend on the representative α of the right

coset Γ α. Furthermore, proposition 5.6 implies that ψ is surjective.

On the one hand, the quotient C(Man(Γ )) / B(Man(Γ )) is Man(Γ ) modulo the

relations (α) + (ασ) = 0, (α) = 0 if Γ α = Γ ασ, (α) + (ατ) + (ατ2) = 0 and (α) = 0

if Γ α = Γ ατ. On the other hand, the analogous relations α{0,∞}+ασ{0,∞} = 0,

α{0,∞} = 0 if Γ α = Γ ασ, α{0,∞} + ατ{0,∞} + ατ2{0,∞} = 0 and α{0,∞} = 0 if

Γ α = Γ ατ hold in M(Γ ) (see the beginning of section 4.3). Therefore, ψ induces

an epimorphism ψ̂ : C(Man(Γ )) / B(Man(Γ ))→M(Γ ). Similarly, ψ induces an epi-

morphism ψ̃ : Z(Man(Γ )) / B(Man(Γ ))→ S(Γ ) because ψ preserves the boundaries,

in the sense that δ(ψ((α))) = ∂(α) for every Manin symbol (α).

Recall that in the last part of the proof of theorem 4.19 we used a mono-

morphism ϕ : C(Man(Γ ))→ C1(L). We proved that ϕ(B(Man(Γ ))) = B1(L) and so

ϕ induces a monomorphism ϕ̂ : C(Man(Γ )) / B(Man(Γ ))→ C1(L) / B1(L). And, for

every Manin symbol (α), ϕ̂((α) + B(Man(Γ ))) coincides with the homology class

of the projection in X(Γ ) of a path from α(0) to α(∞), which was represented as

{α(0),α(∞)} in chapter 4. Since those modular symbols (defined in terms of the

homology of X(Γ )) satisfy all the relations which are satisfied by the elements

of M(Γ ) (by proposition 4.9), ψ̂ factors over ϕ̂. That is, we can express ϕ̂ = f ◦ ψ̂,

where f is the natural morphism which maps (formal) modular symbols to
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homology classes of the corresponding paths. Therefore, ψ̂ must be injective. As

a consequence, the restriction ψ̃ of ψ̂ is also injective.

Theorem 5.8. The natural morphism

φ : M(Γ ) −→ H1(X(Γ ),C(Γ ),Z) ,

which maps a (formal) modular symbol {r, s} to the homology class {r, s} (in the sense of
definition 4.7) of the projection in X(Γ ) of a path from r to s in H∗, is an isomorphism.
Moreover, φ induces a canonical isomorphism ξ′ between S(Γ ) and H1(X(Γ ),Z).

Proof. As we observed in the proof of lemma 5.7, proposition 4.9 implies that φ

is well-defined.

First we are going to prove that ξ′ is an isomorphism using theorem 4.19.

Then, we are going to use this fact in order to prove that φ is also an isomorphism.

Let ψ̂ : C(Man(Γ )) / B(Man(Γ ))→M(Γ ) and ψ̃ : Z(Man(Γ )) / B(Man(Γ ))→ S(Γ )

be the two isomorphisms described in lemma 5.7. The composition ξ′ ◦ ψ̃ is

precisely the isomorphism ξ : Z(Man(Γ )) / B(Man(Γ ))→ H1(X(Γ ),Z) described in

theorem 4.19. Therefore, ξ′ is an isomorphism.

Recall that the relative homology is the homology of a quotient of chain

complexes and so there is a long exact sequence

· · · Hp(C(Γ ),Z) Hp(X(Γ ),Z) Hp(X(Γ ),C(Γ ),Z)

Hp−1(C(Γ ),Z) · · · · · · H0(X(Γ ),C(Γ ),Z) 0

induced by the short exact sequence of chain complexes. We are only interested

in the last part of the long exact sequence. Since C(Γ ) is a finite set of points

(with the discrete topology), H1(C(Γ ),Z) = 0 and H0(C(Γ ),Z) � Z|C(Γ )|. In addition,

H0(X(Γ ),Z) � Z and H0(X(Γ ),C(Γ ),Z) = 0 because X(Γ ) is path-connected and

C(Γ ) , ∅. Hence, there is an exact sequence

0 H1(X(Γ ),Z) H1(X(Γ ),C(Γ ),Z) Z|C(Γ )| Z 0
i1 ∆ Σ

given by the previous long exact sequence. Here, i1 is the morphism induced by

the inclusion of C(Γ ) in X(Γ ). The connecting morphism ∆ maps the homology

class of a closed path or a path with endpoints in C(Γ ) to its boundary; we

identify H0(C(Γ ),Z) (which is the free abelian group generated by C(Γ )) with

Z|C(Γ )|. Finally, the morphism Σ maps a formal Z–linear combination of the
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elements of C(Γ ) to the sum of its coefficients (i.e., its degree) because this

corresponds to the morphism induced by the inclusion of C(Γ ) in X(Γ ) (all the

points of X(Γ ) are equivalent in H0(X(Γ ),Z)).

In view of our definition of S(Γ ), we can define an exact sequence

0 S(Γ ) M(Γ ) B(Γ ) Z 0i δ deg

resembling the previous one. Here, i is the inclusion morphism and deg is the

morphism which maps a formal Z–linear combination of the elements of C(Γ )

to the sum of its coefficients (i.e., its degree). We only need to check that deg is

surjective and that the image of δ is precisely the kernel of deg. On the one hand,

for each n ∈ Z, deg(n{∞}) = n. Thus, deg is surjective. On the other hand, for

every modular symbol {r, s}, deg(δ({r, s})) = deg({s} − {r}) = 1− 1 = 0. Conversely,

an element of the kernel of deg is of the form {s1}+ · · ·+ {sn} − {r1} − · · · − {rn} and

this is the image of {r1, s1}+ · · ·+ {rn, sn} under δ.

Actually, those two exact sequences are roughly the same. Specifically, the

diagram

0 S(Γ ) M(Γ ) B(Γ ) Z 0

0 H1(X(Γ ),Z) H1(X(Γ ),C(Γ ),Z) Z|C(Γ )| Z 0

i

ξ′

δ

φ

deg

�

i1 ∆ Σ

is commutative and has exact rows. Moreover, the morphisms in the columns

are all isomorphisms except for possibly φ. Therefore, by the five lemma (from

homological algebra), we conclude that φ must be an isomorphism too.

As mentioned before, this presentation is very suitable for computations.

For instance, many algorithms to compute the short exact sequence of modular

symbols appearing in the proof of theorem 5.8 are implemented in Sage. The

importance of modular symbols lies in part in the fact that S(Γ ) is a module

on which the Hecke algebra acts in a quite simple way. Thus, one can study

properties of the Hecke operators by means of their action on modular symbols

and then translate the results to the theory of modular forms.

From now on, we fix N ∈ N and focus on the case in which Γ = Γ0(N), so that

we can use the results of chapter 3 as well.
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Definition 5.9. Let n ∈ N. We define the action of the n–th Hecke operator on

M(Γ0(N)), T(n) : M(Γ0(N))→M(Γ0(N)), as follows: for all {r, s} ∈M(Γ0(N)),

T(n){r, s} =
∑
a,b,d

(
a b
0 d

)
{r, s} ,

where the sum is over the triples of integers a, b and d such that a ≥ 1, (a,N) = 1,

ad = n and 0 ≤ b < d, and this is extended by linearity.

We observe that this definition of Hecke operators on (formal) modular

symbols coincides with definition 4.5 (up to the isomorphism described in

theorem 5.8). Let f ∈ S2(Γ0(N)) and let r, s ∈ P1
Q. By lemma 3.31, we have that

T(n)f (z) =
∑
a,b,d

a
d
f

(
az + b
d

)
.

On the other hand, for every α ∈GL+
2 (Q),∫ s

r
f |[α]

2 dz =
∫ s

r
f (α(z))dα(z) =

∫ α(s)

α(r)
f (z)dz .

That is why the action of T(n) on modular symbols is defined using the same

matrices as the action of T(n) on modular forms. Consequently, T(n) acts on

S(Γ0(N)) (because it acts on S2(Γ0(N))).

It is often useful to combine modular symbols and Manin symbols. On the

one hand, by proposition 4.21, every Manin symbol for Γ0(N) can be identi-

fied with an element (c : d) of P1
Z / NZ. On the other hand, lemma 5.7 gives us

an explicit isomorphism between M(Γ0(N)) and C(Man(Γ0(N))) / B(Man(Γ0(N))).

Combining these results, we can identify M(Γ0(N)) with the free abelian group

generated by P1
Z / NZ modulo the relations

(c : d) + (−d : c) = 0 and (c : d) + (c+ d : −c) + (d : −c − d) = 0

for all (c : d) ∈ P1
Z / NZ (these are the relations given by the matrices σ and τ) and

modulo any torsion.

With this interpretation, the boundary of a Manin symbol (c : d) can be

computed as follows: we build a matrix
(
a b
c0 d0

)
∈ SL2(Z) such that (c : d) = (c0 : d0)

as in the proof of proposition 4.21 and then δ((c : d)) =
{
a
c0

}
−
{
b
d0

}
. To compute δ,

we need a criterion to know whether two cusps are Γ0(N)–equivalent.
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Lemma 5.10. For j ∈ {1,2 }, let vj =
pj
qj

, where pj ,qj ∈ Z with (pj ,qj) = 1. The
following conditions are equivalent:

(a) v2 = γ(v1) for some γ ∈ Γ0(N);
(b) there exists λ ∈ Z with (λ,N) = 1 such that q2 ≡ λq1 and λp2 ≡ p1 (mod N);
(c) there exist s1, s2 ∈ Z satisfying that s1p1 ≡ 1 (mod q1), s2p2 ≡ 1 (mod q2) and

s1q2 ≡ s2q1 (mod (q1q2,N)).

Proof. First we check that (a) =⇒ (b). Suppose that γ =
(

a b
Nc d

)
and γ(v1) = v2.

Since (p1,q1) = 1 and γ is invertible,

v2 = γ(v1) =
ap1 + bq1

Ncp1 + dq1

is written in lowest terms. Hence, p2 = ±(ap1 + bq1) and q2 = ±(Ncp1 + dq1). In

particular, we can choose λ = ±d so that λq1 ≡ q2 and λp2 ≡ p1 (mod N).

Now we prove that (b) =⇒ (a). Let D = (q1,N) = (q2,N) (the two greatest com-

mon divisors are the same because q2 ≡ λq1 (mod N)). Consider x1, y1,x2, y2 ∈ Z
such that x1p1−y1q1 = x2p2−y2q2 = 1 (Bézout’s identity). By hypothesis, we have

that λp2 ≡ p1 (mod D), so λx1 ≡ λp2x2x1 ≡ p1x1x2 ≡ x2 (mod D). And, since

(λ,N) = 1, the equation λq1
D X ≡ λx1−x2

D (mod N
D ) has a solution, which implies

that there exists µ ∈ Z such that µλq1 ≡ λx1 − x2 (mod N). Define s1 = x1 − µq1,

r1 = y1 −µp1, s2 = x2 and r2 = y2, so that pjsj − qjrj = 1 for j ∈ {1,2 }. In particular,(pj rj
qj sj

)
∈ SL2(Z). Since λq1 ≡ q2 and λs1 ≡ s2 (mod N), lemma 4.20 asserts that

there exists a matrix γ ∈ Γ0(N) such that
(
p2 r2
q2 s2

)
= γ

(
p1 r1
q1 s1

)
. Furthermore, observe

that
(pj rj
qj sj

)
∞ = vj for j ∈ {1,2 }. Consequently, v2 = γ(v1).

Let us prove that (a) =⇒ (c). As before, we can choose r1, r2, s1, s2 ∈ Z such

that p1s1 − q1r1 = p2s2 − q2r2 = 1 and γ = α2α
−1
1 ∈ Γ0(N), where αj =

(pj rj
qj sj

)
. One

checks easily that γ ∈ Γ0(N) if and only if q2s1 − q1s2 ≡ 0 (mod N).

Finally, we have to prove that (c) =⇒ (a). Again, consider r1, r2 ∈ Z such

that p1s1 − q1r1 = p2s2 − q2r2 = 1. Define αj =
(pj rj
qj sj

)
for j ∈ {1,2 } and γ = α2α

−1
1 ,

which satisfies that γ(v1) = v2. As before, γ ∈ Γ0(N) if and only if q2s1 − q1s2 ≡ 0

(mod N). This is not necessarily the case. But we can replace s1 with a number

of the form s′1 = s1 + xq1 (and, similarly, r1 with r ′1 = r1 + xp1) and obtain thus

a matrix γ′ with the same properties. In particular, γ′ ∈ Γ0(N) if and only if

q2s1 − q1s2 + xq1q2 ≡ 0 (mod N). And the equation q1q2X ≡ q1s2 − q2s1 (mod N)

has a solution: if D = (q1q2,N), q1s2 − q2s1 ≡ 0 (mod D) (by hypothesis) and the

equation q1q2
D X ≡ q1s2−q2s1

D (mod N
D ) has a solution.
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This technical lemma provides a way to verify if an element of M(Γ0(N))

belongs to S(Γ0(N)).

5.2 Ideas for the algorithms

This section explains some algorithms which are obtained adapting the proofs

of the previous results. The main objective of the section is neither to provide a

fully detailed description of these algorithms nor to study the implementation

details in depth, but to convey the idea that the constructions described before

can actually be implemented in a computer. In particular, we do not strive for

obtaining the best known algorithms and the algorithms are explained in a quite

informal way (with no pseudocode).

Conversions between modular symbols and Manin symbols. As explained

at the end of the previous section, lemma 5.7 allows us to identify the elements

of M(Γ0(N)) with the elements of the free abelian group generated by P1
Z / NZ

modulo the relations (c : d) + (−d : c) = 0 and (c : d) + (c + d : −c) + (d : −c − d) = 0

for all (c : d) ∈ P1
Z / NZ and modulo any torsion. What is more, the conversions

between the two representations (i.e., using modular symbols or using Manin

symbols) can be performed algorithmically.

On the one hand, an element of M(Γ0(N)) is a Z–linear combination of

modular symbols {r, s} with r, s ∈ P1
Q. By proposition 5.6, each modular sym-

bol {r, s} ∈ M(Γ0(N)) can be expressed as a Z–linear combination of modular

symbols of the form α{0,∞} with α ∈ SL2(Z): to do so, one only has to write

{r, s} = {0, s} − {0, r} and then compute the successive convergents of the (finite)

continued fraction representations of r and s in order to use Manin’s trick, as

in the proof of theorem 4.12. Finally, if α =
(
a b
c d

)
, the modular symbol α{0,∞}

corresponds to the Manin symbol (c : d), by lemma 5.7 and proposition 4.21.

On the other hand, given a Manin symbol (c : d) ∈ P1
Z / NZ, we can find a matrix

α =
(
a b
c0 d0

)
∈ SL2(Z) such that (c0 : d0) = (c : d) by computing a greatest common

divisor and a pair of Bézout coefficients, as in the proof of proposition 4.21. In

this case, lemma 5.7 implies that the Manin symbol (c : d) corresponds to the

modular symbol
{
b
d0
, a
c0

}
.

Computing a basis of M(Γ0(N)). The space M(Γ0(N)) is a free Z–module and so

it has a basis, which we can compute using Manin symbols.
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Lemma 4.20 gives a criterion to determine whether two Manin symbols are

the same. Using it, we can make a list of inequivalent Manin symbols for Γ0(N)

as follows. First, we list the symbols (c : 1) with 0 ≤ c < N; then, the symbols

(1 : d) with 0 ≤ d < N and (d,N) > 1; finally, a set of pairwise inequivalent

symbols (c : d) with c
∣∣∣ N, c < {1,N }, (c,d) = 1 and (d,N) > 1. By condition (b) of

lemma 4.20, it is clear that these Manin symbols are all inequivalent. Moreover,

one checks that every Manin symbol is of one of these forms. Indeed, every

Manin symbol has a representative (c0 : d0) with (c0,d0) = 1. If (d0,N) = 1, there

is a multiplicative inverse d−1
0 of d0 (mod N) and so (c0 : d0) = (d−1

0 c0 : 1). If

(d0,N) , 1 but (c0,N) = 1, there is a multiplicative inverse c−1
0 of c0 (mod N) and

so (c0 : d0) = (1 : c−1
0 d0). Otherwise, we consider c = (c0,N) and write c0 = cx and

N = cn. Since (x,n) = 1, there exists y ∈ Z such that xy ≡ 1 (mod n); in fact, we

can choose λ ∈ Z such that λx ≡ 1 (mod n) and (λ,N) = 1 (because the projection

(Z / NZ)×� (Z / nZ)× is surjective). Therefore, we can define d = λd0 and we have

that (c0 : d0) = (λc0 : λd0) = (c : d) with c
∣∣∣ N, c < {1,N }, (c,d) = 1 and (d,N) > 1.

Having a list of inequivalent Manin symbols, we take into account the rela-

tions of the forms (c : d) + (−d : c) = 0 and (c : d) + (c + d : −c) + (d : −c − d) = 0 in

order to obtain a basis from this (finite) set of generators. For instance, this can

be done by representing these relations as the columns of a matrix whose rows

are indexed by the generators and then computing the Smith normal form of

that matrix (there is an algorithm, which is very similar to Gaussian elimination,

to compute the Smith normal form of a matrix).

Computing a basis of S(Γ0(N)). The space S(Γ0(N)) is the kernel of the boundary

map δ : M(Γ0(N)) → B(Γ0(N)). Hence, we need to compute the images of the

elements of the previously obtained basis of M(Γ0(N)) under δ.

Recall that lemma 5.10 gives a criterion to determine whether two cusps

are Γ0(N)–equivalent. This is enough to compute the boundary map without

computing a basis of B(Γ0(N)) in advance. Instead, we can keep a cumulative list

of the cusps found so far, so that each cusp encountered while computing δ is

checked for equivalence with those already in the list and is added to the list if

it corresponds to a new equivalence class of cusps.

Using the previous trick to compute the Γ0(N)–equivalence classes of cusps

while computing the image of a basis of M(Γ0(N)) under δ, we can compute

a matrix with integer entries for the linear map δ. Then, we can compute its

Hermite normal form (with an algorithm which is very similar to Gaussian
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elimination) and obtain thus a basis of S(Γ0(N)).

Computing a basis of S2(Γ0(N)) using Hecke operators. Proposition 4.2 gives

an isomorphism of complex vector spaces between S2(Γ0(N)) and HomC(TC,C),

where TC is the complex vector space generated by the Hecke operators acting

on S2(Γ0(N)). We can use this isomorphism to compute a basis of S2(Γ0(N)).

Moreover, proposition 4.3 provides a method to obtain the q–expansion of a

cusp form from the corresponding element of HomC(TC,C).

Hecke operators can be regarded as linear maps acting on S(Γ0(N)), which is

a free Z–module of rank 2g (where g is the genus of X0(N)). Therefore, we can

compute a matrix giving the action of any Hecke operator with respect to the

previously computed basis of S(Γ0(N)). To do so, we express an element of the

basis (computed using Manin symbols) as a sum of modular symbols, compute

the action of the Hecke operator on each of these modular symbols by definition

and express the resulting modular symbols in terms of Manin symbols. With

this procedure, we obtain the 2g × 2g matrix of the Hecke operator.

There are alternative approaches to compute these matrices directly with

Manin symbols. For instance, Cremona’s book [1] explains how to use what

are known as Heilbronn matrices to compute the action of Hecke operators on

Manin symbols and describes an algorithm to compute them: for each prime p

such that p
∣∣∣- N, there is a set of Heilbronn matrices of level p which act (on the

right) on a Manin symbol in the same way as the Hecke operator T(p) acts on

the corresponding modular symbol. The proof of the fact that these Heilbronn

matrices correspond to the action of the Hecke operators is adapted from Merel’s

paper [6], where Heilbronn matrices are introduced in a more general setting. In

his paper [6], Merel also presents several other families of matrices which are

useful in more general contexts.

Since the action of a Hecke operator T(n) on S2(Γ0(N)) is dual to the action

of T(n) on S(Γ0(N))⊗ZR (up to the isomorphisms described in theorem 4.4 and

in theorem 5.8), we can use the matrices of Hecke operators acting on S(Γ0(N)),

obtained with the procedure explained before, to describe TC.

Let [T(n)] be the 2g × 2g matrix associated with T(n) (with respect to the

previously computed basis of S(Γ0(N))). The operator [ · ] defines a linear map

which embeds TC in the space of 2g × 2g matrices. If A is a 2g × 2g matrix,

we write aij(A) for the entry in the i–th row and the j–th column of A for all

i, j ∈ {1, . . . ,2g }. Since the linear maps aij(·) for i, j ∈ {1, . . . ,2g } form a basis of the
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dual space of the vector space of 2g × 2g matrices and we can view HomC(TC,C)

as a subspace of this dual space, the induced linear maps aij(·) for i, j ∈ {1, . . . ,2g }
defined on TC (by restriction) generate HomC(TC,C).

In conclusion, we can compute the q–expansions of the elements of a basis of

S2(Γ0(N)) to precision O(qB+1) for B ∈ N as follows. By proposition 4.3, we can

define cusp forms fij given by the q–expansions

(̂fij)∞(q) =
B∑

n=1

aij([T(n)])qn + O(qB+1)

for all i, j ∈ {1, . . . ,2g }. The arguments exposed in the previous paragraph imply

that these fij for i, j ∈ {1, . . . ,2g } generate S2(Γ0(N)). Hence, we only need to

choose g linearly independent cusp forms amongst these. We can use Gaussian

elimination with the first B coefficients of the q–expansions of these cusp forms in

order to obtain a basis (if B is large enough, we are going to be able to distinguish

when two of these cusp forms are distinct). Observe that, with this algorithm,

we obtain a basis of cusp forms of weight 2 for Γ0(N) with integral Fourier

coefficients: this is just one example of a non-trivial result which can be obtained

as a direct consequence of the results from the theory of modular symbols.

Similarly, using the fact that the matrices [T(n)] for n ∈ N have integer entries,

we deduce that the eigenvalues of the Hecke operators are algebraic integers

and that the q–expansions of the normalised Hecke eigenforms in S2(Γ0(N)) are

algebraic over Q.

Theorem 5.11. There exists a basis of S2(Γ0(N)) consisting of forms whose Fourier
coefficients are integers.

Theorem 5.12. For every n ∈ N, the eigenvalues of the Hecke operator T(n) (regarded
as an endomorphism of S2(Γ0(N))) are algebraic integers.

As a matter of fact, one could obtain a basis of S2(Γ0(N)) consisting of Hecke

eigenforms with similar methods using modular symbols. In this case, though,

one needs to combine the theory of modular symbols with the theory of oldforms

and newforms (also known as Atkin–Lehner theory). One defines what are

known as degeneracy maps between S(Γ0(N)) and S(Γ0(M)) for the divisors M of

N and uses them to identify the subspace of S(Γ0(N)) formed of cuspidal modular

symbols arising from lower levels (i.e., the subspace corresponding to oldforms).

We do not go into further detail here.
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5.3 Modular symbols for Γ0(23)

We exemplify the algorithms and computations explained before for Γ0(23) using

Sage [15]. This is a quite simple example because, as we are going to see later,

the genus of X0(23) is 2 and the dimension of all the relevant spaces is small.

We define the space M(Γ0(23)) in Sage as follows:

sage: G=Gamma0(23) ; G

Congruence Subgroup Gamma0(23)

sage: M=ModularSymbols(G) ; M

Modular Symbols space of dimension 5 for

Gamma_0(23) of weight 2 with sign 0 over

Rational Field

In fact, Sage works with the rational vector space M(Γ0(23))⊗ZQ by default. We

can compute the Manin symbols for Γ0(23) (that is, the elements of P1
Z / 23Z) with

the following command:

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4),

(1,5), (1,6), (1,7), (1,8), (1,9), (1,10),

(1,11), (1,12), (1,13), (1,14), (1,15),

(1,16), (1,17), (1,18), (1,19), (1,20),

(1,21), (1,22)]

Sage does not use the set of representatives which we described in the previous

section, but another one which is analogous. In this case, there are no Manin

symbols (c : d) with c , 1 and d , 1 because 23 is prime.

We can express a Manin symbol as a modular symbol and vice versa as

explained in the previous section. We reproduce those computations for a

concrete case:

sage: mansymb=M.manin_generators()[10]

sage: mansymb.lift_to_sl2z()

[0, -1, 1, 9]

sage: mansymb.modular_symbol_rep()

{-1/9, 0}

sage:

modsymb=sage.modular.modsym.modular_symbols.

ModularSymbol(M,0,0,2/5) ; modsymb
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{0, 2/5}

sage: convergents(2/5)

[0, 1/2, 2/5]

sage: modsymb.manin_symbol_rep()

(-5,2) + (2,1)

The first part shows that the Manin symbol (1 : 9) corresponds to the right coset

Γ0(23)
(

0 −1
1 9

)
and so to the modular symbol

{
−1

9 ,0
}
. Analogously, the computation

of the second part implies (using Manin’s trick) that the modular symbol
{
0, 2

5

}
can be expressed as{

0,
1
2

}
+
{1

2
,
2
5

}
=

(
1 0
2 1

)
{0,∞}+

(
−2 1
−5 2

)
{0,∞}

and so corresponds to (2 : 1) + (−5 : 2).

Nevertheless, we are only interested in expressing the elements of M(Γ0(23))

in terms of a fixed basis. The command M.manin_basis returns a list of indices

of the Manin symbols which form a basis of M(Γ0(23))⊗ZQ. Alternatively, one

can ask Sage to compute the basis directly.

sage: M.manin_basis()

[1, 18, 20, 21, 22]

sage: [M.manin_generators()[i] for i in

M.manin_basis()]

[(1,0), (1,17), (1,19), (1,20), (1,21)]

sage: M.basis()

((1,0), (1,17), (1,19), (1,20), (1,21))

We can also switch between Manin symbols and modular symbols and express a

Manin symbol in terms of the elements of the basis:

sage: set_modsym_print_mode(’modular’)

sage: M.basis()

({Infinity, 0}, {-1/17, 0}, {-1/19, 0}, {-1/20,

0}, {-1/21, 0})

sage: M((2,5))

-{-1/19, 0} + {-1/20, 0} - {-1/21, 0}

sage: set_modsym_print_mode(’manin’)

sage: M.basis()

((1,0), (1,17), (1,19), (1,20), (1,21))
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sage: M((2,5))

-(1,19) + (1,20) - (1,21)

We can express an element of M(Γ0(23)) as a linear combination of the elements

of the computed basis. Conversely, given a vector, we can compute easily the

corresponding element of M(Γ0(23)) in terms of Manin symbols.

sage: u=(4,2,1,0,5)

sage: z=M(sum(u[i]*M.basis()[i] for i in

xrange(5))) ; z

4*(1,0) + 2*(1,17) + (1,19) + 5*(1,21)

sage: M.coordinate_vector(z)

(4, 2, 1, 0, 5)

To find a basis of S(Γ0(23)), we need to compute the boundary map δ (and,

simultaneously, compute C0(23) in order to study the image of δ in B(Γ0(23)), as

explained in the previous section).

sage: M.boundary_map()

Hecke module morphism boundary map defined by

the matrix

[ 1 -1]

[ 0 0]

[ 0 0]

[ 0 0]

[ 0 0]

Domain: Modular Symbols space of dimension 5

for Gamma_0(23) of weight ...

Codomain: Space of Boundary Modular Symbols for

Congruence Subgroup Gamma0(23) ...

sage:

delta=M.boundary_map().matrix().transpose()

; delta

[ 1 0 0 0 0]

[-1 0 0 0 0]

By default, Sage outputs the transpose of the matrix of a linear map. In this

case, we see that the last four elements of the basis of M(Γ0(23)) form a basis of

S(Γ0(23)) (which is the kernel of δ). In general, we can compute it with Sage as

follows:
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sage: S=M.cuspidal_submodule()

sage: S.basis()

((1,17), (1,19), (1,20), (1,21))

We obtain that the Manin symbols (1 : 17), (1 : 19), (1 : 20) and (1 : 21) form a

basis of S(Γ0(23)). In general, the elements of a basis of a subspace of cuspidal

modular symbols are not necessarily Manin symbols, but formal sums of Manin

symbols.

Now we can compute the action of some Hecke operators on S(Γ0(23)) and

use it to determine the first coefficients of the q–expansions of the elements of a

basis of S2(Γ0(23)).

The matrices of the Hecke operators with respect to the basis of S(Γ0(23))

which we have computed can be obtained in the following way:

sage: S.T(2)

Hecke operator T_2 on Modular Symbols subspace

of dimension 4 of Modular Symbols space of

dimension 5 for Gamma_0(23) of weight 2 with

sign 0 over Rational Field

sage: T2=S.T(2).matrix().transpose() ; T2

[ 0 0 -1 -1]

[ 1 1 2 1]

[-1 -1 -2 0]

[ 0 1 1 -1]

sage: T3=S.T(3).matrix().transpose() ; T3

[-1 0 2 2]

[-2 -3 -4 -2]

[ 2 2 3 0]

[ 0 -2 -2 1]

Let us check that these are in fact the desired matrices:

sage: e2=S.basis()[1] ; e2

(1,19)

sage: fe2=S.T(2)(e2) ; fe2

(1,19) - (1,20) + (1,21)

sage: S.coordinate_vector(fe2)

(0, 1, -1, 1)

sage: T2*S.coordinate_vector(e2)
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(0, 1, -1, 1)

sage: S.coordinate_vector(S.T(3)(e2))==

T3*S.coordinate_vector(e2)

True

sage: T2*T3-T3*T2==0

True

Now we compute the q–expansions of 2 linearly independent elements of

S2(Γ0(23)) up to precision O(q6) (this is going to be a basis) using the algorithm

explained in the previous section:

sage: R.<q>=PowerSeriesRing(QQ)

sage: f00=sum(S.T(n).matrix()[0,0]*q^n for n in

xrange(1,6))+O(q^6) ; f00

q - q^3 - q^4 + O(q^6)

sage: f01=sum(S.T(n).matrix()[1,0]*q^n for n in

xrange(1,6))+O(q^6) ; f01

O(q^6)

sage: f10=sum(S.T(n).matrix()[0,1]*q^n for n in

xrange(1,6))+O(q^6) ; f10

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)

We have computed the first 5 coefficients of the q–expansions of the three ele-

ments f00, f01, f10 ∈ S2(Γ0(23)). It is clear that f00 and f10 are linearly independent

and, consequently, f01 = 0. In conclusion, the complex vector space S2(Γ0(23))

has a basis consisting of the cusp forms f00 and f10, whose q–expansions are

�(f00)∞(q) = q − q3 − q4 + O(q6) and �(f10)∞(q) = q2 − 2q3 − q4 + 2q5 + O(q6) .

Alternatively, the command S.q_expansion_cuspforms returns a function f

such that f(i,j) is the q–expansion of fij to some precision. (In fact, Sage

uses the matrices of the Hecke operators acting on a basis of the dual space of

S(Γ0(23)) and so obtains another basis.)

sage: f=S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 +

O(q^6)

sage: f(0,1)

O(q^6)
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sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)

Another possibility is to use the command S.q_expansion_basis, which returns

a basis in echelon form:

sage: S.q_expansion_basis(6)

[

q - q^3 - q^4 + O(q^6)

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)

]

In this particular case, we can also use the structure of S2(Γ0(23)) to compute

a different basis. Since 23 is prime, there are no oldforms (i.e., cusp forms

arising from lower levels dividing 23). Moreover, the space of newforms (which

is the whole S2(Γ0(23))) decomposes as the direct sum of two one-dimensional

eigenspaces: let us check it.

sage: T2.charpoly().factor()

(x^2 + x - 1)^2

The characteristic polynomial of [T(2)] is (X2 +X−1)2. Its roots, −1+
√

5
2 and −1−

√
5

2 ,

are defined in the quadratic field K = Q(
√

5). Therefore, we can compute an

eigenvector with coefficients in K for each of these two eigenvalues:

sage: K.<sqrt5>=NumberField(x^2-5) ; K

Number Field in sqrt5 with defining polynomial

x^2 - 5

sage: T2ext=matrix(K,T2) ; T2ext

[ 0 0 -1 -1]

[ 1 1 2 1]

[-1 -1 -2 0]

[ 0 1 1 -1]

sage: T2ext.charpoly().factor()

(x - 1/2*sqrt5 + 1/2)^2 * (x + 1/2*sqrt5 +

1/2)^2

sage: T2ext.eigenvectors_right()

[

(1/2*sqrt5 - 1/2, [

(1, 0, 1/2*sqrt5 - 3/2, -sqrt5 + 2),

(0, 1, 1/2*sqrt5 - 3/2, -1/2*sqrt5 + 3/2)
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], 2),

(-1/2*sqrt5 - 1/2, [

(1, 0, -1/2*sqrt5 - 3/2, sqrt5 + 2),

(0, 1, -1/2*sqrt5 - 3/2, 1/2*sqrt5 + 3/2)

], 2)

]

sage: u1=T2ext.eigenvectors_right()[0][1][0] ;

u1

(1, 0, 1/2*sqrt5 - 3/2, -sqrt5 + 2)

sage: u2=T2ext.eigenvectors_right()[1][1][0] ;

u2

(1, 0, -1/2*sqrt5 - 3/2, sqrt5 + 2)

The two eigenvectors (with distinct eigenvalues) u1 and u2 of the matrix [T(2)]

correspond to eigenforms of the Hecke operator T(2) acting on S2(Γ0(23)) (be-

cause Hecke operators are defined using the same set of matrices on S2(Γ0(23))

and on S(Γ0(23))). Since the Hecke operators commute, every T(n) (for n ∈ N)

preserves the eigenspaces of T(2). In particular, since the eigenspaces of T(2) are

one-dimensional, u1 and u2 correspond to eigenforms of all the Hecke operators.

Moreover, since the matrices [T(n)] have integer entries and the components of

u1 and of u2 are in K, the eigenvalues of T(n) are in K for all n ∈ N. These eigen-

values are the Fourier coefficients of the corresponding eigenform. Indeed, since

the first component of both u1 and u2 is 1, we can define for i ∈ {1,2 } the element

ûi of HomC(TC,C) which maps a Hecke operator T(n) to the first component

of [T(n)]ui (which is the corresponding eigenvalue of T(n)); by proposition 4.3,

the coefficients of the q–expansion of the associated cusp form are given by the

images of the Hecke operators under ûi . Therefore, all the computations can be

performed in the field K. (A similar argument shows that, in general, the Fourier

coefficients of a normalised eigenform of all the Hecke operators are defined in a

finite extension of Q.)

Having argued that we can compute a basis of eigenforms with Fourier

coefficients in K, we can use Sage to actually perform all the computations. To

do so, we need to define M(Γ0(23))⊗Z K and all the associated objects obtained

by extension of scalars:

sage: R.<q>=PowerSeriesRing(K)

sage: Mext=ModularSymbols(G,base_ring=K) ; Mext

Modular Symbols space of dimension 5 for
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Gamma_0(23) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5

sage: Sext=Mext.cuspidal_submodule()

sage: Sext.basis()

((1,17), (1,19), (1,20), (1,21))

sage: Sext.T(2).matrix().transpose()==T2ext

True

Since K is a totally real field, not only are the cusp forms associated with u1

and u2 eigenforms, but also u1 and u2 are eigenvectors of the matrices [T(n)] for

n ∈ N (recall that the isomorphism between S(Γ0(23))⊗Z R and S2(Γ0(23)) is an

isomorphism of real vector spaces). We check it for some cases:

sage: T3ext=Sext.T(3).matrix().transpose()

sage: T5ext=Sext.T(5).matrix().transpose()

sage: T3ext*u1

(-sqrt5, 0, 3/2*sqrt5 - 5/2, -2*sqrt5 + 5)

sage: T3ext*u1==-sqrt5*u1

True

sage: T3ext*u2==(T3ext*u2)[0]*u2

True

sage: T5ext*u1==(T5ext*u1)[0]*u1

True

sage: T5ext*u2==(T5ext*u2)[0]*u2

True

Finally, we compute the q–expansions of the associated cusp forms to precision

O(q11):

sage:

f1=sum((Sext.T(n).matrix().transpose()*u1)[0]

*q^n for n in xrange(1,11)) + O(q^11)

sage: f1

q + (1/2*sqrt5 - 1/2)*q^2 - sqrt5*q^3 +

(-1/2*sqrt5 - 1/2)*q^4 + (sqrt5 - 1)*q^5 +

(1/2*sqrt5 - 5/2)*q^6 + (sqrt5 + 1)*q^7 -

sqrt5*q^8 + 2*q^9 + (-sqrt5 + 3)*q^10 +

O(q^11)
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sage:

f2=sum((Sext.T(n).matrix().transpose()*u2)[0]

*q^n for n in xrange(1,11)) + O(q^11)

sage: f2

q + (-1/2*sqrt5 - 1/2)*q^2 + sqrt5*q^3 +

(1/2*sqrt5 - 1/2)*q^4 + (-sqrt5 - 1)*q^5 +

(-1/2*sqrt5 - 5/2)*q^6 + (-sqrt5 + 1)*q^7 +

sqrt5*q^8 + 2*q^9 + (sqrt5 + 3)*q^10 +

O(q^11)

All in all, the complex vector space S2(Γ0(23)) has a basis consisting of the two

eigenforms f1 and f2 of all the Hecke operators, whose q–expansions are

(̂f1)∞(q) = q − 1−
√

5
2

q2 −
√

5q3 − 1 +
√

5
2

q4 −
(
1−
√

5
)
q5 − 5−

√
5

2
q6 + O(q7)

and

(̂f2)∞(q) = q − 1 +
√

5
2

q2 +
√

5q3 − 1−
√

5
2

q4 −
(
1 +
√

5
)
q5 − 5 +

√
5

2
q6 + O(q7) .

Observe that the Fourier coefficients of these two q–expansions are Galois con-

jugates (that is, they only differ in the sign of the square root of 5).

5.4 Modular symbols for Γ0(77)

In this section, we illustrate some of the computations for Γ0(77). However, we

focus on the results obtained using Sage [15] and do not discuss further the

algorithms (in contrast with the previous section).

First, we define our spaces of modular symbols and compute a basis:

sage: G=Gamma0(77)

sage: M=ModularSymbols(G)

sage: S=M.cuspidal_submodule()

sage: M.basis()

((1,0),

(1,74),

(1,75),

(7,1),

(7,3),
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(7,5),

(7,6),

(7,8),

(7,9),

(7,10),

(11,1),

(11,2),

(11,3),

(11,4),

(11,5),

(11,6),

(11,7))

sage: S.basis()

((1,74),

(1,75),

(7,1) - (11,6) + (11,7),

(7,3) - (11,6) + (11,7),

(7,5) - (11,6) + (11,7),

(7,6) - (11,6) + (11,7),

(7,8) - (11,6) + (11,7),

(7,9) - (11,6) + (11,7),

(7,10) - (11,6) + (11,7),

(11,1) - (11,6),

(11,2) - (11,6),

(11,3) - (11,6),

(11,4) - (11,6),

(11,5) - (11,6))

Observe that, in this case, not all the elements of the basis of S(Γ0(77)) are Manin

symbols (there are sums of several Manin symbols as well).

The rank of S(Γ0(77)) is 14, so the (complex) dimension of S2(Γ0(77)) must be

7. We can compute the q–expansions of the elements of a basis of S2(Γ0(77)) to

precision O(q13) as follows:

sage: S.q_expansion_basis(13)

[

q - 2/5*q^8 + 2/5*q^9 - 6/5*q^10 - 1/5*q^11 -

2/5*q^12 + O(q^13),
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q^2 + 3/5*q^8 - 8/5*q^9 - 6/5*q^10 - 1/5*q^11 -

12/5*q^12 + O(q^13),

q^3 - 3/5*q^8 - 2/5*q^9 + 1/5*q^10 + 1/5*q^11 -

3/5*q^12 + O(q^13),

q^4 + 2/5*q^8 - 7/5*q^9 - 4/5*q^10 + 1/5*q^11 -

8/5*q^12 + O(q^13),

q^5 + 3/5*q^8 - 8/5*q^9 - 1/5*q^10 - 1/5*q^11 -

7/5*q^12 + O(q^13),

q^6 - 1/5*q^8 - 4/5*q^9 - 3/5*q^10 + 2/5*q^11 -

6/5*q^12 + O(q^13),

q^7 + O(q^13)

]

In this case, though, we cannot find a basis of eigenforms as easily as in

the case of Γ0(23). To do so, we would have to study the oldforms arising from

elements of S2(Γ0(7)) and of S2(Γ0(11)), but we have not presented the required

theory. Instead, we use Sage to compute a basis of eigenforms of the new

subspace of S2(Γ0(77)) (that is, the subspace generated by the newforms).

We define the subspace Snew(Γ0(77)) of S(Γ0(77)) corresponding to the new

subspace Snew
2 (Γ0(77)) of S2(Γ0(77)) and study its decomposition as a direct sum

of its eigenspaces:

sage: Sn=S.new_submodule()

sage: Sn.basis()

((1,74) + (7,9) + (7,10) - (11,3) - (11,5) +

2*(11,7),

(1,75) + (7,9) - (11,5) + (11,7),

(7,1) + (7,9) + (7,10) - (11,3) - (11,5) -

(11,6) + 3*(11,7),

(7,3) + (7,9) - (11,5) - (11,6) + 2*(11,7),

(7,5) + (7,10) - (11,3) - (11,6) + 2*(11,7),

(7,6) - (7,9) - (7,10) + (11,5) - (11,7),

(7,8) + (7,9) - (11,3) - (11,5) + 2*(11,7),

(11,1) - (11,3),

(11,2) - (11,5),

(11,4) - (11,6))

sage: Sn.decomposition()

[
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Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Rational Field,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Rational Field,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Rational Field,

Modular Symbols subspace of dimension 4 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Rational Field

]

There is a subspace of dimension 4 of Snew(Γ0(77))⊗ZQ which cannot be further

decomposed as a rational vector space. Hence, we cannot apply the reasoning

which we used to prove that S2(Γ0(23)) decomposes as the direct sum of one-

dimensional eigenspaces in section 5.3: first, we need to find the appropriate

extension of scalars.

We can determine heuristically the (finite) field extension K of Q such that

Snew(Γ0(77)) ⊗Z K can be decomposed as the direct sum of two-dimensional

eigenspaces (each of which corresponds to the subspace of S2(Γ0(77)) generated

by a newform which is an eigenform of all the Hecke operators). That is to say,

we compute the characteristic polynomial of some Hecke operator acting on

Snew(Γ0(77)) and determine its splitting field.

sage: Sn.T(2).charpoly().factor()

(x - 1)^2 * x^4 * (x^2 - 5)^2

Hence, we define K = Q(
√

5) and check that Snew(Γ0(77))⊗Z K decomposes as the

direct sum of two-dimensional eigenspaces:

sage: K.<sqrt5>=NumberField(x^2-5)

sage: MK=ModularSymbols(G,base_ring=K)

sage: SK=MK.cuspidal_submodule()
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sage: SnK=SK.new_subspace()

sage: SnK.decomposition()

[

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5,

Modular Symbols subspace of dimension 2 of

Modular Symbols space of dimension 17 for

Gamma_0(77) of weight 2 with sign 0 over

Number Field in sqrt5 with defining

polynomial x^2 - 5

]

Finally, we can compute the q–expansions of these eigenforms to precision

O(q11) as follows:

sage: SnK[0].q_eigenform(11,’a’)

q - sqrt5*q^2 + (sqrt5 + 1)*q^3 + 3*q^4 - 2*q^5

+ (-sqrt5 - 5)*q^6 + q^7 - sqrt5*q^8 +

(2*sqrt5 + 3)*q^9 + 2*sqrt5*q^10 + O(q^11)

sage: SnK[1].q_eigenform(11,’a’)
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q - 3*q^3 - 2*q^4 - q^5 - q^7 + 6*q^9 + O(q^11)

sage: SnK[2].q_eigenform(11,’a’)

q + q^3 - 2*q^4 + 3*q^5 + q^7 - 2*q^9 + O(q^11)

sage: SnK[3].q_eigenform(11,’a’)

q + q^2 + 2*q^3 - q^4 - 2*q^5 + 2*q^6 - q^7 -

3*q^8 + q^9 - 2*q^10 + O(q^11)

sage: SnK[4].q_eigenform(11,’a’)

q + sqrt5*q^2 + (-sqrt5 + 1)*q^3 + 3*q^4 -

2*q^5 + (sqrt5 - 5)*q^6 + q^7 + sqrt5*q^8 +

(-2*sqrt5 + 3)*q^9 - 2*sqrt5*q^10 + O(q^11)

As expected, all but 2 of these q–expansions have coefficients in Q.

Alternatively, we could have computed these q–expansions directly with Sage

without previously knowing the field of definition of the Fourier coefficients:

sage: Sn[0].q_eigenform(11,’a’)

q - 3*q^3 - 2*q^4 - q^5 - q^7 + 6*q^9 + O(q^11)

sage: Sn[1].q_eigenform(11,’a’)

q + q^3 - 2*q^4 + 3*q^5 + q^7 - 2*q^9 + O(q^11)

sage: Sn[2].q_eigenform(11,’a’)

q + q^2 + 2*q^3 - q^4 - 2*q^5 + 2*q^6 - q^7 -

3*q^8 + q^9 - 2*q^10 + O(q^11)

sage: Sn[3].q_eigenform(11,’a’)

q + a*q^2 + (-a + 1)*q^3 + 3*q^4 - 2*q^5 + (a -

5)*q^6 + q^7 + a*q^8 + (-2*a + 3)*q^9 -

2*a*q^10 + O(q^11)

sage: f=Sn[3].q_eigenform(11,’alpha’) ; f

q + alpha*q^2 + (-alpha + 1)*q^3 + 3*q^4 -

2*q^5 + (alpha - 5)*q^6 + q^7 + alpha*q^8 +

(-2*alpha + 3)*q^9 - 2*alpha*q^10 + O(q^11)

sage: f.base_ring()

Number Field in alpha with defining polynomial

x^2 - 5

These last lines indicate that there are two eigenforms whose q–expansions are

of the form

q+αq2 + (1−α)q3 + 3q4 − 2q5 + (α− 5)q6 + q7 +αq8 + (3− 2α)q9 − 2αq10 + O(q11)



116 COMPUTATIONS AND EXAMPLES

for the roots α of the polynomial X2 − 5 (that is, α = ±
√

5, coinciding with our

previous computations).
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General index

A
automorphy factor, 9

B
boundary map, 92; see also boundary symbol

boundary symbol, 92; see also modular symbol

C
complex upper half-plane, 1

extended, 1

topology, 27

condition at the cusps, 10

congruence subgroup, 4

level, 4

cusp, 1, 25

width, 10

cusp form, 11; see also modular form

D
differential form, 41

k–fold, 42

E
Eisenstein series, 12

q–expansion, 13

elliptic curve, 56

elliptic point, 25

F
full modular group, 4

fundamental domain, 5

H
Hecke operator, 57, 58, 65, 75, 96
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L
lattice, 56

left action

of C× on L, 56

of GL2(C) on P1
C, see linear fractional transformation

of GL+
2 (Q) on M, 92

of GL+
2 (Q) on modular symbols, 77

of PSL2(R) on H, 4; see also linear fractional transformation

of SL2(R) on H, 3; see also linear fractional transformation

of SL2(Z) on H∗, 4

linear fractional transformation, 2, 23

elliptic, 23

hyperbolic, 24

loxodromic, 24

parabolic, 23

M
Manin symbol, 82

1–boundary, 83

1–chain, 82

boundary, 83

1–cycle, 83

meromorphic modular form, 11; see also modular form

weight, 11

modular curve, 38

compactified, 38

modular discriminant, 14

modular form, 11

weight, 11

modular function, 11

modular group, see full modular group

modular invariant, 15

modular symbol, 76, 92

cuspidal, 92

distinguished, 79

formal, 91

Möbius transformation, see linear fractional transformation
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O
order of a meromorphic k–fold differential form at a point, 44

order of a meromorphic modular form at a point, 17

P
Petersson inner product, 52

Poincaré half-plane, see complex upper half-plane

principal congruence subgroup, 4

R
Ramanujan τ–function, 15

Riemann sphere, 2, 15

right action

of GL+
2 (Q) on functions, 9

of SL2(Z) on P1
Z / NZ, 89

of SL2(Z) on Manin symbols, 82

of double cosets on weakly modular functions, 64

U
upper half-plane, see complex upper half-plane

W
weakly modular function, 10

qh–expansion, 10

weight, 10

Index of symbols

Symbols
C(Γ ), 77

C(Man(Γ )), 83

C0(N), 77

G2k(z), 12

H1(X(Γ ),C(Γ ),Z), 77

H1(X(Γ ),R), 73

H1(X(Γ ),Z), 73

M(Γ ), 16

Mk(Γ ), 15
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Sk(Γ ), 15

X(N), 38

X(Γ ), 38

X0(N), 38

X1(N), 38

Y(N), 38

Y(Γ ), 38

Y0(N), 38

Y1(N), 38

Z(Man(Γ )), 83

∆(z), 14

∆n(N,S×,S+), 65

GLn(A), 2

GL+
n(A), 2

Γ (N), 4

Γ0(N), 5

Γ1(N), 5

Λ(ω1,ω2), 56

Λ(τ), 56

Man(Γ ), 82

Ω1(X(Γ )), 73

On(A), 2

PGLn(A), 2

PSLn(A), 2

SLn(A), 2

SOn(A), 2

{s}, 92

δ, 92

〈f ,T〉, 72

(α), 82

B(Γ ), 92

H, 1

H∗, 1

M(Γ ), 92

M, 91

P1
A, 88
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P1
C, 2

P1
Q, 1

S(Γ ), 92

T, 72

TC, 72

L, 56

R(n), 57

T(n), 57, 58, 65, 75, 96

L , 57

{r, s}, 76

ordp(ω), 44

ordp(f ), 17

Γ , 4

γ, 4

〈f ,g〉Γ , 52

〈f ,g〉, 54

am(f ), 72

g4(z), 14

g6(z), 14

j(z), 15

q, 13

qh, 10

v2, 39

v3, 39

v∞, 39
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