
Andreatta–Iovita’s p–adic L–functions

Notes taken by: Francesc Gispert

13th March 2020

These are my informal notes of a seminar organized by Ju-Feng Wu and myself.
The original goal was to study two articles of Fabrizio Andreatta and Adrian Iovita
which give geometric constructions of p–adic L–functions. However, the seminar
was interrupted midway due to lockdowns in Quebec.

When the speaker was someone other than me, I live-TeXed the notes and
edited them afterwards. Ju-Feng’s notes of his own talks might be better than
mine. Many corrections and additions in comparison to the original article we
study come from long discussions between us. Also Giovanni Rosso and Lennart
Gehrmann helped us.

The introduction is my typing of a talk by Giovanni (since I was not able to
keep up with his pace, there are a couple of incomplete paragraphs which I could
not fill out later). The next two sections correspond to talks given by Ju-Feng
(except for a few computations that I added later) and the last section corresponds
to my talks.

Ju-Feng and I did our best to write a more gentle version of the latest preprint
available at the time, which we all found difficult to read. Nevertheless, we were
left with several questions, written here mostly in footnotes, because Adrian was
away from Montreal at the time. In summer 2020 I sent this document and some
questions to Adrian and Fabrizio. I was told that they took it into consideration to
improve the exposition of some parts of their paper, but I never checked the next
version of the preprint nor asked for more details.

WARNING: This document was written for my own use and not meant for
publication. Moreover, Adrian told me that he thought we misunderstood some
things. I decided to share these notes publicly, incomplete as they are, because
I had already sent them to a couple of colleagues who apparently found them
useful.
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1 Introduction

The idea of this seminar is to understand the constructions of Andreatta–Iovita of
their new p–adic L–functions, namely:

• the triple product L–functions (their article “Triple product. . . ” [2]) and
• the Katz-type L–functions associated with CM twists of modular forms by

Hecke characters (their article “Katz-type. . . ” [1]).
Many other people had constructed similar kind of p–adic L–functions before.

The novelty of Andreatta–Iovita’s work is that they treat certain finite slope cases
that were not know via new geometric methods. In particular, they found a way to
compute δsG, where δ is the Maass–Shimura operator, G is some (overconvergent)
modular form and s is a p–adic variable.

1.1 Damerell’s formula

Let K/Q be a quadratic imaginary field. We fix an embedding K ↪→ C. Let
χ : K×\A×K → C× denote an algebraic Hecke character of K of conductor m. Let
χf : (OK/m)× → C× and χ∞ : K⊗Q R = C× → C× be the characters defining the
infinity type, so that

χ
(
(α)
)
= χf(α)χ

−1
∞ (α⊗ 1).

Suppose moreover that χ∞(α⊗ 1) = αk for some positive integer k.
Define the L–function

L(χ, s) = ∑
(a,m)=1

χ(a)

N(a)s ,

where the sum is over all ideals a of OK that are prime to the conductor.

Theorem 1. There exists a period ΩK ∈ C× such that

L(χ, s0)

Ωk
K
∈ K

for all integers 0 ≤ s0 ≤ k
2 .

Choose a set of (integral) representatives a1, . . . , ar of the class group of K and
assume that they are prime to m. Every (integral) ideal is of the form a = (α)a−1

i
for some α ∈ ai and some i. Thus, we can rewrite

L(χ, s) =
1
|O×K |

n

∑
i=1

χ(a−1
i )

N(ai)−s ∑
0 6=α∈ai

χf(α)

αk N(α)s
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=
1
|O×K |

n

∑
i=1

χ(a−1
i )

N(ai)−s ∑
β mod m

χf(β) ∑
u∈b

N(β + u)−s

(β + u)k ,

where in the last step we decomposed α = β + u with u ∈ b = mai.
For example, if K = Q(i) and m = OK = Z[i], then

L(χ, 0) =
1
n ∑

(m,n) 6=(0,0)

1
(m + in)k =

1
n

Ek(i),

where Ek is the Eisenstein series of weight k.
More generally, we can define

Ek(s, z) = ∑
γ∈Γ∞\ SL2(Z)

ys

j(γ, z)k|j(γ, z)|2s

(where Γ∞ is the stabilizer of ∞) and then

L(χ, s) .
= Ek(s, i) (i.e., for y = 1).

For 0 ≤ s0 ≤ k/2, Ek(s0, z) is nearly holomorphic and can be expressed as

Ek(s0, z) =
s0

∑
i=0

∞

∑
n=0

a(i)n y−iqn.

Fact. These forms Ek(s0, z) are algebraic.

Moreover,
Ek(s0, z) = δs0

k−2s0
Ek−2s0(z),

where
δs0

k−2s0
=

1
2πi

( d
dz

+
k− 2s0

y

)
and δs0

k−2s0
= δk−2 ◦ · · · ◦ δk−2s0 . (This shows that indeed Ek(s0, z) is a nearly

holomorphic modular form: it is the image of a holomorphic modular form under
iterations of the Maass–Shimura operator.)

The upshot of the first computation is that we can express

L(χ, s0) = ∑
xi CM points of H

ciEk(s0, xi)

(i.e., an explicit linear combination of the values of Ek(s0, z) at CM points).
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Theorem 2 (Damerell–Shimura). Let F be a weight k nearly holomorphic modular
form and let x ∈H∩OK. Then

F(x)
Ωk

K
∈ K.

Let us study this period more carefully. Let a be a fractional ideal of OK. Via
the embedding K ↪→ C, we can see a as a lattice in C. Let Ea be the elliptic curve
whose C–points correspond to C/a, which has CM by OK. Consider the invariant
differential ω = dx

y ∈ H0(Ea, Ω1
Ea
) (defined algebraically). If τ is the variable on

C, we can write dτ = ΩKω for some (transcendental) ΩK. On the other hand, the
action of OK gives a decomposition H1

dR(Ea) ∼= K⊕ Kσ (where σ is the complex
conjugation) that, after tensoring with C, coincides with the Hodge decomposition
H1

dR(Ea)⊗C = H1,0
dR(Ea,C)⊕H0,1

dR(Ea,C). Consider a point x ∈ H corresponding
to (Ea, dτ). Then

F(x) = F(Ea, dτ) = F(Ea, ΩKω) = Ωk
KF(Ea, ω)

and F(Ea, ω) is algebraic.

Remark. This is a pull-back formula for

U(1)×U(1)→ U
( 0 −1

1 0

)
,

where U(1) is the algebraic group over Z whose points are

U(1)(R) = { g ∈ (R⊗ZOK)
× : gg = 1 }

and U
( 0 −1

1 0

)
∼ SL2(Z). Then Ek(s, z) is a form on U(1, 1). Take a level

K×\A×K /(1 + mOK)(R
×)→

Let X0(K, m) be the Shimura variety of this level, that is a finite set of points
corresponding to a ray class group.

Ek(s, z) restricts to the image of

X0(K, m)× X0(K, m) ↪→H/Γ

Evaluating Ek(s, z) on the image of this embedding,

U(n)×U(n) ↪→ U(n, n)

( f , f ) 7→E(z, s)
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and
〈 f ⊗ f , E(s, zres)〉 ∼ L( f , s)〈 f , f 〉.

Here 〈−,−〉 is a Petersson inner product given by

〈 f , g〉 = ∑
x∈G

f (x)g(x).

Remark. In Andreatta–Iovita’s paper, they consider Hecke characters χ of type
(k1, k2) = (k + j,−j), which means that

χ
(
(α)
)
= αk1αk2χf(α).

Then we get

∑
αk1αk2

N(α)s = ∑
αk+2j

N(α)s+j

The question is how to construct p–adic L–functions interpolating

L(χ, s0) = ∑
x

cxχ(x)δsE(x).

We want to vary p–adically the pair (k, s) or, equivalently, (k + j,−j).

1.2 Andreatta–Iovita’s work

For a Hecke character χ : K×\A×K → C of infinity type (k1, k2), we consider its
p–adic avatar χp : K×\A×K → Cp given by

χp(a) = χ(a)χ−1
∞ (a∞)a−k1

p σ(a−k2
p ).

By class field theory, A×K,p is almost the Galois group of the maximal abelian
extension of K that is unramified outside p. Therefore, we can regard the characters
in consideration as Galois representations χp : Gal(K∞/K)→ Cp, where K∞/K is
the Z2

p–extension of K. Thus, we can define a p–adic L–function by the formula

Lp(χ, s) = ∑
x CM points

cxχ(ax)δ
s
k−2sEk−2s(x).

For such a formula to make sense, we need some observations. On the one
hand, the Eisenstein series Ek are kind of good p–adic analytic form of K. On
the other hand, it is unclear what the iterates of the Maass–Shimura differential
operator should be in the p–adic situation. Recall that δk can be constructed from
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the Gauss–Manin connection ∇k over C as follows:

ωk
E Symk H1

dR(E/Y) ∼= ωk
E/Y ⊕ · · ·

Symk H1
dR(E/Y)⊗Ω1

Y/C

Symk H1
dR(E/Y)⊗ω2

E
∼= ωk+2

E ⊕ · · ·

ωk+2
E

δk

∇k

KS−1∼ =

In the last vertical arrow, we use the splitting of the Hodge–de Rham filtration
over C as analytic forms (i.e., the Hodge decomposition of de Rham cohomology).

We can do something similar p–adically. If E is a p–ordinary elliptic curve, we
have the unit-root splitting H1

dR(E) = U ⊕ C (i.e., here U is the Frobenius stable
line). Thus, we can similarly define

ωk
E Symk H1

dR(E/Y) ∼= ωk
E/Y ⊕ · · ·

Symk H1
dR(E/Y)⊗Ω1

Y

Symk H1
dR(E/Y)⊗ω2

E
∼= ωk+2

E ⊕ · · ·

ωk+2
E

θ

∇k

KS−1∼ =

The first important problem that we encounter is that not all elliptic curves are
ordinary. That is, θEk can only be evaluated on ordinary points.

Fact. The CM elliptic curve Ea is p–ordinary if and only if p is split in K.

The second main problem is that the iterate θs might not make sense for a
p–adic variable s. On q–expansions, we should have

θs
(
∑
n

anqn
)

“ = ” ∑
n

nsanqn

But ps is not analytic, so we should restrict to n coprime with p. Moreover, we
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should add ω(n)−s, so we will have to restrict to s ≡ k mod p − 1. (This is a
minor issue, as this set is still p–adically dense.)

Therefore, one of the ingredients that we need is the p–depletion operator: if

F = ∑
n

anqn,

then we set
F[p] = ∑

(n,p)=1
anqn.

We can finally define
Lp(χ) = ∑

ai

ciχ(ai)θ
sE[p]

k−2s(xi)

(where xi is a CM point corresponding to the ideal ai).
We will have to use overconvergent p–adic modular forms of weight k (i.e.,

sections of ωk
E on Xord that extend a bit into the supersingular disks).

Here, we encounter another problem: θs makes sense on p–adic modular forms
because

‖ f ‖Xord = sup
n
|an|p

but, if f overconverges, then it has some poles in the supersingular locus and
θ f might not be overconvergent. That is, if we approximate s with integers si, it
might happen that the poles of θsi( f ) get closer and closer to the ordinary locus as
i→ ∞.

Theorem 3 (Andreatta–Iovita). There exist operators

δs
k : NUp=0,oc

k → NUp=0,oc
k+2s

that interpolate δκ : Nκ → Nκ+2. (Meaning that δs is a power series in s and δs( f )
converges if Up( f ) = 0.)

Remark. On Xord,
θ(p−1)pn

f ≡ f mod pn+1

if f is p–depleted.

The other trick that Andreatta–Iovita use is that Up( f )(x) = 0 if f is p–depleted,
and this is a sum

∑
y∈Up(x)

f (y) = 0
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If x is not in the overconvergence locus of f , it turns out that only one of the points
y ∈ Up(x), say y0, is outside this locus, so we can define

f (y0) = − ∑
y 6=y0

f (y).

Remark. Let f be a Hecke eigenform of weight k and consider a Hecke character χ

of K of weight
(1) either (k− 1− j, 1 + j) with 0 ≤ j ≤ k− 2
(2) or (k + j,−j) with j ≥ 0.

Bertolini–Darmon–Prasanna define

L( f , χ, s) = L( f , gχ, s)

where gχ is the θ–series

gχ = ∑
a∈OK

χ(a)qN(a) = ∑
n

(
∑

N(a)=n
χ(a)

)
qn

= ∏
p∈OK

(
1− aN(p)( f )N(p)−s + χ(p)N(p)−2s+k−1).

Using Waldspurger’s formula, they prove that

L( f , χ−1, 0) = ∑
ai

χ−1(ai)δ
j
k( f )(xi) ∈ Ωk+2j

K K

When p is split in K, gχ lives in a Hida family and this L–function can be inter-
polated p–adically. If p is inert, then gχ does not live in a CM family because the
slopes of the roots αp, βp of x2 + pk+j−1 are (k + j− 1)/2.
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2 Vector bundles with marked sections

Let S be a formal scheme with invertible ideal of definition I . We are going
to consider a locally free OS–module E of rank n together with global sections
s1, . . . , sm of Ē = E /I E (for some m ≤ n) that generate a locally free direct
summand of rank m.

2.1 The (formal) vector bundles

Let FSch/S denote the category of formal schemes over S, f : T → S, with in-
vertible ideal of definition f ∗I . We consider the following contravariant functors:

• V(E ) : (FSch/S)op → Set sends f : T→ S to HomOT
( f ∗E , OT).

• V0(E , s1, . . . , sm) : (FSch/S)op → Set sends f : T→ S to the subset

{ h ∈ HomOT
( f ∗E , OT) : (h mod f ∗I )( f ∗si) = 1 mod f ∗I for 1 ≤ i ≤ m }.

Theorem 4. The functors V(E ) and V0(E , s1, . . . , sm) are representable in the category
FSch/S.

Sketch of the proof. The proof is similar to that of the analogous statement for vector
bundles in the category of schemes. In particular, V(E ) = SpfS(Ŝym E ), where
the hat denotes the completion with respect to the I –adic topology. Then the
subfunctor V0(E , s1, . . . , sm) corresponds to an open formal subscheme of the
blow-up of V(E ) with respect to the ideal sheaf J of Ŝym E generated by I and
the lifts of s1− 1, . . . , sm − 1. Namely, V0(E , s1, . . . , sm) is the open locus where J

is generated by I .
Locally, we can assume that S = Spf(R), I is given by a principal ideal I = αR

and E corresponds to a free R–module E of rank n. We can choose a basis e1, . . . , en

of E with the property that (ei mod α) = si for 1 ≤ i ≤ m and em+1, . . . , en mod α

give a basis of Q, where we have the short exact sequence of free (R/I)–modules

0
⊕m

i=1(R/I)si
⊕n

i=1(R/I)ei Q 0.

We obtain an induced map Sym Ē→ Sym Q with kernel (s1− 1, . . . , sm − 1). Now
we can express V(E ) = Spf(R〈X1, . . . , Xn〉), where each variable Xi corresponds
to ei. Then J = (α, X1 − 1, . . . , Xm − 1) (this is the ideal generated by α and the
lifts of the kernel described above). Hence, the formal open of the blow-up with
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respect to J where (the inverse image of) J is generated by α is

Spf
(

R〈X1, . . . , Xn〉
〈X1 − 1

α
, . . . ,

Xm − 1
α

〉)
= Spf〈Z1, . . . , Zm, Xm+1, . . . , Xn〉

(where we made the change of variables Zi =
Xi−1

α ). One checks easily that this
formal scheme represents the desired functor, as Zi = 1 + αXi ≡ 1 mod I.

2.1.1 Filtrations

Suppose that F ⊂ E is a locally free OS–submodule of rank m such that s1, . . . , sm

is a basis of F̄ = F /I F . By functoriality, we get natural morphisms

V0(E , s1, . . . , sm) V(E )

V0(F , s1, . . . , sm) V(F )

making the diagram commutative.

Proposition 5. Let f0 : V0(E , s1, . . . , sm) → S be the structure morphism. The sheaf
f0,∗OV0(E ,s1,...,sm) admits an increasing filtration Filj f0,∗OV0(E ,s1,...,sm) with graded pieces
Grj f0,∗OV0(E ,s1,...,sm) = f0,∗OV0(F ,s1,...,sm) ⊗̂OS

Symj(E /F ).

Sketch of the proof. Working locally with the same notation as in the previous proof
(but choosing a basis f1, . . . , fm, em+1, . . . , en of E such that f1, . . . , fm is a basis of F),
Filj f0,∗OV0(E ,s1,...,sm) corresponds to polynomials with coefficients in R〈Z1, . . . , Zm〉
of degree ≤ j in the variables Xm+1, . . . , Xn.

Corollary 6. Let (E ′, s′1, . . . , s′m) be another tuple with the same conditions and admit-
ting F ′ ⊂ E ′ as above and suppose that there is a morphism g : E ′ → E that restricts
to g|F ′ : F ′ → F and such that (g mod I )(s′i) = si. Then, the morphism of vector
bundles V0(E , s1, . . . , sn) → V0(E

′, s′0, . . . , s′n) induced by g is compatible with the
filtrations.

2.1.2 Connections

Now consider a p–adically complete Zp–algebra A0 and suppose that S is locally
of finite type over Spf(A0). Write PS/A0 = S×A0 S and let ∆ : S→ PS/A0 be the
diagonal map. Let P(1)

S/A0
denote the first infinitesimal neighbourhood of ∆(S) in

PS/A0 . We obtain two natural morphisms (corresponding to the two projections)
j1, j2 : P(1)

S/A0
→ S. We want to use this formalism to describe connections.
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Let M be a locally free OS–module of finite rank. Grothendieck showed that
giving an integrable connection ∇ : M →M ⊗̂OS

Ω1
S/A0

is equivalent to giving
an isomorphism

ε : j∗2M → j∗1M

such that ∆∗ε = idM and satisfying a suitable cocycle condition with respect to
the three possible pull-backs S×A0 S×A0 S → S×A0 S. Indeed, the relation
between ε and ∇ is given by

ε(1⊗ x) = x⊗ 1 +∇(x).

Suppose that the locally free OS–module E is endowed with an integrable
connection ∇ : E → E ⊗̂OS

Ω1
S/A0

with respect to which the sections s1, . . . , sm

are horizontal. Consider the corresponding isomorphism ε : j∗2E → j∗1E as above.
By functoriality, we obtain a commutative diagram

V0
(

j∗1(E , s1, . . . , sm)
)

V(j∗1E )

V0
(

j∗2(E , s1, . . . , sm)
)

V(j∗2E )

ε̃0 ε̃

giving rise to
j∗1 f0,∗OV0(E ,s1,...,sm) j∗1 f∗OV(E )

j∗2 f0,∗OV0(E ,s1,...,sm) j∗2 f∗OV(E )

ε̃]0 ε̃]

at the level of sheaves. (Here, f and f0 denote the structure morphisms from
V(E ) and V0(E , s0, . . . , sn) to S, respectively.) It turns out that ε̃] and ε̃]0 satisfy
Grothendieck’s criteria and so define integrable connections ∇̃ and ∇̃0 making

E E ⊗̂OS
Ω1

S/A0

f∗OV(E ) f∗OV(E ) ⊗̂OS
Ω1

S/A0

f0,∗OV0(E ,s1,...,sm) f0,∗OV0(E ,s1,...,sm) ⊗̂OS
Ω1

S/A0

∇

∇̃

∇̃0

commutative. From now on, write ∇0 = ∇̃0.
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Lemma 7. The connection ∇0 satisfies Griffiths’s transversality condition (with respect
to the filtration defined in proposition 5).

Proof. Affine locally, we can assume that S = Spf(R) and we can choose a basis
f1, . . . , fm, em+1, . . . , en as before. Since the sections s1, . . . , sm (the reductions of
f1, . . . , fm) are horizontal, we can express

∇ fk =
m

∑
i=1

α fi ⊗ωk,i +
n

∑
j=m+1

αej ⊗ νk,j

and

∇ek =
m

∑
i=1

fi ⊗ τk,i +
n

∑
j=m+1

ej ⊗ σk,j

for some sections ωk,i, νk,j, τk,i, σk,j of Ω1
S/A0

. Therefore,

∇̃Xk =



m

∑
i=1

αXi ⊗ωk,i +
n

∑
j=m+1

αXj ⊗ νk,j if k ≤ m,

m

∑
i=1

Xi ⊗ τk,i +
n

∑
j=m+1

Xj ⊗ σk,j if k > m.

Since Xk = 1 + αZk, we find that ∇̃Xk = ∇0(αZk) = α∇0Zk + Zk ⊗ dα or, equival-
ently,

∇0Zk =
1
α
∇̃Xk − Zk ⊗ dα =

m

∑
i=1

Xi ⊗ωk,i +
n

∑
j=m+1

Xj ⊗ νk,j − Zk ⊗ dα.

Using that Filj corresponds to polynomials of degree ≤ j in Xm+1, . . . , Xn and
Leibniz’s rule, the result follows.

2.2 Application to modular curves

Fix a prime p > 3 and an integer N ≥ 4 such that p
∣∣- N. Let X = X1(N) be

the compactified modular curve of level Γ1(N) over Zp. Let X denote the formal
completion of X along its special fibre and let X be its (adic) analytic generic
fibre. Consider the universal semiabelian scheme π : Euniv → X and its de Rham
cohomology H = H1

dR(Euniv/X) = R1π∗Ω•Euniv/X, that is naturally endowed
with the Hodge filtration

0 ω H ω−1 0
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(where ω = π∗Ω1
Euniv/X). We define Hdg to be the ideal of OX that is locally

generated by p and a fixed lift of the Hasse invariant (that is, the Eisenstein series
Ep−1).

2.2.1 The weight space

Consider the Iwasawa algebra Λ = Zp[[Z×p ]]
∼= Zp

[
(Z/pZ)×

]
[[T]] and its subal-

gebra Λ0 = Zp[[1 + pZp]] ∼= Zp[[T]] (the isomorphisms sending [exp(p)] to 1 + T).
We consider the weight spaces

W = Spf(Λ), W = Spa(Λ, Λ)an,

W0 = Spf(Λ0), W0 = Spa(Λ0, Λ0)an.

(Here, the superscript an means that we take only the analytic points, which are
those whose supports are not open.)

For any interval of the form I = [pa, pb] ⊂ [0, ∞] with a ∈ Z≥0 ∪ {−∞ } and
b ∈ Z≥0 ∪ {∞ }, we define

WI = { x ∈ W : |p|x ≤ |Tpa |x 6= 0 and |Tpb |x ≤ |p|x 6= 0 }.

We will consider two main cases:
(1) If I = [0, pb] with b 6= ∞, then

WI = Spa
(

Λ
〈Tpb

p

〉[ 1
p

]
, Λ
〈Tpb

p

〉)
.

In this case, we set

ΛI = Λ
〈Tpb

p

〉
(and similarly for Λ0

I ) and α = p.
(2) If I = [pa, pb] with a 6= −∞, then

WI = Spa
(

Λ
〈 p

Tpa ,
Tpb

p

〉[ 1
T

]
, Λ
〈 p

Tpa ,
Tpb

p

〉)
.

In this case, we set

ΛI = Λ
〈 p

Tpa ,
Tpb

p

〉
(and similarly for Λ0

I ) and α = T.
For an interval I as above, let κI : Z×p → Λ×I be the universal weight onWI
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(i.e., the character given by t 7→ [t]). We decompose it into the restriction κI,f to the
finite part (Z/pZ)× and κ0

I = κIκ
−1
I,f : Z×p → (Λ0

I )
×. Define X0 = X×Zp W

0 and
XI = X×Zp Spf(ΛI).

Assumption 8. We restrict to one of the following two cases:
(1) I = [0, 1] and we choose r ≥ 2 and 1 ≤ n ≤ r.
(2) I = [pa, pb] and we choose r ≥ 1 such that r + a ≥ b + 2 and 1 ≤ n ≤ a + r.

Under this assumption, there exists a unique

uκI =
log(κI(t))

log(t)
∈ p1−nΛ0

I

such that κI(t) = exp(uκI log(t)) for all t ∈ 1 + pnZp.

2.2.2 The Igusa tower

Define Xr,I to be the formal scheme over XI representing the functor that sends
an α–adically complete Λ0

I –algebra R to the set of equivalence classes of pairs
( f , η), where f : Spf(R) → XI and η ∈ H0(Spf(R), f ∗ω(1−p)pr+1

) satisfies that

η · f ∗Epr+1

p−1 ≡ α mod p2. (We omit the description of the equivalence relation.)
By assumption 8, the universal semiabelian formal scheme Er,I over Xr,I admits

a canonical subgroup Hn generically of order pn. Thus, we will work instead
over the Igusa curve IGn,r,I = IsomXr,I

(
(Z/pnZ)×, (Hn)∨

)
→ Xr,I and over the

normalization IGn,r,I of Xr,I in IGn,r,I . The universal trivialization over IGn,r,I

yields a section Puniv
n of (Hn)∨ (“the image of 1” under (Z/pnZ)× ∼= (Hn)∨).

From it we will obtain the desired marked section.

2.2.3 The modular sheaves

Recall that we work in the situation of the diagram

Hn En,r,I

IGn,r,I

πHn
π

and we define the sheaves ω = π∗Ω1
En,r,I/IGn,r,I

and ωHn = (πHn)∗Ω
1
Hn/IGn,r,I

. It
turns out that the canonical map ω → ωHn has kernel β′

n
ω, where

β′
n
= pn Hdg−

pn−1
p−1 ,

15



and we get an isomorphism ω/β′
n
ω ∼= ωHn .

All in all, we have a commutative diagram

ω

dlog : (Hn)∨ ωHn ω/β′
n
ω

(Hn
ϕ−→ Gm) ϕ∗

(
dT
T

)
∼=

and we want to use s = dlog(Puniv
n ) (where Puniv

n is the universal point of (Hn)∨

over IGn,r,I) as a marked section. The problem is that s does not generate ω/β′
n
ω.

In fact, it generates δω/β′
n
ω, where δ = Hdg1/(p−1). Therefore, we define the

modified sheaf
ω] = δω

and regard s as a section of ω]/β
n
ω], where β

n
= δ−1β′

n
. Another problem that

we encounter is that ω] is not a locally direct summand of H , which we also
modify in the following way: we define

H ] = ω] + δpH ⊂H .

Equivalently, H ] is the push-out

δpω δpH

δω H ]
y

and fits in a commutative diagram

0 δpω δpH δpω−1 0

0 ω] H ] δpω−1 0

0 ω H ω−1 0

y

p

with exact rows (the first and the third ones coming from the Hodge filtration). In

16



particular, H ] is locally free of rank 2.
All in all, the data given by (ω], s) ⊂ (H ], s) as defined above satisfies the

hypotheses of the first part and we can apply the theory of vector bundles with
marked sections. (In the notation of section 2.1, we have the locally free sheaves
F = ω] and E = H ] on the formal scheme S = IGn,r,I with ideal of definition
I = β

n
= pn Hdg−pn/(p−1) and the marked section s of F̄ ⊂ Ē .) In this way, we

obtain
V0(ω

], s) V0(H
], s)

IGn,r,I

Xr,I

fn

f0

gn

g0hn

and a filtration on g0,∗OV0(H ],s).
Let T be the formal group scheme over IGn,r,I whose points are given by

T(ψ : S→ IGn,r,I) =
(
1 + (ψ∗β

n
)OS(S)

)×
where β

n
= pn Hdg−pn/(p−1). (By abuse of notation, we write β

n
both for the ideal

sheaf over Xr,I and its pull-back over IGn,r,I .) We extend it to Xr,I by considering
the formal group scheme over Xr,I whose points are given by

Text(ϕ : S→ Xr,I) = Z×p
(
1 + (ϕ∗β

n
)OS(S)

)×.

These formal tori act on V0(ω
], s).

(1) The action of T on V0(ω
], s)→ IGn,r,I can be described on points as follows:

given ψ : S → IGn,r,I , v ∈ V0(ω
], s)(S) (i.e., a morphism v : ψ∗ω] → OS

such that (v mod ψ∗β
n
)(ψ∗(s)) = 1) and t ∈ T(S) = 1 + (ψ∗β

n
)OS(S),

then t ∗ v = tv.
(2) The action of Text on V0(ω

], s) → Xr,I is the extension of the previous
case as follows: given ϕ : S → Xr,I , a point of V0(ω

], s)(S) consists of
a pair (ψ, v) as in the previous case. For every λ ∈ Z×p , let λ̄ denote its
image in (Z/pnZ)× ∼= Gal(IGn,r,I/Xr,I). Then λ̄ gives an automorphism of
IGn,r,I over Xr,I (the identification of the Galois group with Z/pnZ is the
one characterized by λ̄∗(dlog(Puniv

n )) = λ̄−1 · dlog(Puniv
n )). We also have

an isomorphism γλ : λ̄∗ω] → ω] (multiplication by λ ∈ Z×p ) which, after
pull-back to S, induces ψ∗(γλ) : (λ̄ ◦ ψ)∗ω] = ψ∗(λ̄∗ω]) → ψ∗ω]. Then
λ ∗ (ψ, v) =

(
λ̄ ◦ ψ, v ◦ ψ∗(γλ)

)
.
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There are analogous actions of T and Text on V0(H
], s) over IGn,r,I and over Xr,I ,

respectively.
The actions of T and Text defined above can be used to define actions on the

(push-forwards of the) structure sheaves OV0(ω],s) and OV0(H ],s) as follows.
(1) Regard both T and fn,∗OV0(ω],s) as sheaves on IGn,r,I (i.e., we view T only

as a sheaf on the Zariski site of IGn,r,I and forget that it is a formal scheme).
Given an open S ↪→ IGn,r,I , we observe that V0(ω

], s)(S) is (a subset of
the) dual to fn,∗OV0(ω],s). For t ∈ T(S) and x ∈ fn,∗OV0(ω],s)(S), we define
t ∗ x to be the element of fn,∗OV0(ω],s)(S) satisfying that

v(t ∗ x) = (t ∗ v)(x) for all v ∈ V0(ω
], s)(S).

(2) Similarly, regard both Text and f0,∗OV0(ω],s) as sheaves on Xr,I . Given an
open S ↪→ Xr,I , we can consider the pull-back S ×Xr,I IGn,r,I ↪→ IGn,r,I

and we observe that V0(ω
], s)(S ×Xr,I IGn,r,I) is (a subset of the) dual

to f0,∗OV0(ω],s)(S) = fn,∗OV0(ω],s)(S ×Xr,I IGn,r,I). For t ∈ Text(S) and
x ∈ f0,∗OV0(ω],s)(S), we define t ∗ x to be the element of f0,∗OV0(ω],s)(S)

satistying that

v(t ∗ x) = (t ∗ v)(x) for all v ∈ V0(ω
], s)(S×Xr,I IGn,r,I).

There are analogous actions of T and Text on gn,∗OV0(H ],s) and g0,∗OV0(H ],s),
respectively. The definition of the actions will become much clearer in the next
talk with the local calculations.

Recall that, by assumption 8, the universal character κI : Z×p → Λ×I admits an
analytic expansion on elements with which it makes sense to evaluate it at sections
of Text.

Definition 9. We define the following modular sheaves:
(1) ωκI ,f = (h1,∗OIG1,r,I ⊗̂Λ0 Λ)[κ−1

I,f ] (i.e., the subsheaf on which (Z/pZ)× acts
via κ−1

I,f );
(2) ωκI ,0 = f0,∗OV0(ω],s)[κ

0
I ] (i.e., the subsheaf on which Text acts via κ0

I );
(3) ωκI = ωκI ,0 ⊗̂OXr,I

ωκI ,f;

(4) W0
κI
=


g0,∗OV0(H ],s)[κ

0
I ] if I = [pa, pb] with b 6= ∞,

lim←−
n→∞

W0
κ[p,pn ]

if I = [p, ∞],
and

(5) WκI = W0
κI
⊗̂OXr,I

ωκI ,f.
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Remark. In the definition of ωκI ,f, the action of the character κI,f appears with an
inverse because the actions of the torus on the Igusa curve and on the vector bundle
with marked section are “kind of dual”. Namely, the Igusa curve parametrizes
Puniv

n , whereas the vector bundle parametrizes functions that (when reduced
modulo some ideal of definition) send dlog(Puniv

n ) to 1. Thus, if we multiply Puniv
n

by a number, then we have to multiply those functions by its inverse to preserve
the property that dlog(Puniv

n ) 7→ 1. For a more precise statement, see lemma 3.7 in
the “Triple product. . . ” article [2].1

1I’m not totally convinced about this. It seems to me that Andreatta–Iovita mix the two possible
identifications Gal(IGn,r,I/Xr,I) ∼= (Z/pnZ)×. Namely, in lemma 3.7 they use the “inverse”
identification of that used in the definition of the action of the extended torus. That would account
for the “duality” twice, which is wrong.
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3 The Gauss–Manin connection

3.1 Local description of the sheaves

We are going to describe the sheaves constructed in the previous talk affine locally.
Fix r, n, I as in assumption 8. Recall that we constructed vector bundles with
marked sections using H = H1

dR(En,r,I/IGn,r,I) and ω = π∗Ω1
En,r,I/IGn,r,I

. Choose
affine opens

Spf(R) IGn,r,I

Spf(R0) Xr,I

p
hn

such that the rings R0 and R are α–torsion-free (admissibility) and the sheaves
H |R and ω|R are free (of ranks 2 and 1, respectively). In fact, the sheaves H and
ω are obtained by pull-back from the corresponding sheaves on Xr,I , that we write
with the same symbols by abuse of notation. We choose an R0–basis ω, η of H |R0

adapted to the Hodge filtration (i.e., ω is an R0–basis of ω|R0). We assume also
that Hdg is free and generated by Ep−1(Er,I/R0, ω) and set

δ = Ep−1(Er,I/R0, ω)
1

p−1 and βn = pn · Ep−1(Er,I/R0, ω)
− pn

p−1

(generators of the ideal sheaves δ|R and β
n
|R, respectively)

Fix a basis ( f , e) of H ]|R with the property that f ≡ s = dlog(Puniv
n )mod βnR.

It is easy to see that we can identify

V0(ω
], s)(R) = { v ∈ HomR(ω

]|R, R) : (v mod βn)(s) = 1 } = (1 + βnR) f ∨

and

V0(H
], s)(R) = { v ∈ HomR(H

]|R, R) : (v mod βn)(s) = 1 }
= (1 + βnR) f ∨ + Re∨,

where f ∨, e∨ is the dual basis of f , e. In fact, by the construction in the proof
of theorem 4, gn,∗OV0(H ],s)|R is (the coherent sheaf associated with) R〈Z, Y〉 and
fn,∗OV0(ω],s)|R is (the coherent sheaf associated with) R〈Z〉, where the formal vari-

able Z = X−1
βn

corresponds to f−1
βn

and the variable Y corresponds to e. Therefore,
we identify (1 + βna) f ∨ + be∨ with the morphism of R–algebras R〈Z, Y〉 → R
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defined by

Z 7→ (1 + βna)− 1
βn

= a and Y 7→ b.

Recall that we defined the action of T(R) = 1 + βnR on V0(ω
], s)(R) by

t ∗ (1 + βna) f ∨ = t(1 + βna) f ∨ =
(
1 + βn(s + a + βnsa)

)
f ∨ if t = 1 + βns.

We define an action of T(R) on fn,∗OV0(ω],s)|R by imposing the condition

v(t ∗ Z) = (t ∗ v)(Z) for all v ∈ (1 + βnR) f ∨.

A direct computation shows that

t ∗ Z =
t− 1

βn
+ tZ.

Lemma 10. The sheaf fn,∗OV0(ω],s)[κI ] on IGn,r,I is locally given by

R〈Z〉[κI ] = R · κI(1 + βnZ).

Proof. We have to prove that R〈Z〉[κI ] ⊆ R · κI(1 + βnZ) (the other inclusion is
straight-forward).

We first claim that R〈Z〉T(R)=1 = R. Indeed, take g ∈ R〈Z〉T(R)=1 and express
it as

g =
∞

∑
m=0

amZm.

For every t ∈ T(R),

g(Z) = t ∗ g(Z) =
∞

∑
m=0

am

( t− 1
βn

+ tZ
)m

and, evaluating at Z = 0, we deduce that

∞

∑
m=1

amum = 0 for all u =
t− 1

βn
∈ R.

By Weierstrass’s preparation theorem, this is only possible if am = 0 for all m ≥ 1.
This completes the proof of the claim.

Now, for any g ∈ R〈Z〉[κI ], we have that

g
κI(1 + βnZ)

∈ R〈Z〉T(R)=1 = R.
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We can describe ωκI ,0 over Xr,I locally as well. Given λ ∈ Z×p , we write λ̄ for
its image in (Z/pnZ)× ∼= Gal(IGn,r,I/Xr,I). The identification with the Galois
group (unique up to sign) is determined by λ̄ ∗ Puniv

n = λ̄−1 · Puniv
n (i.e., λ̄ ∗ Puniv

n

is the image of λ̄−1 under the universal trivialization Z/pnZ → (Hn)∨). Up to
changing ω, we may assume that f = δω and still f ≡ dlog(Puniv

n )mod βnR.
Then ω]|R = f R and λ̄∗ω]|R = λ−1 f R and we recall that the action of Z×p on
V0(ω

], s)(R0) was given by composition with

γλ : λ̄∗ω]|R −→ ω]|R
λ−1 f 7−→ f

(i.e., multiplication by λ). More precisely, consider a point (ψ, v) ∈ V0(ω
], s)(R0),

where ψ : Spf(R0) → Spf(R) is a section of the structure morphism hn and then
v = (1 + βna) f ∨ : ω]|R → R0 is a morphism of R–modules (note that R0 is an
R–algebra via ψ) such that (v mod βn)(s) = 1. Then λ ∗ (ψ, v) = (λ̄ ◦ ψ, v′), where

v′ = (1 + βna)(λ−1 f )∨ : λ̄∗ω]|R ω]|R R0
ψ∗(γλ) v

is a morphism of R–modules (but now the R–algebra structure on R0 comes from
λ̄ ◦ ψ instead!). In fact, by the universal property of fibre products we have a
commutative diagram

Spf(R0)

V0(λ̄
∗ω], λ̄∗s)|R V0(ω

], s)|R

Spf(R) Spf(R)

Spf(R0)

ψ

v◦ψ∗(γλ)

v′

f̃n

p
fn

λ̄

that we can use to describe v′. Recall that fn,∗OV0(ω],s)|R is (the coherent sheaf

associated with) R〈Z〉, where the formal variable Z corresponds to f−1
βn

, and

f̃n,∗OV0(λ̄∗ω],λ̄∗s)|R is (the coherent sheaf associated with) R〈Z̃〉, where the formal

22



variable Z̃ corresponds to λ−1 f−1
βn

. From the relation

f − 1
βn

= λ
(λ−1 f − 1

βn

)
+

λ− 1
βn

,

we see that the top horizontal arrow is given by

R〈Z̃〉 R〈Z〉

λZ̃ +
λ− 1

βn
Z

(this is a morphism of R0–algebras, but not of R–algebras!). We can identify v with
the morphism of R–algebras (the structure given by ψ) defined by

Z 7→ (1 + βna)− 1
βn

= a

and similarly v ◦ ψ∗(γλ) with the morphism of R–algebras (the structure given by
ψ again) defined by

Z̃ 7→ (1 + βna)− 1
βn

= a.

Therefore, v′ is identified with

R〈Z〉 R〈Z̃〉 R0

Z λZ̃ +
λ− 1

βn
λa +

λ− 1
βn

(morphism of R0–algebras, but not of R–algebras!). Since the action of Text(R0) on
f0,∗OV0(ω],s)|R is defined by imposing the condition

v(λ ∗ Z) = (λ ∗ v)(Z) for all v ∈ (1 + βnR0) f ∨,

we conclude that
λ ∗ Z =

λ− 1
βn

+ λZ.

Therefore,
λ ∗ κ0

I (1 + βnZ) = κ0
I (λ)κ

0
I (1 + βnZ)

and ωκI ,0 is locally given2 by

R〈Z〉[κ0
I ] = R0 · κ0

I (1 + βnZ).
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For V0(H
], s), we have similarly defined actions. In particular,

t ∗ Z =
t− 1

βn
+ tZ and t ∗Y = tY.

Lemma 11. The sheaf gn,∗OV0(H ],s)[κI ] on IGn,r,I is locally given by

R〈Z, Y〉[κI ] =

{ ∞

∑
m=0

amκI(1 + βnZ)
Ym

(1 + βnZ)m : am → 0 as m→ ∞
}

.

Proof. The proof is completely analogous to that of lemma 10. We first prove that
R〈Z, Y〉T(R)=1 = R〈V〉, where

V =
Y

1 + βnZ
.

If g ∈ R〈Z, Y〉 is expressed as

g = ∑
m,i

am,iZmYi = ∑
m,i

bm,iZmVi,

we see that g ∈ R〈Z, Y〉T(R)=1 implies that

g = t ∗ g = ∑
m,i

bm,i

( t− 1
βn

+ tZ
)m

Vi.

Comparing the coefficients of Vi for a fixed i ≥ 0, we get

∑
m≥0

bm,i

( t− 1
βn

)m
= ∑

m≥0
bm,iZm.

The same trick as before, evaluating at Z = 0, shows that

∑
m≥1

bm,ium = 0 for all u =
t− 1

βn
∈ R

and so the result follows by Weierstrass’s preparation theorem.

2This part in subsection 3.2.1 of the Andreatta–Iovita’s paper “Triple product. . . ” [2] is not very
detailed and has several mistakes. Ju-Feng and I have had many discussions about these things
(and how the finite part of the character, κI,f, should come into play if we want to compute ωκI

instead). I’m not very satisfied with this part, as we should write better what happens with the
extension R/R0. In loc. cit., Andreatta–Iovita wrote that the explicit formula should be valid only
for n = 1. Presumably because in that case R is (essentially?) R0 ⊗Λ0

I
ΛI and we have a basis given

by the Teichmüller lifts of (Z/pZ)×. We should ask Adrian how this works at some point.
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Finally, for any g ∈ R〈Z, Y〉[κI ],

g
κI(1 + βnZ)

∈ R〈Z, Y〉T(R)=1 = R〈V〉.

We are going to use the following important theorem.

Theorem 12. (This is theorem 3.11 of Andreatta–Iovita’s paper “Triple product. . . ” [2].)
(1) The action of the torus Text on the sheaf f0,∗OV0(H ],s) (over Xr,I) preserves the

filtration. Write Filj W0
κI
= Filj f0,∗OV0(H ],s)[κ

0
I ]. Then

(i) Filj W0
κI

is a locally free OXr,I –module,
(ii) W0

κI
is the α–adic completion of lim−→j

Filj W0
κI

and

(iii) Fil0 W0
κI
∼= ωκI ,0 and Grj W0

κI
∼= ωκI ,0 ⊗̂OXr,I

Hdgj ω−2j.

(2) Defining Filj WκI = Filj W0
κI
⊗̂OXr,I

ωκI ,f, the filtered OXr,I –module WκI satisfies
properties analogous to (i), (ii) and (iii) above (replacing ωκI ,0 with ωκI ).

(3) Specializing κI at a classical weight k ∈ Z>0, there is a canonical identification

Symk(H )
[1

α

]
= Filk Wk

[1
α

]
(as sheaves on Xr,I) that is compatible with the filtrations (recall that on Symk(H )

we have the Hodge filtration).

3.2 The Gauss–Manin connection

From now on, we assume further that I ⊂ [0, ∞). There is a Gauss–Manin con-
nection ∇ on H and we would like to “restrict” it to a connection on H ] ⊂H .
However, this is not possible over IGn,r,I and we have to modify it.

Let IG ′n,r,I → IGn,r,I be the IGn,r,I–adic space parametrizing trivializations
E [pn] ∼= (Z/pnZ)2 compatible with the trivializations (Hn)∨ ∼= Z/pnZ. Define
IG′n,r,I to be the normalization of IGn,r,I in IG ′n,r,I .

Fact. The Gauss–Manin connection on H = H1
dR(En,r,I/IG′n,r,I) provides an in-

tegrable connection ∇] on H ] over IG′n,r,I .

Remark. Again by abuse of notation we use the same symbols for the sheaves on
Xr,I and for their pull-backs to IGn,r,I or IG′n,r,I . If it is not clear from the context,
we will specify the base space.
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Fix affine opens

Spf(R′) IG′n,r,I

Spf(R) IGn,r,I

Spf(R0) Xr,I

p

h′n
p

hn

as in the previous section, with a basis ω, η of H |R0 . In this case, we consider δ

and βn in R′. We obtain a basis f = δω, e = δpη of H ]|R′ (i.e., locally over IG′n,r,I).

Write P
(1)
R′/Λ0

I
for the first infinitesimal neighbourhood of Spf(R′) with respect

to the diagonal morphism ∆ : Spf(R′) → Spf(R′ ⊗̂Λ0
I

R′). Let I(∆) be the ideal
of definition of ∆(Spf(R′)) (we may assume that ∆ is a closed immersion over
Spf(R′)), so that P(1)

R′/Λ0
I
= Spf

(
(R′ ⊗̂Λ0

I
R′)/I(∆)2). Let j1, j2 : P(1)

R′/Λ0
I
→ Spf(R′)

be the morphisms induced by the two natural projections.
By Grothendieck’s formalism, we have an isomorphism

ε] : j∗2H ]|R′ → j∗1H ]|R′

(with some extra conditions) corresponding to the Gauss–Manin connection ∇].
Let

A =
(

a b
c d

)
∈ GL2

(
P

(1)
R′/Λ0

I

)
be the matrix of ε] with respect to the bases 1⊗ f , 1⊗ e of j∗2H ]|R′ and f ⊗ 1, e⊗ 1
of j∗1H ]|R′ , so that

ε](1⊗ f 1⊗ e) = ( f ⊗ 1 e⊗ 1)
(

a b
c d

)
.

Lemma 13.
(1) We can express a = 1 + a0 and d = 1 + d0 with a0, b, c, d0 ∈ I(∆). In particular,

a2
0 = b2 = c2 = d2

0 = 0 in P
(1)
R′/Λ0

I
.

(2) Regarding a0, b, c, d0 ∈ I(∆)/I(∆)2 ∼= Ω1
R′/Λ0

I
,

a0, b, c, d0 ∈
1

Hdg
(
(h′n)

∗Ω1
Xr,I/Λ0

I

)∣∣∣
R′

=
1

Hdg
(h′n)

∗Ω1
R0/Λ0

I
.

Moreover, Hdg · c is (the pull-back of) the Kodaira–Spencer differential KS(ω, η).

Proof. The first part is just restating that ε] ≡ id mod I(∆).
We can express δp−1 = Ep−1(En,r,I/R′, ω) = u|R′ for some u ∈ R0 (a generator
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of Hdg), so

du|R′ = dδp−1 = (p− 1)δp−2 dδ = (p− 1)u|R′ dlog(δ).

Therefore,

dlog(δ) =
1

p− 1
du|R′
u|R′

∈ 1
Hdg

Ω1
R0/Λ0

I

∣∣
R′ .

On the other hand, the Kodaira–Spencer isomorphism

KS: ω H H ⊗̂OXr,I
Ω1

Xr,I/Λ0
I

ω−1 ⊗̂OXr,I
Ω1

Xr,I/Λ0
I

∇

provides a basis Θ = KS(ω, η) of Ω1
R0/Λ0

I
defined by KS(ω) = η̄ ⊗ KS(ω, η)

(where η̄ is the image of η in ω−1|R0). Thus, we can write

∇(ω) = xω⊗Θ + η ⊗Θ and

∇(η) = yω⊗Θ + zη ⊗Θ

for some x, y, z ∈ R0.
Now, over R′ (omitting the pull-back from the notation), if we write du = tuΘ,

we can express

∇]( f ) = ∇(δω) = δ
(
xω⊗Θ + η ⊗Θ

)
+ δω⊗ dlog(δ)

= x f ⊗Θ +
e

δp−1 ⊗Θ + f ⊗ du
(p− 1)u

=
(

x +
tu

(p− 1)u

)
( f ⊗Θ) +

1
δp−1 (e⊗Θ)

and similarly

∇](e) = ∇(δpω) = δp(yω⊗Θ + zη ⊗Θ
)
+ pδpη ⊗ dlog(δ)

= yδp−1 f ⊗Θ + ze⊗Θ + pe⊗ du
(p− 1)u

= yδp−1( f ⊗Θ) +
(

z +
ptu

(p− 1)u

)
(e⊗Θ).

Recall that ε](1⊗ g) = g⊗ 1 +∇](g). That is,

∇]( f ) = a0( f ⊗ 1) + c(e⊗ 1) and ∇](e) = b( f ⊗ 1) + d0(e⊗ 1).
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Comparing coefficients, we see that

a0 =
(

x +
tu

(p− 1)u

)
Θ,

b = yδp−1Θ,

c =
1

δp−1 Θ,

d0 =
(

z +
ptu

(p− 1)u

)
Θ.

This completes the proof, as u|R′ = δp−1 generates Hdg.

We next use these computations to define a Gauss–Manin connection ∇κI
on

WκI over the generic fibre Xr,I of Xr,I .
Consider the commutative diagram

V0(H
], s)|R′ V0(H

], s)

Spf(R′) IG′n,r,I

g′n

(where the vertical arrows are the structure morphisms). A computation analogous
to that of lemma 11 (but over IG′n,r,I instead of IGn,r,I) shows that,

g′n,∗OV0(H ],s)[κI ]
∣∣
R′ = R′〈V〉 · κI(1 + βnZ), where V =

Y
1 + βnZ

,

and so, for i ∈ { 1, 2 },

j∗i
(

g′n,∗OV0(H ],s)[κI ]
∣∣
R′
)
=
(
(R′ ⊗̂Λ0

I
R′)/I(∆)2)〈V〉 · κI(1 + βnZ).

Define εκI : j∗2
(

g′n,∗OV0(H ],s)[κI ]
∣∣
R′
)
→ j∗1

(
g′n,∗OV0(H ],s)[κI ]

∣∣
R′
)

to be the isomorph-
ism induced by ε] (i.e., determined by the matrix A). Namely,

εκI (1 + βnZ) = ε](1⊗ f ) = a( f ⊗ 1) + c(e⊗ 1)

= a(1 + βnZ) + cY = (1 + βnZ)(a + cV)

and

εκI (Y) = ε](1⊗ e) = b( f ⊗ 1) + d(e⊗ 1)

= b(1 + βnZ) + dY = (1 + βnZ)(b + dV),
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whence

εκI

(
κI(1 + βnZ)Vm) = εκI

(
κI(1 + βnZ)

( Y
1 + βnZ

)m
)

= κI
(
(1 + βnZ)(a + cV)

)( (1 + βnZ)(b + dV)

(1 + βnZ)(a + cV)

)m

= κI(1 + βnZ) · (κI −m)(a + cV) · (b + dV)m.

But we can express

(κI −m)(a + cV) = exp
(
(uκI −m) log(1 + a0 + cV)

)
= 1 + (uκI −m)(a0 + cV)

(using the power series expansions of exp and log and that a2
0 = c2 = a0c = 0 in

I(∆)/I(∆)2) and

(b + dV)m =
(
b + (1 + d0)V

)m
= (1 + md0)Vm + mbVm−1

(using the binomial expansions and that b2 = d2
0 = bd0 = 0 in I(∆)/I(∆)2).

Therefore, a straight-forward computation shows that εκI

(
κI(1+ βnZ)Vm) is given

by

κI(1 + βnZ)
[
(uκI −m)cVm+1 +

(
1 + md0 + (uκI −m)a0

)
Vm + mbVm−1

]
.

and so

∇κI

(
κI(1 + βnZ)Vm) = εκI

(
κI(1 + βnZ)Vm)− κI(1 + βnZ)Vm

= κI(1 + βnZ)
[
(uκI −m)Vm+1 ⊗ c + mVm ⊗ d0 +

+ (uκI −m)Vm ⊗ a0 + mVm−1 ⊗ b
]
,

which is an element of p1−nκI(1 + βnZ)R′〈V〉 ⊗̂R′ Ω1
R′/Λ0

I
.

All in all, we obtain a local formula for the Gauss–Manin connection ∇κI
over

IG′n,r,I which clearly satisfies Griffiths’s transversality. Combining the formula
with lemma 13, we obtain the main result of this section.

Theorem 14. (This is theorem 3.18 of Andreatta–Iovita’s paper “Triple product. . . ” [2].)
(1) The Gauss–Manin connection ∇κI

on g′n,∗OV0(H ],s)[κI ] (over IG′n,r,I) descends
to an integrable connection on gn,∗OV0(H ],s)[κI ] (over IGn,r,I) that also satisfies
Griffiths’s transversality if we invert α.

(2) Again after inverting α, the Gauss–Manin connection descends further to an integ-
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rable connection

∇κI
: W0

κI
→W0

κI
⊗̂OXr,I

Ω1
Xr,I/Λ0

I
[α−1]

satisfying Griffiths’s transversality and that induces an OXr,I –linear morphism

Grj∇κI
: Grj WκI → Grj+1 WκI ⊗̂OXr,I

Ω1
Xr,I/Λ0

I
[α−1]

on the j–th graded piece that is an isomorphism multiplied by uκI − j.
(3) Similarly, there is an induced Gauss–Manin connection

∇κI
: WκI →WκI ⊗̂OXr,I

Ω1
Xr,I/Λ0

I
[α−1]

with analogous properties.
(4) If we specialize κI at k ∈ Z>0, the identification Symk H [α−1] = Filk Wk[α

−1] is
compatible with the Gauss–Manin connections on both sides.

3.3 Nearly overconvergent modular forms

Let IGord
n,r,I denote the open formal subscheme of IGn,r,I defined by the inverse

image of the ordinary locus of XI .

Fact. Over IGord
n,r,I , we have H ] = H = ω ⊕ ω−1. Indeed, the first equality is a

consequence of Hdg being invertible and the splitting comes from identifying ω−1

with the submodule where a fixed lift of the Frobenius acts invertibly.

By the functoriality of the vector bundles with marked sections, we obtain
maps

V0(H
], s)ord = V0

(
H ]|

IGord
n,r,I

, s
)
→ V

(
H ]|

IGord
n,r,I

)
→ V(ω−1),

whence we get an isomorphism

V0(H
], s)ord → V0(ω

], s)ord ×
IGord

n,r,I
V(ω−1).

Therefore, we obtain an isomorphism

Word,0
κI

= W0
κI
|Xord

I

∼= ω
κ0

I
ord ⊗̂O

Xord
I

Sym ω−2

and similarly for Word
κI

. (This isomorphism follows because, locally, W0
κI

consists
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of elements of the form

∞

∑
m=0

amκI(1 + βnZ)
Ym

(1 + βnZ)m

and both Y and 1 + βnZ generate ω−1.)

Fact. The space of Katz’s p–adic modular forms of weight κ0
I (resp. κI) is identified

with H0(Xord
I , ω

κ0
I

ord) (resp. H0(Xord
I , ω

κ0
I

ord)).

We can define the q–expansion map for the sheaf W0
κI

as the composition

H0(Xr,I , W0
κI
) H0(Xord

I , W
ord,0
κI ) H0(Xord

I , ω
κ0

I
ord) Λ0

I [[q]]
Res q–exp

(and similarly for WκI ).

Definition 15. A p–adic modular form g (in the sense of Katz) of weight κI is
called a nearly overconvergent modular form if there exist r and I as above such that
the q–expansion of g in Λ0

I [[q]] lies in the image of the q–expansion map for WκI .
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4 Operations on the sheaves and q–expansions

We keep the notation of the previous talks. In particular, we fix r, n and I as in
assumption 8 and use them to construct the sheaves ωκI ,0, ωκI , W0

κI
and WκI on

the formal scheme Xr,I .

4.1 The U and V operators

Motivation. Let R0 be a p–adically complete ring. For every r0 ∈ R0, let
M0(N; r0) denote the algebra of Katz’s p–adic modular functions of level N and
“growth condition” r0 (i.e., the locus of overconvergence of these functions is
defined by the condition vp(Er0

p−1) ≤ 1) that are holomorphic at infinity. In his
article “p–adic properties of modular schemes and modular forms” [3], Katz used
the theory of canonical subgroups to define a Frobenius3

ϕ : M0(N; rp
0 ) 7−→ M0(N; r0) whenever vp(r0) <

1
p + 1

defined as follows. Given a triple (E, ψ, ι), where E is an elliptic curve over some
R0–algebra, ψ : µN → E is a level Γ1(N)–structure and ι : Ê→ Gm is a trivialization
of the formal group, we can form a similar triple (E′, ψ′, ι′) using the quotient
π : E → E/H1 = E′ by the canonical subgroup H1 of E and its dual π̌. Namely,
there are commutative diagrams

E

µN

E′

ψ

ψ′

π̌ and

Ê

Gm

Ê′

ι

π̌

ι′

characterizing ψ′ and ι′, respectively. Then

ϕ( f )(E, ψ, ι) = f (E′, ψ′, ι′).

A computation with Tate curves shows that ϕ corresponds to the V operator given
on q–expansions by

V
(

∑
m≥0

amqm
)
= ∑

m≥0
amqpm.

3Recall that the canonical subgroup is a lift from characteristic p of the kernel of the relative
Frobenius morphism of an elliptic curve. Hence the name Frobenius for ϕ.
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Moreover, if r0 = 1 or after inverting p, the morphism ϕ is finite and flat (hence
locally free by noetherianness) and admits a well-defined trace. Again, a computa-
tion with Tate curves shows that 1

p tr(ϕ) corresponds to the U operator given on
q–expansions by

U
(

∑
m≥0

amqm
)
= ∑

m≥0
apmqm.

In the setting of Andreatta–Iovita, we have to define a morphism at the level of
modular curves4 that we can use to define the operators U and V on the modular
sheaves. We consider the morphism Φ : Xr+1,I → Xr,I defined in terms of moduli
by E 7→ E ′ = E/H1. We consider as well i : Xr+1,I → Xr,I defined in terms of
moduli by E 7→ E . (More precisely, we can define such morphisms in terms of
moduli on the generic fibres and then take normalizations to obtain the morphisms
of formal schemes.) We would like to define

V: H0(Xr,I , ωκI ) H0(Xr+1,I , Φ∗ωκI ) H0(Xr+1,I , i∗ωκI )Φ∗ ?

and

U: H0(Xr+1,I , i∗ωκI ) H0(Xr+1,I , Φ∗ωκI ) H0(Xr,I , ωκI )
[ 1

p

]
.??

1
p tr(Φ)

Fact. The morphism Φ is finite and flat (of degree p). Therefore, it admits a
well-defined trace tr(Φ) : OXr,I → Φ∗OXr+1,I .

It turns out that we can define natural maps filling the gaps ? and ?? above
via the formalism of vector bundles with marked sections. We use lemma 6.4
and corollary 6.5 of Andreatta–Iovita’s article “Triple product. . . ” [2] (technical
results):

Lemma 16. Let S = Spf(R) be an affine open of IGñ,r,I or of IG′ñ,r,I for some ñ ≥ n.
Let E/S and Ẽ/S be elliptic curves coming from IGn,r,I (in the sense that they are
endowed with canonical subgroups Hn and H̃n of order pn and trivializations of (Hn)∨

and (H̃n)∨, respectively) or from IG′n,r,I . Assume that Hdg(Ẽ) ⊂ Hdg(E) and work
with the ideal of definition I = pn Hdg(Ẽ)−pn/(p−1). Let λ : Ẽ → E be an isogeny of
degree pd for some d ≥ 1. If λ induces a morphism H̃n → Hn that is generically an

4Notice that the ring of modular functions is the ring of global sections of the structure sheaf on
the modular curve. Thus ϕ essentially defines the desired map of modular curves.
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isomorphism, then λ∗ : H1
dR(E/S)→ H1

dR(Ẽ/S) induces a commutative diagram

0 ω] H ] Hdg(E)
p

p−1 ω∨ 0

0 ω̃] H̃ ] Hdg(Ẽ)
p

p−1 ω̃∨ 0

λ∗∼ = λ] ((λ∨)∗)∨

in which the first vertical arrow is an isomorphism and the last vertical arrow is injective
with image τλ Hdg(Ẽ)p/(p−1), where

τλ = pd ·Hdg(Ẽ)
(p+1)(pd−1)

pd(p−1) .

Corollary 17. In the situation of lemma 16, assume further that d = 1 and consider the
commutative diagram

V0(ω̃
], s̃) V0(H̃

], s̃)

V0(ω
], s) V0(H

], s)

S
f̃

λ]

g̃f g

induced by the functoriality of vector bundles with marked sections. The morphism
g∗OV0(H ],s) → g̃∗OV0(H̃ ],s′) preserves the filtrations and induces on the m–th graded
pieces (via the identifications in proposition 5) the morphism

f∗OV0(ω],s) ⊗̂OS
Symm(Hdg(E)

p
p−1 ω∨)→ f̃∗OV0(ω̃

],s̃) ⊗̂OS
Symm(Hdg(Ẽ)

p
p−1 ω̃])

defined by the isomorphism f∗OV0(ω],s) → f̃∗OV0(ω̃
],s̃) and

(
(λ∨)∗

)∨. If, furthermore,

E/S and Ẽ/S come from IG′n,r,I (in the sense that they are endowed with trivializations of
E[pn] and Ẽ[pn], respectively), then λ] is compatible with the Gauss–Manin connections.

To simplify the notation, let E denote the universal (generalized) elliptic curve
En,r,I/IGn,r,I or En+1,r+1,I/IGn+1,r+1,I (depending on the context; this abuse of
notation should not create confusion). Since we want to apply lemma 16 and
corollary 17, we lift i, Φ : Xr+1,I → Xr,I to i, Φ : IGn+1,r+1,I → IGn,r,I in the obvious
way (we use the same symbols again in a harmless abuse of notation). In particular,
to extend the definition of Φ in terms of moduli we observe that H′n = Hn+1/H1
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and (H′n)∨ = (Hn+1)
∨[pn], so for the trivializations we use Pn+1 7→ P′n = p · Pn+1.

We obtain cartesian diagrams

E E

IGn+1,r+1,I IGn,r,I

p

i

and
E′ = E/H1 E

IGn+1,r+1,I IGn,r,I

p

Φ

from which we see that i∗(H ], s) = (H ], s)5 and Φ∗(H ], s) =
(
(H ′)], s′

)
(note

that we use the ideal of definition β
n

even to construct the sheaves and marked
sections over IGn+1,r+1,I , as we only get a canonical subgroup of order pn by
pull-back from IGn,r,I).

Let λ : E′ → E be the isogeny between elliptic curves over IGn+1,r+1,I dual to
the quotient E→ E/H1 = E′. We are in the situation of lemma 16, so we obtain

i∗(H ], s) Φ∗(H ], s)

i∗(ω], s) Φ∗(ω], s)

λ]

∼=

⊂ ⊂

inducing the desired morphisms filling the gaps ? and ?? (the latter works even
for WκI , while the former only for ωκI because we need to invert the direction of
the arrows).

Definition 18. The operators U and V are defined to be

U: H0(Xr+1,I , i∗ωκI ) H0(Xr+1,I , Φ∗ωκI ) H0(Xr,I , ωκI )
[ 1

p

]1
p tr(Φ)

and

V: H0(Xr,I , ωκI ) H0(Xr+1,I , Φ∗ωκI ) H0(Xr+1,I , i∗ωκI )Φ∗

(where the unlabelled arrows are the maps induced by λ] and by the inverse of its
restriction λ∗ as above; cf. lemma 16).

Proposition 19. For every h ∈ Q≥0, the groups H0(Xr,I , WκI ) and H0(Xr,I , Film WκI )

admit (locally on the weight space, in the sense that we might have to shrink I) h–slope
5Again, this is an abuse of notation. In the left-hand side, (H ], s) denotes the sheaf obtained

from H1
dR(En,r,I/IGn,r,I) (with the marked section with respect to the ideal of definition β

n
). In the

right-hand side, however, (H ], s) denotes the sheaf obtained from H1
dR(En+1,r+1,I/IGn+1,r+1,I)

(with the marked section with respect to the ideal of definition β
n
, not β

n+1
as one might initially

expect!).
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decompositions for U:

H0(Xr,I , WκI ) = H0(Xr,I , WκI )
≤h ⊕H0(Xr,I , WκI )

>h

(and similarly for Film WκI ). Furthermore,

H0(Xr,I , Film WκI )
≤h = H0(Xr,I , WκI )

≤h if m� 0.

Idea of the proof. Locally (i.e., shrinking I if necessary),

H0(Xr,I , Film WκI ) = H0(Xr,I , Film WκI )
≤h ⊕H0(Xr,I , Film WκI )

>h

because Film WκI is coherent and U is a compact6 operator. By lemma 16 and co-
rollary 17, λ] induces a map on Grm+1 that is 0 mod τm+1

λ ⊂
(
αb(m+1)/pc). In

particular, the operator U acting on H0(Xr,I , WκI / Film WκI ) is divisible by ph+1 if
m� 0 and so this part admits a trivial decomposition.

Now the result for WκI follows7 from the short exact sequence

0 H0(Xr,I , Film WκI ) H0(Xr,I , WκI ) H0(Xr,I , WκI / Film WκI ) 0

(where the exactness on the right comes from the fact that Film WκI is coherent on
the affinoid Xr,I , hence acyclic).

4.2 Twists by finite characters

Motivation. Let n ∈ Z≥1 with the usual assumptions with respect to r and I (cf.
assumption 8) and fix a primitive pn–th root of unity ζ ∈ Qp. Given a primitive
character χ : (Z/pnZ)× → ΛI [ζ]

×, there is a twist-by-χ operator θχ defined easily
on q–expansions by

θχ
(
∑
i≥0

aiqi
)
= ∑

i≥0
χ(i)aiqi.

But we can express (factoring out the common values of χ and rearranging the
sum)

∑
i≥0

χ(i)aiqi = ∑
l

χ(l) ∑
i≥0

( 1
ϕ(pn)

·∑
j

ζ(l−i)j
)

aiqi

6Giovanni said this isn’t necessary: coherence means that we work in finite dimensions and in
that case we always have decompositions.

7Giovanni doesn’t think this is so simple. Apparently one needs a technical condition (PR) to
obtain the splitting.
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=
1

ϕ(pn) ∑
j

χ−1(j)∑
l

χ(l j)ζ l j ∑
i≥0

aiζ
−ijqi

=
gχ

ϕ(pn) ∑
j

χ−1(j)∑
i

ai(ζ
−jq)i

where the summation indices j and l run over (Z/pnZ)× and

gχ = ∑
l

χ(l)ζ l

is the Gauss sum of χ. Thus, we need to define for every j ∈ (Z/pnZ)× an
operation on the modular curves (i.e., in terms of moduli) that corresponds to the
transformation of Tate curves Tate(qN) 7→ Tate(qNpn

) 7→ Tate(ζ−jqN). But such
transformations are well-known: they occur in the definition of Tpn already!

The arguments are similar to those of section 4.1. Consider the morphism
t : Xr+n,I → Xr,I defined in terms of moduli by E 7→ E ′ = E/Hn. (More precisely,
we can define a morphism on the generic fibres using the moduli interpretations
and then take normalizations to obtain the morphism of formal schemes.) In fact,
the same arguments as in section 4.1 show that we obtain from this construction a
cartesian diagram

E′ = E/Hn E

IG2n,r+n,I IGn,r,I

p

t

(where, again by abuse of notation, E denotes two universal generalized elliptic
curves: either En,r,I/IGn,r,I or E2n,r+n,I/IG2n,r+n,I depending on the context). The
isogeny λ : E′ → E between elliptic curves over IG2n,r+n,I dual to the quotient
E→ E/Hn = E′ satisfies the hypotheses of lemma 16.

We want to define similarly tj : IG2n,r+n,I → IGn,r,I , first on moduli (i.e., on the
generic fibres). Given a triple (E , H2n, P2n) consisting of an elliptic curve E with
a canonical subgroup H2n of order p2n and a trivialization P2n of (H2n)

∨, we can
form (E ′, H′n, P′n) taking the quotient by Hn as above. Let Ȟ′n be the kernel of the
isogeny E ′ → E dual to the quotient E → E/Hn = E ′. Then E ′[pn] = H′n × Ȟ′n
and the Weil pairing induces a duality isomorphism Ȟ′n ∼= (H′n)∨. Therefore, P′n
induces isomorphisms

σ : Z/pnZ→ Ȟ′n and σ∨ : H′n → µpn .

Assume that we work over some base ring containing ζ. There is an obvious
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identification
Hom

(
Z/pnZ, µpn

)
Z/pnZ

(1 7→ ζ j) j

∼=

(depending on the fixed ζ). Furthermore, there is a bijection

η : Hom(Ȟ′n, H′n) −→ Hom
(
Z/pnZ, µpn

)
ρ 7−→ σ∨ ◦ ρ ◦ σ

and so we obtain a morphism ρj : Ȟ′n → H′n for every j ∈ Z/pnZ. We define the
subgroup H′ρj

= (ρj × idȞ′n
)(Ȟ′n) ⊂ H′n × Ȟ′n = E ′[pn]. Equivalently, the cartesian

diagram

H′ρj
E ′[pn]

Z/pnZ µpn ×Z/pnZ

1 (ζ j, 1)

p
σ∨×σ−1∼ =

characterizes H′ρj
. (Observe that, as j varies, we obtain all subgroups of order

pn that have trivial intersection with H′n, which corresponds to µpn × { 0 } in the
bottom row.) We define E ′j = E ′/H′ρj

. The canonical isogeny E ′ → E ′j “trans-
lates” the additional structure (i.e., maps H′n isomorphically onto the canonical
subgroup H′n,j of order pn of E ′j ). Therefore, we can define tj in terms of moduli by
(E , H2n, P2n) 7→ (E ′j , H′n,j, P′n,j). We obtain a cartesian diagram

E′j = E′/H′ρj
E

IG2n,r+n,I IGn,r,I

p

tj

analogous to the one given by t. Also, the quotient isogeny λj : E′ → E′j over
IG2n,r+n,I satisfies the hypotheses of lemma 16.

Remark. Observe that, for Tate(qN) regarded as Gm/qNZ, the canonical subgroup
is simply Hn = µpn and Tate(qN)/Hn ∼= Tate(qNpn

), as desired. Then again
the canonical subgroup of Tate(qNpn

) is H′n = µpn , whereas Ȟ′n = 〈qN〉. The
Weil pairing identifies8 qN with (ζ 7→ ζ−1), so that σ∨(ζ) = ζ and σ(1) = q−N.
Therefore, H′ρj

= 〈ζ−jqN〉 and Tate(qNpn
)/H′ρj

∼= Tate(ζ−jqN), also as desired.
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By lemma 16, we have injective morphisms

H ] (H ′)] (H ′
j )

] = t∗j H
]λ] λ]

j

(of sheaves on IG2n,r+n,I) with the same image. Therefore, we obtain isomorphisms
θj : t∗j WκI →WκI for all j ∈ Z/pnZ.

Definition 20. The twist-by-χ operator θχ is defined9 to be

θχ =
gχ

ϕ(pn) ∑
j∈(Z/pnZ)×

χ(j)−1(θj ◦ t∗j ) : H0(Xr,I , WκI ) H0(Xr+n,I , WκI+2χ)
[ 1

p

]

(where gχ is the Gauss sum of χ with respect to the fixed ζ).

Remark. The fact that θχ transforms the weights as stated in definition 20 follows
from a rather straight-forward computation, which is the content of lemma 3.31 of
Andreatta–Iovita’s article “Triple product. . . ” [2].

4.3 The overconvergent projection

We defined the Gauss–Manin connection ∇κI
: WκI →WκI ⊗̂OXr,I

Ω1
Xr,I/W0

I
over

Xr,I by descent from IGn,r,I using an explicit local formula. (Observe that we
work over the generic fibres, as we had to invert α; cf. theorem 14). By Kodaira–
Spencer’s isomorphism Ω1

Xr,I/W0
I

∼= ω2 and regarding ω2 = Fil0 W2 ⊂ W2, we
can interpret the Gauss–Manin connection as a morphism ∇κI

: WκI →WκI+2. In
fact, for every m ≥ 0, we obtain a commutative diagram

0 Film WκI WκI WκI / Film WκI 0

0 Film+1 WκI+2 WκI+2 WκI+2/ Film+1 WκI+2 0

∇κI
∇κI

∇κI

8Since the Weil pairing is alternating, there are two possible identifications of Ȟ′n with the dual
of H′n, depending on which factor is “the first” and which is “the second”. This computation isn’t
done in the article “Triple product. . . ” [2], so I’m not sure if that’s how Andreatta–Iovita thought
about it. This is however the sign that makes their formula work, I believe. Ju-Feng thinks the
“standard identification” is the other one. Another concern is that there are several possibilities for
σ, I simply chose the “most natural” one for this computation, but shouldn’t all intervene?

9Lennart and Giovanni don’t think such a definition can be integral (as it seems to be in
proposition 3.29 of Andreatta–Iovita’s article “Triple product. . . ” [2]) when n ≥ 1. I agree and so
added the 1

p at the end.
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with exact rows. We view the columns of this diagram as de Rham complexes
(Film WκI )

•, W•
κI

and (WκI / Film WκI )
• and define Hi

dR
(
Xr,I , W•

κI

)
to be the i–th

hypercohomology group of W•
κI

(and similarly for the other complexes). Since
both Film WκI and Film+1 WκI+2 are coherent sheaves and Xr,I is affinoid, we can
actually compute

Hi
dR
(
Xr,I , (Film WκI )

•) = Hi
(

H0(Xr,I , Film WκI )
∇κI−−→ H0(Xr,I , Film+1 WκI+2)

)
(i.e., the hypercohomology is simply the cohomology of the complex of global
sections in this situation). In particular, the only non-trivial de Rham cohomology
groups of (Film WκI )

• appear in degrees i = 0 and 1.

Lemma 21. For every m ≥ 0 there is a U–equivariant10 short exact sequence

0 H0(Xr,I , ωκI+2) H1
dR
(
Xr,I , (Film WκI )

•) m⊕
i=0

H0(Xr,I , ji,∗ω−i) 0,

where the first arrow is induced by the inclusion ωκI+2 = Fil0 WκI+2 ⊂ Film+1 WκI+2

and ji : Xr,I ×WI Spa(Qp, Zp) ↪→ Xr,I is given by specialization at the classical weight i
(viewed as a Qp–valued point ofWI).

Sketch of the proof. Over Xr,I , the Gauss–Manin connection ∇κI
induces on graded

pieces a morphism

ωκI−2m ∼= Grm WκI Grm+1 WκI+2
∼= ωκI−2m

∇κI

that is (an isomorphism times) multiplication by uκI − m (cf. theorem 14). In
particular, its kernel is trivial and its cokernel is ωκI−2m/(uκI −m)ωκI−2m ∼= ω−m.

10This lemma is (part of) lemma 3.32 of Andreatta–Iovita’s article “Triple product. . . ” [2]. In
loc. cit. they write that the action on the last term has to be modified, but I think it is a mistake
and that the modification should appear in the second part of their lemma, when they deal with
the torsion-free part. That makes more sense to me seeing the end of their proof (in particular the
relation between U and Coleman’s operator θi+1).
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We argue by induction on m. We have a commutative diagram

0

0 Film−1 WκI Film WκI Grm WκI 0

0 Film WκI+2 Film+1 WκI+2 Grm+1 WκI+2 0

ω−m

0

∇κI
∇κI

∇κI

with exact rows and column. By the observation before, if we apply H0(Xr,I ,−),
the resulting rows will still be exact (coherent sheaves on affinoids are acyclic) and
then the snake lemma yields a short exact sequence

0 H1
dR
(
Xr,I , (Film−1 WκI )

•) H1
dR
(
Xr,I , (Film WκI )

•) H0(Xr,I , jm,∗ω−m) 0

from which the result follows.

Remark. Since ji,∗ ω−i ∼= Gri WκI /(uκI − i)Gri WκI , if we invert (i.e., localize at)
uκI − i, then this part of the sequence goes away.

Definition 22. For each m ≥ 0, the overconvergent projection is defined to be the
isomorphism

H†
m : H1

dR
(
Xr,I , (Film WκI )

•)⊗ΛI ΛI

[ m

∏
i=0

(uκI − i)−1
]
∼=

∼= H0(Xr,I , ωκI+2)⊗ΛI ΛI

[ m

∏
i=0

(uκI − i)−1
]

induced by the inclusion H0(Xr,I , ωκI+2) ↪→ H1
dR
(
Xr,I , (Film WκI )

•) (cf. lemma 21).
Given h ∈ Q≥0, we can find locally on the weight space h–slope decompositions

for U of the de Rham cohomology groups above11 and choose m = m(h) large
enough so that H1

dR
(
Xr,I , (WκI / Film WκI )

•)≤h
= 0. In this situation, we can

define the overconvergent projection

H† : H1
dR
(
Xr,I , W•

κI

)≤h ⊗ΛI ΛI

[ m

∏
i=0

(uκI − i)−1
]
∼=
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∼= H0(Xr,I , ωκI+2)≤h ⊗ΛI ΛI

[ m

∏
i=0

(uκI − i)−1
]

similarly.

4.4 The Gauss–Manin connection on q–expansions

Consider the Tate curve Tate(qN) over R = Λ0
I ((q)) with its canonical differential

ωcan. Let H (q) = H1
dR(Tate(qN)/R). Let ∇ : H (q) → H (q) ⊗̂ Ω1

R/Λ0
I

be the

Gauss–Manin connection and let KS : ω(q)2 ∼= Ω1
R/Λ0

I
be the Kodaira–Spencer

isomorphism. It is well-known that

KS(ω2
can) =

dq
q

.

Its dual derivation is
∂ = q

d
dq

.

We use the basis ωcan, ηcan = ∇(∂)(ωcan) of H (q). Explicit formulae for the
Gauss–Manin connection on Tate curves are also well-known (cf. appendix A1
of Katz’s “p–adic properties of modular schemes and modular forms” [3], for
example):

∇(ωcan ηcan) = (ωcan ηcan)

(
0 0
dq
q 0

)
.

In this section, let κ : Z×p → ΛI be any locally analytic character (often the
universal character κI), so that for c � 0 there exists uκ ∈ p1−cΛ0

I with the
property that κ(t) = exp

(
uκ log(t)

)
for all t ∈ 1 + pcZp. As usual, we decompose

κ into its finite part κf : (Z/pZ)× → ΛI and κ0 = κ · κ−1
f : Z×p → Λ0

I .
Let W0

κ(q) (resp. Wκ(q), ωκ,0(q) or ωκ(q)) be the pull-back of W0
κ (resp. Wκ,

ωκ,0 or ωκ) by the morphism Spf(R) → Xr,I corresponding to Tate(qN) (in the
moduli interpretation of Xr,I). For simplicity, we use n = 1 in the construction
of these sheaves and p instead of β1 = p · Ep−1(q)−p/(p−1) as a generator of β

1
(this makes sense because Ep−1(q) is invertible in R). Now, using the formal
variables X = 1 + pZ and Y corresponding to the basis f = ωcan and e = ηcan of

11This is not obvious; it is a proposition (here not written as such for conciseness). It is proved
in the same way as proposition 19, using the result in loc. cit. and that the de Rham cohomology
groups of (Film WκI )

• can be computed from the global sections.
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H ](q) = H (q), the local computations of section 3.1 show that

ωκ,0(q) = R · κ(1 + pZ)

and
W0

κ(q) = R〈V〉 · κ(1 + pZ), where V =
Y

1 + pZ
.

Define (in general, for any two locally analytic characters κ and s)

Vκ,s = s(V) · κ(1 + pZ) = s(Y) · (κ − s)(1 + pZ).

With this notation,

Film W0
κ(q) =

m

∑
i=0

R ·Vκ,i for every m ≥ 0

and the q–expansion map is given by

W0
κ(q) R

∑
i≥0

λi ·Vκ,i λ0

(projection onto the piece with no powers of Y).
By the explicit formula12 obtained right before theorem 14, we can write

∇κ : W0
κ(q) −→W0

κ(q) ⊗̂R Ω1
R/Λ0

I

λ ·Vκ,i 7−→ ∂(λ)Vκ,i ⊗
dq
q

+ λ(uκ − i)Vκ,i+1 ⊗
dq
q

or, equivalently if we regard ∇κ : W0
κ(q) →W0

κ+2(q) (with dq
q corresponding to

(1 + pZ)2 by Kodaira–Spencer’s isomorphism),

∇κ(λVκ,i) = ∂(λ)Vκ+2,i + λ(uκ − i)Vκ+2,i+1.

Proposition 23. Consider a class [γ] ∈ H1
dR
(
Xr,I , (Film W0

κ)
•) represented by some

γ ∈ H0(Xr,I , Film+1 W0
κ+2) and express the evaluation of γ at Tate(qN)/R as

γ(q) =
m+1

∑
i=0

γi(q) ·Vκ+2,i.

12In that notation, a0 = b = d0 = 0 and c = dq
q , so most of the terms simply cancel.
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The q–expansion of H†
m
(
[γ]
)

is

m+1

∑
i=0

∂i(γi(q)
)

(uκ − i + 1)(uκ − i + 2) · · · uκ

Proof. The idea is to “get rid of” the powers Vi using that the class [γ] is defined in
Coker

(
∇κ : H0(Xr,I , Film W0

κ)→ H0(Xr,I , Film+1 W0
κ+2)

)
(i.e., modulo the image

of ∇κ). The formula for ∇κ above implies that

∇κ

(
γi(q)Vκ,i−1

)
= ∂

(
γi(q)

)
Vκ+2,i−1 + γi(q)(uκ − i + 1)Vκ+2,i

for 0 ≤ i ≤ m + 1. We deduce that

γi(q)Vκ+2,i ≡
∂
(
γi(q)

)
uκ − i + 1

Vκ+2,i−1 ≡
∂2(γi(q)

)
(uκ − i + 1)(uκ − i + 2)

Vκ+2,i−2 ≡ · · ·

≡
∂i(γi(q)

)
(uκ − i + 1)(uκ − i + 2) · · · uκ

Vκ+2,0 mod ∇κ

(
H0(Xr,I , Film W0

κ)
)
.

The last term is in ωκ+2,0(q), so it is precisely H†
m
(
[γ(q)]

)
multiplied by the basis

element Vκ+2,0.

In the remainder of this talk, we try to give some formulae for iterates of the
Gauss–Manin connection in terms of q–expansions. Such formulae will be useful
when we define p–adic iterations later.

Lemma 24. Let λ = λ(q) ∈ R and let s ∈ Z≥1. We can write

∇s
κ(λVκ,i) =

s

∑
j=0

cs,j · ∂s−j(λ)Vκ+2s,i+j,

where

cs,j =

(
s
j

) j

∏
l=1

(uκ − i + s− l) =
(

s
j

)
(uκ − i + s− 1) · · · (uκ − i + s− j).

Proof. We prove it by induction on s using that

∇κ(λVκ,l) = ∂(λ)Vκ+2,l + λ(uκ − l)Vκ+2,l+1.

The base case s = 1 is clear from this. Moreover, the formula implies that

cs+1,j = cs,j + (uκ+2s − i− j + 1)cs,j−1
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= (uκ − i + s− 1) · · · (uκ − i + s + 1− j) ·

·
[(

s
j

)
(uκ − i + s− j) +

(
s

j− 1

)
(uκ + 2s− i− j + 1)

]
and this last part inside the square brackets can be expressed as

s!
j!(s + 1− j)!

[
(s + 1− j)(uκ − i + s− j) + j(uκ − i + s− j + s + 1)

]
=

=
s!

j!(s + 1− j)!
[
(s + 1− j + j)(uκ − i + s− j) + j(s + 1)

]
=

s!
j!(s + 1− j)!

(s + 1)(uκ − i + s) =
(

s + 1
j

)
(uκ − i + s).

All in all,

cs+1,j =

(
s + 1

j

)
(uκ − i + s) · · · (uκ − i + s + 1− j)

as claimed.

Remark. This lemma suggests that, for a more general (locally analytic) weight
s : Z×p → Λ×I , we should have

∇s
κ(λVκ,i) = ∑

j≥0

(
us

j

)[ j

∏
l=1

(uκ + us − i− l)
]

∂s−j(λ)Vκ+2s,i+j.

For such a formula to make sense, we will need some “divisibility by powers of p”
condition on uκ and us.

From now on, we sometimes omit the weight in the subscript of the Gauss–
Manin connection (as we will mix several weights at the same time).

Proposition 25. Let λ = λ(q) ∈ RU=0 and let c ∈ Z≥1 such that pc−1uκ ∈ Λ0
I . For

every M ∈ Z≥1, we can write

(
∇p−1

κ − 1
)Mp

(λVκ,0) =
(p−1)Mp

∑
i=0

∑
h≥0

p2M−(c+1)i−2h[(1 + pZ)2(p−1) − 1
]hpgi,hVκ,i

(where the 1 on the left-hand side means idW0
κ(q)) with gi,h ∈ RU=0[1 + pZ] (i.e., these

are polynomials with coefficients in RU=0 evaluated at 1 + pZ). If, moreover, uκ ∈ pΛ0
I

(in particular we can take c = 1), then pM−2i−hgi,h ∈ RU=0[1 + pZ] too.
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Idea of the proof. Using lemma 24, we can compute for H ∈ Z≥1

(
∇p−1 − 1

)H
(λVκ,l) =

H

∑
s=0

(−1)H−s∇(p−1)s(λVκ,l)

=
H

∑
s=0

(p−1)s

∑
j=0

(
H
s

)
(−1)H−sc(p−1)s,j∂

(p−1)s−j(λ)Vκ+2(p−1)s,l+j

=
H

∑
s=1

(p−1)s

∑
j=1

(
H
s

)
(−1)H−sc(p−1)s,j∂

(p−1)s−j(λ)(1 + pZ)2(p−1)sVκ,l+j +

+
H

∑
s=0

(
H
s

)
(−1)H−s∂(p−1)s−j(λ)(1 + pZ)2(p−1)sVκ,l

=
H

∑
s=1

(p−1)s

∑
j=1

(
H
s

)
(−1)H−sc(p−1)s,j∂

(p−1)s−j(λ)(1 + pZ)2(p−1)sVκ,l+j +

+ λ
[
(1 + pZ)2(p−1) − 1

]HVκ,l +

+
H

∑
s=1

(
H
s

)
(−1)H−s[∂(p−1)s(λ)− λ

]
(1 + pZ)2(p−1)sVκ,l

(in the third equality we separated j ≥ 1 from j = 0 and in the last equality we
added and subtracted λ

[
(1 + pZ)2(p−1) − 1

]HVκ,l).
Now the proposition can be proved by induction on M.
• For the base case M = 1, we set H = p and l = 0 in the previous computation

and make the following observations.
– Writing

λ(q) = ∑
i≥0

aiqi and ∂(p−1)s(λ(q)) = ∑
i≥0

i(p−1)saiqi,

we see coefficient by coefficient that

∂(p−1)s(λ) ≡ λ mod p if 1 ≤ s < p (resp. mod p2 if s = p).

Therefore, (
p
s

)[
∂(p−1)s(λ)− λ

]
∈ p2RU=0 for 1 ≤ s ≤ p.

Thus, the third term of the computation gives the piece (i, h) = (0, 0) in
the statement of the proposition.

– The term λ
[
(1 + pZ)2(p−1)−1]pVκ,0 gives the piece (i, h) = (0, 1) in the

statement of the proposition.
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– By lemma 24, c(p−1)s,j is a polynomial in uκ with integer coefficients
and degree ≤ j, whence pj(c−1)c(p−1)s,j ∈ Λ0

I . Thus, the first term of the
previous computation gives the pieces (i, h) = (j, 0) for j ≥ 1 in the
statement of the proposition.

• For the inductive step, it suffices to prove the following claim: for every
g ∈ RU=0[1 + pZ], we can write

(
∇p−1 − 1

)p
(

p2M−(c+1)i−2h[(1 + pZ)2(p−1) − 1
]phgVκ,i

)
=

=
(p−1)p

∑
j=0

∑
v≥0

p2M+2−(c+1)(i+j)−2v[(1 + pZ)2(p−1) − 1
]pv f j,vVκ,i+j

with f j,v ∈ RU=0; if, moreover, uκ ∈ pΛ0
I and pM−2i−hg ∈ RU=0[1 + pZ],

then pM+1−2(i+j)−v f j,v ∈ RU=0[1 + pZ] too. This claim can be proved with a
similar analysis separating

(
∇p−1 − 1

)p
(

p2M−(c+1)i−2h[(1 + pZ)2(p−1) − 1
]phgVκ,i

)
=

=
p

∑
s=0

(
p
s

)
(−1)p−s p2M−(c+1)i−2h

(p−1)s

∑
t=0

(
(p− 1)s

t

)
·

· ∇t
([

(1 + pZ)2(p−1) − 1
]ph
)
∇(p−1)s−t(gVκ,i)

=
p

∑
s=1

(
p
s

)
(−1)p−s p2M−(c+1)i−2h

(p−1)s

∑
t=1

(
(p− 1)s

t

)
·

· ∇t
([

(1 + pZ)2(p−1) − 1
]ph
)
∇(p−1)s−t(gVκ,i) +

+ p2M−(c+1)i−2h[(1 + pZ)2(p−1) − 1
]ph(∇p−1−1

)p
(gVκ,i)

and studying each term using the computation in the beginning of the proof
and the next lemma.

Lemma 26. For every t, h ∈ Z≥1, we can express

∇t
([

(1 + pZ)2(p−1) − 1
]ph
)
=

h−1

∑
j≥max{h−t,0}

ph−j[(1 + pZ)2(p−1) − 1
]pj · Pj ·V0,t

with Pj ∈ Z[1 + pZ].13

13In lemma 3.40 of Andreatta–Iovita’s article “Triple product. . . ” [2], this lemma has a second
claim which is false. However, that part is unnecessary in the proof of proposition 25 because the
inequality where they use it isn’t tight.
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Corollary 27. Let g(q) ∈ ωκ(q) with U
(

g(q)
)

= 0 and let c ∈ Z≥1 such that
pc−1uκ ∈ Λ0

I . For every M ∈ Z≥1,

(
∇p−1

κ − 1
)Mp(g(q)) ∈(p−1)Mp

∑
i=0

p2M−(c+1)i ·ωκ,f(q)[Z] ·Vκ,i.

If, moreover, uκ ∈ pΛ0
I , then

(
∇p−1

κ − 1
)Mp(g(q)) ∈ pM ·

(p−1)Mp

∑
i=0

ωκ,f(q)[Z] ·Vκ,i.
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