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Abstract

These are notes on some aspects of Iwasawa theory and p–adic Hodge

theory that I worked on in 2020. My goal back then was to compare (big)

Iwasawa cohomology classes attached to a Hida family with other p–adic

L–functions. But the tower of extensions that I had to deal with arised from

the p–power torsion of an elliptic curve with CM, which made it a relative

Lubin–Tate tower. As far as I know, there has been a lot of recent work trying

to adapt the more classical cyclotomic p–adic Hodge theory to Lubin–Tate ex-

tensions. However, nobody published results for the relative Lubin–Tate case

(which is only slightly more complex but sometimes appears more naturally

in applications). These notes contain slight generalizations of other authors’

works with proofs to convince oneself that the theory works essentially in the

same way. My main source of inspiration was the work in progress of Peter

Schneider and Otmar Venjakob.

WARNING: this document has never been revised by anyone else and I

will most likely leave it in this unfinished state. As I wrote it for personal use,

it is very different from an article meant for publication. I share it only so

that others can avoid redoing the tedious work of adapting proofs to relative

Lubin–Tate towers.
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Part I

The classical (cyclotomic) theory

2 Some p–adic Hodge theory

Throughout this section, let K be a finite extension of Qp and let k denote its
residue field. Let F = W(k)[p−1] be the maximal unramified subextension of K.
Fix an algebraic closure K of K and let GK = Gal(K/K). Let Cp be the completion
of K with the natural action of GK obtained by requiring continuity.

For every n ∈ Z≥1, let µpn denote the subgroup of pn–th roots of unity in K
and set Kn = K(µpn). Define also

K∞ =
⋃

n≥1

Kn

and let HK = GK∞ = Gal(K/K∞) and ΓK = GK/HK
∼= Gal(K∞/K). We will use

analogous notation for F and other field extensions of Qp. Write eK = [K∞ : F∞]

and let F′ denote the maximal unramified extension of F inside F∞.
Fix once and for all a compatible system of primitive pn–th roots of unity

ε(n) in K for all n ≥ 0. That is, ε(1) 6= 1 and
(
ε(n+1))p

= ε(n) for all n ≥ 0.
Equivalently, we have fixed a Zp–basis of Zp(1) = lim←− µpn and the cyclotomic
character χcyc : GK → Z×p is now defined by the condition

σ
(
ε(n)
)
=
(
ε(n)
)χcyc(σ) for all n ≥ 0 and σ ∈ GK.

Observe that χcyc induces an isomorphism from ΓK to an open subgroup of Z×p .

Definition 1. A Qp–representation of GK is a finite-dimensional Qp–vector space V
endowed with a continuous and linear action of the group GK. Equivalently, the
Qp–representation is given by a continuous morphism ρ : GK → AutQp(V). Let
RepQp

(GK) denote the category of such representations.

Definition 2. A Zp–representation of GK is a finite free Zp–module T endowed
with a continuous and linear action of the group GK. Let RepZp

(GK) denote the
category of such representations.

Remark. Sometimes the notation RepZp
(GK) is used to refer to a more general

notion of Zp–representations in which T is allowed to be any finitely generated

7



Zp–module (i.e., allowing the possibility of having torsion). I am only interested
in free Zp–representations, that arise as GK–stable lattices of Qp–representations.

Fontaine started a theory of rings of periods which allows us to study Galois
representations in terms of objects and structures resembling those of linear al-
gebra. In the remainder of this section, we recall the construction of all the rings
that might be useful and the corresponding Dieudonné modules. The reference
that I found the most useful is Rebecca Bellovin’s thesis [1] (the results of which
are also published in the form of an article [2]). Cherbonnier–Colmez’s article [13]
has a very clear summary of the rings too and the last appendix of Berger’s article
[5] contains a helpful diagram outlining their relations.

2.1 Perfect rings of characteristic p

Consider the ring

Ẽ+ = lim←−
x 7→xp

OCp =
{
(x(0), x(1), . . .) ∈ ∏

n≥0
OCp :

(
x(n+1))p

= x(n) for all n ≥ 0
}

with the following operations: for x =
(
x(n)

)
n≥0 and y =

(
y(n)

)
n≥0 in Ẽ+, the

elements x + y and xy of Ẽ+ are defined by

(x + y)(n) = lim
m→∞

(
x(n+m) + y(n+m)

)pm
and (xy)(n) = x(n)y(n).

These operations arise from the natural coordinate-wise addition and multiplica-
tion of the perfection of OCp /pOCp via the bijection

lim←−
x 7→xp

(
OCp /pOCp

) ∼= lim←−
x 7→xp

OCp = Ẽ+

(x̄n)n≥0 7→
(

x(n) = lim
m→∞

xpm

n+m

)
n≥0

(also known as tilting). Recall that we have fixed ε =
(
ε(0), ε(1), . . .

)
∈ Ẽ+.

There is a valuation vẼ on Ẽ+ defined by

vẼ(x) = vp
(
x(0)

)
and in fact Ẽ+ is a valuation ring with fraction field

Ẽ = lim←−
x 7→xp

Cp =
{
(x(0), x(1), . . .) ∈ ∏

n≥0
Cp :

(
x(n+1))p

= x(n) for all n ≥ 0
}

.
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One can prove that Ẽ is an algebraically closed field of characteristic p, perfect
and complete with respect to vẼ. We write ϕ for the Frobenius endomorphism
x 7→ xp on Ẽ as well as for its restriction to Ẽ+.

2.2 Perfect rings of characteristic 0

Consider the rings of Witt vectors Ã+ = W(Ẽ+) and Ã = W(Ẽ), which naturally
admit lifts of the Frobenius morphisms that we also call ϕ. Define B̃+ = Ã+[p−1]

and B̃ = Ã[p−1]. Then Ã is a complete discrete valuation ring with field of
fractions B̃ and residue field Ẽ.

Every element x ∈ Ã can be expressed as

x = ∑
k≥0

pk[xk] with xk ∈ Ẽ for all k

in a unique way. Similarly, every element x ∈ B̃ is of the form

x = ∑
k�−∞

pk[xk] with xk ∈ Ẽ for all k.

Set π = [ε]− 1 ∈ Ã+, where [ · ] denotes the Teichmüller lift.
We mostly work with the weak topology. On Ã one can define the weak

topology via the basis of open neighbourhoods of 0

pkÃ + πnÃ+ for k, n ≥ 0

(or alternatively as the product topology coming from the valuation vẼ on Ẽ).
Then the weak topologies on Ã+, B̃+ and B̃ are the induced ones from the weak
topology on Ã regarding

Ã+ ⊂ Ã, B̃ =
⋃

n≥0
p−nÃ, B̃+ ⊂ B̃.

All these rings are equipped with continuous actions of ϕ and of GK (even of
GQp) given by

ϕ
(
∑
k

pk[xk]
)
= ∑

k
pk[xp

k ] and σ
(
∑
k

pk[xk]
)
= ∑

k
pk[σ(xk)]

(where the Galois action on Ẽ is naturally induced by that on Cp). The two actions
commute.
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2.2.1 Overconvergent elements

We will also want to use overconvergent versions of these rings. Take s ∈ R>0. We
define

Ã†,s =

{
∑
k≥0

pk[xk] ∈ Ã : vẼ(xk) +
psk

p− 1
≥ 0 for all k ≥ 0

and lim
k→∞

vẼ(xk) +
psk

p− 1
= ∞

}

and B̃†,s = Ã†,s[p−1]. It turns out that these rings are complete with respect to the
topology given by the valuation

ws(x) = inf
k≥0

(
vẼ(xk) +

psk
p− 1

)
and thus become Banach spaces. (On B̃†,s we consider the inductive limit after
expressing

B̃†,s =
⋃

n≥0
p−nÃ†,s

and using the topology given by ws on each piece.) In general, we are interested
in these kinds of rings only for s� 0. Therefore, we define

B̃† =
⋃
s>0

B̃†,s and Ã† = B̃† ∩ Ã

with the induced topologies as inductive limit and subspace. (Note that Ã† is
strictly larger than the union of the Ã†,s.) Set Ã†,s

K = (Ã†,s)HK , B̃†,s
K = (B̃†,s)HK ,

Ã†
K = (Ã†)HK and B̃†

K = (B̃†)HK (and similarly for other fields).

Remark. Let s0 = (p− 1)/p and sn = pns0 = pn−1(p− 1) for every n ≥ 1. Then
B̃†,sn consists of the elements x of B̃ for which the series ϕ−n(x) converges in the
ring of periods B+

dR that we will see in section 2.5.1. The appearance of the “strange”
factor is due to the fact that, for π̄ = ε− 1,

vẼ(π̄) =
p

p− 1
.

More generally, for 0 ≤ s ≤ s′ ≤ ∞ with s, s′ ∈ Z[p−1]∪ {∞ }, we could define

Ã[s,s′] = Ã+
〈 p
[π̄]s

,
[π̄]s

′

p

〉
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(the convergence for the Tate algebra being with respect to the p–adic topology),
where by convention

p
[π̄]∞

=
1
[π̄]

and
[π̄]∞

p
= 0,

and B̃[s,s′] = Ã[s,s′][p−1], which is naturally a Banach algebra. From the structure
on Ã+, we have continuous actions of GK on Ã[s,s′] and on B̃[s,s′] and continuous
Frobenius morphisms Ã[s,s′] → Ã[ps,ps′] and B̃[s,s′] → B̃[ps,ps′]. In particular,

B̃[s,∞] = B̃†,s, Ã[0,∞] = Ã+ and Ã[∞,∞] = Ã+

(cf. section 2.1 of Berger’s article [4]).

2.3 Imperfect rings of characteristic p

There is an embedding of k((T)) into Ẽ given by T 7→ π̄ = ε− 1. One can prove
that its image is independent of the choice of ε. Let EF = Im

(
k((T)) ↪→ Ẽ

)
. Let E

denote the separable closure of EF inside Ẽ and let E+ be its ring of integers. One
can prove that E is a dense subfield of Ẽ and Fontaine–Wintenberger’s theory of
fields of norms yields an identification Gal(E/EF) ∼= HF. We define EK = EHK ,
which is a finite field extension of EF of degree eK = [K∞ : F∞] = |HF/HK|. Set
E+

K = (E+)HK , which is the ring of integers of EK.

2.4 Imperfect rings of characteristic 0

We want to define imperfect versions of all the rings with tildes and we start by
lifting the construction of the previous subsection to characteristic 0.

There is an embedding of OF((T)) into Ã defined by T 7→ π = [ε]− 1. Let AF

denote the p–adic completion of Im
(
OF((T)) ↪→ Ã

)
(recall that Ã is complete with

the weak topology and so with the p–adic topology too). We can express

AF =

{
∑

k∈Z

akπk ∈ Ã : ak ∈ OF for all k ∈ Z and lim
k→−∞

vp(ak) = ∞
}

,

one can prove that AF is a complete discrete valuation ring with residue field EF.
Let BF = AF[p−1] be its field of fractions. Since the actions of ϕ and GF are given
by

ϕ(π) = (1 + π)p − 1 and σ(π) = (1 + π)χcyc(σ) − 1,
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we see that both AF and BF are stable under ϕ and GF.
Let B be the p–adic completion of the maximal unramified extension of BF

inside B̃ and put A = B ∩ Ã, so that B = A[p−1]. Then A is a complete discrete
valuation ring with field of fractions B and residue field E. Similarly, define
A+ = B∩ Ã+ and B+ = B∩ B̃+. Since extensions of EF correspond to unramified
extensions of BF, the rings A+, A, B+ and B are all stable under ϕ and GK.

Set AK = AHK and BK = BHK (if K = F, we indeed recover the rings AF

and BF defined before). Then AK is a complete discrete valuation ring with field
of fractions BK = AK[p−1] and residue field EK. The theory of fields of norms
provides us with a uniformizer π̄K of EK and we can take its Teichmüller lift
πK = [π̄K] ∈ AK. Then we can identify

BK =

{
∑

k∈Z

akπk
K ∈ B̃ : ak ∈ F′ for all k ∈ Z,

inf
k∈Z

vp(ak) > −∞ and lim
k→−∞

vp(ak) = ∞
}

.

Remark. The rings with tilde are perfect and so ϕ is bijective. However, for the
rings without tilde introduced in this subsection, ϕ is no longer surjective. On the
other hand, one can prove that the ring ÃK (resp. the field B̃K) contains ϕ−∞(AK)

as a dense subring (resp. ϕ−∞(BK) as a dense subfield).

2.4.1 The operator ψ

The field B is a totally ramified extension of degree p of ϕ(B). Therefore, the
Frobenius morphism ϕ : B → B is injective but not surjective. We can at least
define a left inverse ψ of ϕ as follows:

ψ(x) =
1
p

ϕ−1(TrB/ϕ(B)(x)
)
.

By definition, it is clear that ψ
(

ϕ(x)
)
= x. The operator ψ commutes with the

action of GK because so does ϕ.
More explicitly, one can check that 1, [ε], . . . , [ε]p−1 is a basis of B over ϕ(B).

Then every element x ∈ B is of the form x0 + x1[ε] + · · ·+ xp−1[ε]
p−1 for some

x0, x1, . . . , xp−1 ∈ ϕ(B) and

ψ(x) = ψ
(
x0 + x1[ε] + · · ·+ xp−1[ε]

p−1) = x0.

In particular, ψ(A) ⊂ A.
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2.4.2 Overconvergent elements

We define overconvergent rings analogously. For s > 0, let B†,s = B ∩ B̃†,s and
A†,s = A∩ Ã†,s, each endowed with the subspace topology of its version with tilde
(i.e., the topologies are given by the valuation ws). In general, we are interested in
these kinds of rings only for s� 0. Therefore, we define

B† =
⋃
s>0

B†,s = B∩ B̃† and A† = B† ∩A = B∩ Ã†

with the induced topologies as inductive limit and subspace. (Note that, as is the
case with the versions with tildes, A† is strictly larger than the union of the A†,s.)

For s > 0, we set B†,s
K = (B†,s)HK = BK ∩ B̃†,s and A†,s

K = (A†,s)HK = AK ∩ Ã†,s

with the induced topologies as subspaces of B̃†,s. Similarly, we set

B†
K = (B†)HK =

⋃
s>0

B†,s
K and A†

K = (A†)HK = B†
K ∩AK.

Since AK is not perfect, for every n ∈ Z≥0 we define A†,s
K,n = ϕ−n(A†,pns

K
)
. Finally,

for s� 0, we can identify

B†,s
K =

{
∑

k∈Z

akπk
K ∈ B : ak ∈ F′ for all k ∈ Z,

inf
k∈Z

vp(ak) > −∞ and lim
k→−∞

vp(ak) +
k

eks
= ∞

}
(i.e., these are unbounded Laurent series with bounded coefficients in F′ and
convergent on the half-open annulus 0 < vp(T) ≤ 1/(eKs) evaluated at T = πK; cf.
proposition I.3 of Berger’s article [5] and corollary II.2.4 of Cherbonnier–Colmez’s
article [13]).

2.5 Rings of periods

The rings above can be used to define Fontaine’s rings of periods. There is a general
formalism that uses these rings of periods to study p–adic Galois representations
of GK that are “nice” in some sense in terms of semilinear algebra structures. One
could say that this theory simplifies the structures at the expense of making the
coefficients much more complicated.

These rings of periods allow us to define different notions of admissibility on
the algebraic side that should correspond to geometric properties of the Galois
representations, at least conjecturally. For instance, what are known as de Rham (or

13



BdR–admissible) representations are those that come from geometry and crystalline
(or Bcrys–admissible) representations are those that have good reduction at p.

2.5.1 The ring BdR

There is a Galois-equivariant morphism of rings θ : B̃+ → Cp defined by

θ

(
∑

k�−∞
pk[xk]

)
= ∑

k�−∞
pkx(0)k

that is continuous with respect to the weak topology on B̃+ and the p–adic topo-
logy on Cp. One can show that θ is surjective and that Ker(θ) is a principal ideal
generated by

ω =
π

ϕ−1(π)
=

[ε]− 1
[ε1/p]− 1

.

Then we define B+
dR to be the Ker(θ)–adic completion of B̃+. There is an

induced action of GK on B+
dR but there is no natural way to define ϕ because

Ker(θ) is not stable under ϕ. It turns out that B+
dR is a discrete valuation ring

with field of fractions BdR and residue field Cp and any generator of Ker(θ) is a
uniformizer. Since θ(π) = 0, we can define a distinguished element

t = log([ε]) = log
(
1 + ([ε]− 1)

)
= ∑

k≥1
(−1)k−1 πk

k
∈ B+

dR

(i.e., the series converges in B+
dR) which can be regarded as a p–adic analogue of

the complex period 2πi. One can prove that t is a uniformizer of B+
dR and that GK

acts on t through the cyclotomic character:

σ(t) = log
(
[σ(ε)])

)
= log

(
[ε]χcyc(σ)

)
= χcyc(σ)t for all σ ∈ GK.

In particular, BdR = B+
dR[t

−1] and the powers of t define a filtration on BdR. One
can also prove that (BdR)

GK = K.
As a matter of fact, the valuation topology on B+

dR is not good enough and the
action of GK is not continuous. That is why we need to define a more complicated
(and finer) topology. To do so, we consider on Ã+/

(
Ker(θ)h ∩ Ã+

)
the quotient

topology induced by the weak topology on Ã+, which turns out to coincide with
the one obtained from the p–adic topology on Ã+. Then

B̃+/ Ker(θ)h =
⋃

n≥0
Ã+/

(
Ker(θ)h ∩ Ã+

)
14



can be made into a p–adic Banach space and so B+
dR becomes a Fréchet space.

Definition 3. Let V be a p–adic representation of GK. We define the de Rham
Dieudonné module

DdR,K(V) = (BdR ⊗Qp V)GK ,

which is a filtered K–vector space of dimension ≤ dimQp V. We say that V is a de
Rham representation if dimK DdR,K(V) = dimQp V.

2.5.2 The rings Bcrys and Bmax

The ring BdR has the defect that we cannot define a Frobenius action on it. To
remedy this one needs to focus on smaller subrings that are stable under ϕ. Think-
ing in these terms leads to the construction of a ring of periods Bcrys and the
notion of crystalline representations. The problem is that the topology of Bcrys has
some undesirable properties (cf. the second paragraph of section III.2 of Colmez’s
article [15]). Therefore, we actually work with a slightly larger ring Bmax that has a
“nicer” topology. The two rings are interchangeable in the study of representations
because ϕ(Bmax) ⊂ Bcrys ⊂ Bmax and the periods of crystalline representations
actually lie in ⋂

n≥0
ϕn(Bcrys) =

⋂
n≥0

ϕn(Bmax).

We can define B+
max = B̃[0,s0] (see the end of section 2.2 for the meaning of this

notation). By definition, B+
max is a Banach space and has continuous actions of both

ϕ and GK arising naturally from those on Ã+. Furthermore, one can prove that
there is a natural Galois-equivariant inclusion B+

max ↪→ B+
dR and that B+

max contains
the distinguished period t. In particular, ϕ(t) = pt. As a subring of B+

dR, the ring
B+

max can be identified with{
∑
k≥0

ak
ωk

pk : ak ∈ B̃+ for all k ≥ 0 and lim
k→∞

ak = 0 for the p–adic topology
}

.

Define Bmax = B+
max[t−1] with the induced actions of ϕ and GK. One can

prove that BGK
max = F and there is a GK–equivariant embedding Bmax ⊗F K ↪→ BdR,

whence Bmax ⊗F K can be endowed with the subspace filtration.

Proposition 4. There is a short exact sequence

0 Qp Bmax Bmax ⊕ (BdR/B+
dR) 0

x
(
(1− ϕ)x, x

)
15



of topological Qp–vector spaces called the fundamental exact sequence of p–adic
Hodge theory.

Proof. See proposition III.3.1 of Colmez’s article [15].

Definition 5. Let V be a p–adic representation of GK. We define the crystalline
Dieudonné module

Dcrys,K(V) = (Bmax ⊗Qp V)GK ,

which is a filtered ϕ–module over K of dimension ≤ dimQp V. We say that V is a
crystalline representation if dimF Dcrys,K(V) = dimQp V.

One key property of this theory is that, if V is a crystalline representation, we
can recover V from Dcrys,K(V):

V =
[
Fil0
(
Bcrys ⊗F Dcrys,K(V)

)]ϕ=1
.

This is a consequence of the fact that (Fil0 Bcrys)ϕ=1 = Qp.

Theorem 6. Every crystalline representation V is de Rham and

DdR,K(V) = Dcrys,K(V)⊗F K.

2.6 The Robba ring

Let s > 0 as before. For every s′ ≥ s, the Banach valuation ws′ is well-defined
on B̃†,s. We define B̃†,s

rig to be the Fréchet completion of B̃†,s with respect to the
valuations (ws′)s′>s (more precisely, we can choose a sequence (sn)n≥1 going to
infinity and use the family (wsn)n≥1 to define the Fréchet topology). The actions of
ϕ and GK on B̃†,s extend by continuity to B̃†,s

rig. As usual, we set B̃†,s
rig,K = (B̃†,s

rig)
HK .

Similarly, the Robba ring B†,s
rig,K is the Fréchet completion of B†,s

K with respect

to the family of valuations (ws′)s′>s. We obtain actions of ϕ and ΓK on B†,s
rig,K by

continuity. If s� 0, we can identify

B†,s
rig,K =

{
∑

k∈Z

akπk
K ∈ B : ak ∈ F′ for all k ∈ Z

and lim
k→−∞

vp(ak) +
k

eks
= ∞

}
(i.e., these are unbounded Laurent series with possibly unbounded coefficients
in F′ and convergent on the half-open annulus 0 < vp(T) ≤ 1/(eKs) evaluated at
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T = πK; thus, B†,s
rig,K corresponds to the ringRr0(πK) of Kedlaya–Pottharst–Xiao’s

article [26] for r0 = (p− 1)/(eKs) or something similar).

Remark. The Frobenius morphism ϕ : B†,s
rig,K → B†,ps

rig,K is not surjective but makes

B†,ps
rig,K into a free B†,s

rig,K–module of rank p. Therefore, we can define a left inverse

ψ : B†,ps
rig,K → B†,s

rig,K as in section 2.4.1.

Set s0 = (p− 1)/p and sn = pns0 = pn−1(p− 1) for every n ≥ 0. As mentioned
in a remark in section 2.2, there are injective morphisms ϕ−n : B̃†,sn

K ↪→ B+
dR. Recall

that B†,sn
K = B̃†,sn

K ∩ B and observe that there is a copy of Kn[[t]] inside B+
dR. By

proposition III.2.1 of Cherbonnier–Colmez’s article [14], for n� 0 we obtain

B̃†,sn
K B+

dR

B†,sn
K Kn[[t]]

ϕ−n

⊂ ⊂

by restriction. On the other hand, we have inclusions B†,sn
K ⊂ B†,sn

rig,K and these

morphisms extend by continuity to injective morphisms ϕ−n : B†,sn
rig,K ↪→ B+

dR for all
n ≥ 0 (cf. propositions 2.11 and 2.12 of Berger’s article [4]).

As usual, we are interested in these kinds of rings only for s� 0, so we define

B̃†
rig =

⋃
s>0

B̃†,s
rig and B†

rig,K =
⋃
s>0

B†,s
rig,K.

The ring B†
rig,K is also called the Robba ring of K.

2.7 Rings for families

The rings of p–adic Hodge theory introduced up to now are very powerful tools in
the study of p–adic representations of GK (be it Zp– or Qp–representations of GK).
But our main goal is to study arithmetic families of such representations: these
will be finite free modules over some “nice” topological ring R over Zp or A over
Qp (satisfying certain finiteness conditions at least) endowed with a continuous
linear action of GK and from which we can obtain specializations that are p–adic
representations in the classical sense. (The adjective arithmetic here means that
there is no Frobenius morphism ϕ on the base R or A, in contrast to what are
known as geometric families.) Therefore, we will need to put the rings of p–adic
Hodge theory in families by base change to R or to A.

The base rings that we consider are of one of the two following kinds:

17



• either an affinoid Qp–algebra A with an integral model R (if A is reduced,
we take R = A0, the subring of power-bounded elements)

• or a coefficient ring R in the sense of Mazur.

Definition 7. A coefficient ring is a noetherian complete local ring (R,mR) whose
residue field κR is finite (of characteristic p). In particular, R is a topological
Zp–algebra (with the topology defined by its maximal ideal mR).

2.7.1 Integral families

Definition 8. Let R be a coefficient ring. An R–representation of GK (or a family of
representations of GK over R) is a finite free R–module T endowed with a continuous
R–linear action of GK. Let RepR(GK) denote the category of such representations.

To study families of representations over R, we will need to replace the rings
A+, A, A+

K and AK with A+ ⊗̂Zp R, A ⊗̂Zp R, A+
K ⊗̂Zp R and AK ⊗̂Zp R, respectively.

Here, the symbol ⊗̂ denotes the completed tensor product with respect to the
mR–adic topology on R and the p–adic topologies on A and the more decorated
subrings.

Remarks.
• Recall that A is a complete discrete valuation ring with residue field E of

characteristic p. Thus, the p–adic topology on A coincides with the valuation
topology.

• Completing A⊗Zp R with respect to pA⊗Zp R + A⊗Zp mR is the same as
completing it with respect to mR only, as p ∈ mR.

• We can extend the operators ϕ, ψ : A → A to A⊗Zp R by tensoring with
R (i.e., making them act trivially on R). Then both ϕ and ψ map the ideal
pA⊗Zp R+A⊗Zp mR to itself and we obtain in this way continuous R–linear
maps ϕ, ψ : A ⊗̂Zp R→ A ⊗̂Zp R.

• As the action of GK on A is not continuous for the p–adic topology (because
the action of GK on E is not discrete), one might prefer to work with the weak
topology instead. Recall that a basis of neighbourhoods of 0 for the weak
topology on A is given by

pkA + πnA+ for k, n ≥ 0.

One can check that the completion of A⊗Zp R obtained using this topology
coincides with the completion defined above (cf. remark 2.2 of Bellovin–
Venjakob’s article [3]). Therefore, the induced action of GK on A ⊗̂Zp R is
continuous.
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• Analogous considerations apply to the other rings under consideration.

2.7.2 Rigid families

Definition 9. Let A be an affinoid Qp–algebra. An A–representation of GK (or a
family of representations of GK over A) is a finite free A–module V endowed with
a continuous A–linear action of GK. Let RepA(GK) denote the category of such
representations.

Let X be a (quasi-separated) rigid analytic space over Qp. An X –representation
of GK (or a rigid analytic family of representations of GK over X ) is a finite locally free
OX –module V of constant rank d endowed with a continuous OX –linear action of
GK, in the sense that there exists an admissible affinoid covering (Ui)i∈I of X such
that V (Ui) is an OX (Ui)–representation of GK as above for every i ∈ I.

To study this kind of rigid analytic families of representations, we will need
to consider again completed tensor products with the base ring. However, the
topologies in this situation are more complicated because most of the rings are
only Banach or even Fréchet spaces over Qp.

Consider two Fréchet spaces C and C′ over Qp whose topologies are given by
families of seminorms (ρi)i∈I and (ρ′j)j∈J , respectively. For each pair (ρi, ρ′j) we
can define a seminorm ρi ⊗ ρ′j on C⊗Qp C′ by

(ρi ⊗ ρ′j)(z) = inf
{

max
1≤l≤r

{
ρi(xl) · ρ′j(yl)

}}
,

where the infimum runs over all possible representations

z =
r

∑
l=1

xl ⊗ yl with xl ∈ C and yl ∈ C′ for all 1 ≤ l ≤ r.

Then we write C ⊗̂Qp C′ for the completion of C⊗Qp C′ with respect to the topology
given by the family of seminorms (ρi ⊗ ρ′j)(i,j)∈I×J , which is again a Fréchet space.

In fact, the tensor products in our situation are simpler than this because at
least the affinoid algebra A is already a Banach space over Qp. Thus, if B is a
Banach algebra over Qp, we can form the Banach algebra B ⊗̂Qp A with one single
tensor product norm. If B is a Fréchet algebra over Qp obtained as

B = lim←−
n≥1

Bn
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where Bn is a Qp–Banach algebra for every n ≥ 1, then

B ⊗̂Qp A = lim←−
n≥1

(
Bn ⊗̂Qp A

)
.

All in all, we can study A–representations of GK using B ⊗̂Qp A, where B can
be any of the rings B†,s, B†,s

K , B̃†,s, B̃†,s
K , B̃†,s

rig, B̃†,s
rig,K or B†,s

rig,K for s� 0 or also B+
dR or

B+
max. Furthermore, we set

B†
rig,K ⊗̂Qp A =

⋃
s>0

(
B†,s

rig,K ⊗̂Qp A
)

(and analogously for the other rings which might have s in the notation). Similarly,
we write

BdR ⊗̂Qp A =
⋃

n≥0

(
t−nB+

dR ⊗̂Qp A
)

and Bmax ⊗̂Qp A =
⋃

n≥0

(
t−nB+

max ⊗̂Qp A
)
.

All these algebras over A inherit the additional structure (Galois action, Frobenius,
filtration. . . ) from the original rings.

Definition 10. Let V be an A–representation of GK of rank d.
(1) We define the de Rham Dieudonné module

DdR,K(V) =
(
(BdR ⊗̂Qp A)⊗A V

)GK ,

which is a filtered (K⊗Qp A)–module. If it is locally free of rank d, we say
that V is a de Rham representation.

(2) We define the crystalline Dieudonné module

Dcrys,K(V) =
(
(Bmax ⊗̂Qp A)⊗A V

)GK ,

which is a filtered ϕ–module over (K ⊗Qp A). If it is locally free of rank d
over (F⊗Qp A), we say that V is a crystalline representation.

Finally, the previous constructions can be globalized as follows. Let X be a
quasi-separated rigid analytic space and let B denote one of the previous rings of
p–adic Hodge theory. We can define a presheaf of topological rings B on X by
setting

B(U ) = B ⊗̂Qp OX (U )

for every affinoid open U = Spm(A) of X .
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Lemma 11. The presheaf B is actually a sheaf.

Proof. See lemma 3.3 of Kedlaya–Liu’s article [25].

Definition 12. Let V be an X –representation of GK of rank d.
(1) We define the de Rham Dieudonné sheaf DdR,K(V ) by

DdR,K(V )(U ) =
(
BdR(U )⊗OX (U ) V (U )

)GK

for every affinoid open U = Spm(A) of X . If DdR,K(V ) is a locally free
(K⊗Qp OX )–module of rank d, we say that V is a de Rham representation.

(2) We define the crystalline Dieudonné sheaf Dcrys,K(V ) by

Dcrys,K(V )(U ) =
(
Bmax(U )⊗OX (U ) V (U )

)GK

for every affinoid open U = Spm(A) of X . If Dcrys,K(V ) is a locally free
(F⊗Qp OX )–module of rank d, we say that V is a crystalline representation.
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3 (ϕ, Γ)–modules

We keep with the notation introduced in section 2. As a matter of fact, the theory
of (ϕ, Γ)–modules can be considered as part of p–adic Hodge theory. In the same
spirit, Fontaine introduced a category of (étale) (ϕ, ΓK)–modules, that is a category
in the realm of semilinear algebra, and proved that it is equivalent to the category
of finitely generated Zp–modules with a continuous linear action of GK (including
the possibility of torsion).

Therefore, all kinds of constructions with Zp–representations of GK should
have equivalent versions using (ϕ, ΓK)–modules. In particular, Herr studied Galois
cohomology with this formalism in his thesis (see the related article [23]) and
Cherbonnier and Colmez applied it to Iwasawa theory in their article [14]. In what
follows, we explain these results and their versions for families of representations.

3.1 First definitions

Definition 13. A ϕ–module over AK is a finite free AK–module D endowed with a
ϕ–semilinear map ϕ = ϕD : D → D. We say that the ϕ–module (D, ϕD) is étale if
the AK–linearization ϕ∗(D) = AK ⊗ϕ,AK D → D of ϕ is an isomorphism.

We define (étale) ϕ–modules over other rings such as BK, A†,s
K , B†,s

K , A†
K, B†

K, B†,s
rig,K

or B†
rig,K analogously.

Remark. Sometimes the name ϕ–module is used to refer to a more general notion
in which D is allowed to be any finitely generated AK–module (not necessarily
free). Since I am only interested in free Zp–representations, this definition works.

Definition 14. A (ϕ, ΓK)–module over AK is a ϕ–module D endowed with a con-
tinuous AK–semilinear action of ΓK commuting with ϕ. We say that D is an étale
(ϕ, ΓK)–module if the underlying ϕ–module is étale.

We define (étale) (ϕ, ΓK)–modules over other rings such as BK, A†,s
K , B†,s

K , A†
K, B†

K,
B†,s

rig,K or B†
rig,K analogously.

Definition 15. Let T (resp. V) be a Zp–representation (resp. Qp–representation)
of GK. We define the associated (ϕ, ΓK)–modules

D(T) = (A⊗Zp T)HK (over AK)

and
D(V) = (B⊗Qp V)HK (over BK).
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These modules inherit actions of the operators ϕ and ψ from those on A and B and
residual actions of ΓK = GK/HK from the diagonal Galois actions.

The main result which makes these (ϕ, ΓK)–modules useful is the following
theorem of Fontaine.

Theorem 16 (Fontaine). The functor T 7→ D(T) defines an equivalence between the
categories of Zp–representations of GK and of étale (ϕ, ΓK)–modules over AK.

Similarly, the functor V 7→ D(V) defines an equivalence between the categories of
Qp–representations of GK and of étale (ϕ, ΓK)–modules over BK.

Proof. See theorem 3.4.3 of Fontaine’s article [21].

In particular, we can recover the representations from the (ϕ, ΓK)–modules as
follows:

T ∼=
(
A⊗AK D(T)

)ϕ=1 and V ∼=
(
B⊗BK D(V)

)ϕ=1

(the Galois actions on the right-hand sides are the diagonal actions of GK and
similarly ϕ means ϕ⊗ ϕD).

3.2 Overconvergent versions

Sometimes it is useful to work with smaller (ϕ, ΓK)–modules.

Definition 17. Let V be a Qp–representation of GK. We define the associated
overconvergent (ϕ, ΓK)–modules

D†(V) = (B† ⊗Qp V)HK and D†,s(V) = (B†,s ⊗Qp V)HK for all s > 0.

Then dimB†
K

(
D†(V)

)
≤ dimQp(V) and we say that V is overconvergent if these two

dimensions are equal.
Similarly, for a Zp–representation T of GK we define

D†(T) = (A† ⊗Zp T)HK and D†,s(T) = (A†,s ⊗Zp T)HK for all s > 0

and we say that T is overconvergent if the rank of the free A†
K–module D†(T)

coincides with rankZp(T).

Theorem 18 (Cherbonnier–Colmez). Every Zp– or Qp–representation of GK is over-
convergent.

Proof. This is the main result of Cherbonnier–Colmez’s article [13] (in particular,
see their corollary III.5.2).
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Therefore, for any Qp–representation V of GK,

D(V) = BK ⊗B†
K

D†(V) = BK ⊗B†,s
K

D†,s(V) if s� 0.

3.3 Modules over the Robba ring

TODO!!!

3.4 Modules for integral families

Throughout this subsection, let R be a coefficient ring in the sense of definition 7.
We recall some results of Dee’s article [19] that extend the equivalence of categories
from theorem 16 to the case of RepR(GK).

Definition 19. A ϕ–module over AK ⊗̂Zp R is a finite (AK ⊗̂Zp R)–module D en-
dowed with a ϕ–semilinear map ϕ = ϕD : D → D. We say that the ϕ–module
(D, ϕD) is étale if the (AK ⊗̂Zp R)–linearization ϕ∗(D)→ D of ϕD is an isomorph-
ism.

Remark. This definition only requires D to be finitely generated (instead of finite
free) for convenience because the proofs of the results for families are based on
reducing to the case of finite length by taking projective limits of quotients. This is
incoherent with the previous definitions (like definition 13), so I should rewrite
things better in the future.

Definition 20. A (ϕ, ΓK)–module over AK ⊗̂Zp R is a ϕ–module D endowed with
a continuous (AK ⊗̂Zp R)–semilinear action of ΓK commuting with ϕ. We say that
D is an étale (ϕ, ΓK)–module if the underlying ϕ–module is étale.

Definition 21. Let T be an R–representation of GK. We define the associated
(ϕ, ΓK)–module over AK ⊗̂Zp R

D(T) =
(
(A ⊗̂Zp R)⊗R T

)HK

with the actions of the operators ϕ and ψ inherited from those on A and the
residual action of ΓK = GK/HK obtained from the diagonal action of GK.

Remark. As before, this definition makes sense even if T is not free as an R–module.

Lemma 22. Let T be an R–representation of GK such that mn
RT = 0 for some n ∈ Z≥1.

Write T for T seen as a Zp–representation of GK. Then D(T) = D(T).
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Remark. Since κR = R/mR is a finite extension of Fp, the hypothesis that mn
RT = 0

implies that indeed T is a finite Zp–module. The content of the lemma is that the
two associated (ϕ, ΓK)–modules, one over AK ⊗̂Zp R and the other over AK, are
the same.

Proof. The completed tensor product with a finite module coincides with the
(algebraic) tensor product. Therefore,

(A ⊗̂Zp R)⊗R T = (A ⊗̂Zp R) ⊗̂R T ∼= A ⊗̂Zp T = A ⊗̂Zp T = A⊗Zp T.

Taking HK–invariants on both sides we conclude that D(T) = D(T).

Lemma 23. Let T be an R–representation of GK.
(1) For every n ≥ 1, define Tn = T/mn

RT. Then

D(T) ∼= lim←−
n≥1

D(Tn).

(2) The (AK ⊗̂Zp R)–module D(T) is complete with respect to the mR–adic topology:

D(T) ∼= lim←−
n≥1

(
D(T)/mn

RD(T)
)
.

Idea of the proof.
(1) It is easy to see that taking HK–invariants commutes with the projective limit.

Moreover,

lim←−
n≥1

(
(A ⊗̂Zp R)⊗R Tn

) ∼= lim←−
n≥1

(
(A ⊗̂Zp R)⊗R T

)
/mn

R
∼= (A ⊗̂Zp R)⊗R T.

See proposition 2.1.8 of Dee’s article [19] for more details.
(2) It follows from the previous part and the fact that D(Tn) ∼= D(T)/mn

RD(T);
see corollary 2.1.10 of Dee’s article [19].

Lemmata 22 and 23 allow us to reduce the study of D(T) to the case in
which T is a torsion R–representation and in that situation, regarding T as a
Zp–representation, one can apply Fontaine’s results (cf. theorem 16). One of the
main consequences is the following result.

Theorem 24 (Dee). The functor T 7→ D(T) defines an equivalence between the categor-
ies of R–representations of GK and of étale (ϕ, ΓK)–modules over AK ⊗̂Zp R.

Proof. See theorems 2.1.27 and 2.2.1 of Dee’s article [19].
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In particular, we can recover the representation from the (ϕ, ΓK)–module as
follows:

T ∼=
(
(A ⊗̂Zp R)⊗AK⊗̂Zp R D(T)

)ϕ=1.

3.5 Modules for rigid families

TODO !!!

3.6 Herr cohomology (for integral families)

Fontaine and Herr introduced a cohomology theory for (ϕ, ΓK)–modules that
allows us to compute the cohomology of p–adic Galois representations (see Herr’s
article [23] based on his thesis). Here we recall a few of their constructions together
with results of Cherbonnier–Colmez’s article [14] that we will need to study
Iwasawa cohomology.

Let R be a coefficient ring as in definition 7 (in particular, we allow the pos-
sibility that R = Zp). Throughout this subsection we assume that K contains µp

(or µ4 if p = 2), so that K∞ is the cyclotomic Zp–extension of K. Fix a topological
generator γ of ΓK.

Definition 25. Let T be an R–representation of GK and let u : D(T) → D(T) be
an R–linear map commuting with the action of ΓK (e.g., u = ϕ or ψ). The Herr
complex Cu,γ(K, T) is the complex of (ϕ, ΓK)–modules

Cu,γ(K, T) : 0 D(T) D(T)⊕D(T) D(T) 0,
(u−1,γ−1) (γ−1)⊕(1−u)

where the first labelled arrow is the map

x 7→
(
(u− 1)x, (γ− 1)(x)

)
and the second labelled arrow is the map

(y, z) 7→ (γ− 1)(y)− (u− 1)(z).

We write Hi
u,γ(K, T) = Hi(Cu,γ(K, T)

)
and call it the i–th (u, γ)–cohomology group

of D(T).

In particular, a 1–cocycle of Cu,γ(K, T) is a pair (x, y) ∈ D(T)⊕D(T) such
that (γ− 1)(x) = (u− 1)(y). Similarly, a 1–coboundary of Cu,γ(K, T) is a pair of
the form (x, y) =

(
(u− 1)(b), (γ− 1)(b)

)
for some b ∈ D(T).
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Remark. The complex Cu,γ(K, T) depends on the choice of γ, but its cohomology
does not. Indeed, if γ′ is another generator of ΓK, we can express γ′ = γa for some
a ∈ Z×p and so

γ′ − 1
γ− 1

∈ Zp[[ΓK]]
×,

as is easily checked identifying γ with 1 + T ∈ Zp[[T]]:

(1 + T)a − 1
T

= a +
(

a
2

)
T + · · · ∈ Zp[[T]]×.

Then the commutative diagram

Cu,γ′(K, T) : 0 D(T) D(T)⊕D(T) D(T) 0

Cu,γ(K, T) : 0 D(T) D(T)⊕D(T) D(T) 0

γ′−1
γ−1

γ′−1
γ−1 ⊕1 1

induces isomorphisms Hi
u,γ′(K, T) ∼= Hi

u,γ(K, T).

The following result explains why these Herr cohomology groups are inter-
esting. As one could suspect from the notation, Herr cohomology gives another
explicit description of the Galois cohomology of an R–representation.

Theorem 26 (Herr, Dee). There is an isomorphism of δ–functors

(
Hi

ϕ,γ(K, T)
)

i≥0

∼=−→
(
Hi(K, T)

)
i≥0.

Idea of the proof. This is proposition 3.1.1 of Dee’s article [19]. In loc. cit., Dee
reduces the general case to the case in which R = Zp by expressing D(T), Hi(K, T)

and Hi
ϕ,γ(K, T) as projective limits of the corresponding objects for Tn = T/mn

RT.
The case of Zp–representations was proved by Herr. Theorem 2.1 of Herr’s

article [23] gives the desired isomorphism restricted to torsion Zp–representations.
In his proof, Herr uses that the usual Galois cohomology is a universal δ–functor
and that a certain subcategory of (ϕ, ΓK)–modules has enough injectives. Then one
can pass to general Zp–representations by taking projective limits, as is explained
in the introduction of ibid.

Remark. Later we will be interested only in the 1st cohomology groups and we will
use an explicit description of the isomorphism H1

ϕ,γ(K, T) ∼= H1(K, T) in terms of
cocycles due to Cherbonnier and Colmez.
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Definition 27. For every x ∈ 1 + pZp, let r(x) = vp
(
logp(x)

)
. We define a map

log0
p : 1 + pZp → Z×p by

log0
p(x) =

logp(x)

r(x)
.

Proposition 28.
(1) For every (x, y) ∈ Z1

ϕ,γ(K, T), there exists a solution b ∈ (A ⊗̂Zp R)⊗R T to the
equation (ϕ− 1)(b) = x. Then

σ 7→ cx,y(σ) =
σ− 1
γ− 1

(y)− (σ− 1)(b)

defines a 1–cocycle of GK with values in T (i.e., an element in Z1(K, T)).
(2) The map (x, y) 7→ log0

p
(
χcyc(γ)

)
cx,y (for some choice of b as above) induces a

well-defined isomorphism H1
ϕ,γ(K, T) ∼= H1(K, T).

(3) This isomorphism of cohomologies is independent of the generator γ of ΓK in the
following sense: if γ′ is another generator of ΓK, these isomorphisms fit into a
commutative diagram

H1
ϕ,γ′(K, T)

H1(K, T)

H1
ϕ,γ(K, T)

∼=

γ′−1
γ−1

∼=

(cf. the remark after definition 25).

Remark. Observe that, as γ is a generator of ΓK and GK acts on y through ΓK, the
expression

σ− 1
γ− 1

(y)

makes sense in D(T). More precisely, replacing σ with its image in ΓK, the quotient
defines an element of Zp[[ΓK]].

Proof. This is a combination of proposition I.4.1 and lemma I.4.2 of Cherbonnier–
Colmez’s article [14].

(1) Recall that A is a Cohen ring with residue field E that is separably closed.
Thus, any polynomial of the form Xp − X− β has a root in E and these can
be lifted to A by Hensel’s lemma. That is, ϕ− 1 : A→ A is surjective.
Let (x, y) ∈ Z1

ϕ,γ(K, T), so that (γ− 1)(x) = (ϕ− 1)(y). The existence of
b ∈ (A ⊗̂Zp R)⊗R T such that (ϕ− 1)(b) = x is now clear. To show that
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cx,y(σ) ∈ T (regarded as a subset of (A ⊗̂Zp R)⊗R T), we need to check that
it is invariant under ϕ, as Aϕ=1 = Zp. Indeed,

(ϕ− 1)
(σ− 1

γ− 1
(y)− (σ− 1)(b)

)
=

σ− 1
γ− 1

(
(γ− 1)(x)

)
− (σ− 1)(x) = 0.

The fact that cx,y is a 1–cocycle follows easily from its definition.
(2) For this part, we may assume for simplicity that log0

p
(
χcyc(γ)

)
= 1. Also, it

is clear that changing b does not modify the cohomology class of cx,y.
For the injectivity, suppose that cx,y is a 1–coboundary given by z ∈ T. Then

σ− 1
γ− 1

(y)− (σ− 1)(b + z) = 0 for all σ ∈ GK.

Since HK acts trivially on y, so does on b+ z, which implies that b+ z ∈ D(T).
If we take σ to be a lift of γ, we get that y = (γ− 1)(b + z). On the other
hand, x = (ϕ− 1)(b) = (ϕ− 1)(b + z). All in all, (x, y) ∈ B1

ϕ,γ(K, T).
For the surjectivity, consider c ∈ Z1(K, T) and let

0 T T′ R 0

be the corresponding extension. That is, we have e ∈ T′ lifting 1 ∈ R such
that σ(e) = e + c(σ) for all σ ∈ GK. Take a lift ẽ ∈ D(T′) of 1 ∈ R ↪→ D(R)
and define x = (ϕ− 1)(ẽ) and y = (γ− 1)(ẽ). It is clear by definition that
(γ− 1)(x) = (ϕ− 1)(y), which is to say that (x, y) ∈ Z1

ϕ,γ(K, T). Moreover,
we can choose b = ẽ− e ∈ (A ⊗̂Zp R)⊗R T with (ϕ− 1)(b) = x and then

cx,y(σ) =
σ− 1
γ− 1

(y)− (σ− 1)(b) = (σ− 1)(ẽ)− (σ− 1)(ẽ− e)

= (σ− 1)(e) = c(σ).

(3) Let (x, y) = Z1
ϕ,γ(K, T) and (x′, y) = Z1

ϕ,γ′(K, T) be two cocycles related by
(γ′ − 1)(x) = (γ− 1)(x). Take b, b′ ∈ (A ⊗̂Zp R)⊗R T as above. We need to
see that σ 7→ cx′,y − cx,y is a 1–coboundary of GK with values in T. But we
can express it as σ 7→ (σ− 1)(z) for

z =

[ log0
p
(
χcyc(γ′)

)
γ′ − 1

−
log0

p
(
χcyc(γ)

)
γ− 1

]
(y)−

−
[
log0

p
(
χcyc(γ

′)
)
b′ − log0

p
(
χcyc(γ)

)
b
]
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and the first term makes sense in D(T) because

[ log0
p
(
χcyc(γ′)

)
γ′ − 1

−
log0

p
(
χcyc(γ)

)
γ− 1

]
∈ Zp[[ΓK]].

Indeed, writing γ′ = γa with a ∈ Z×p and identifying γ with 1 + T ∈ Zp[[T]],
this factor can be expressed as the product of log0

p
(
χcyc(γ)

)
and

a
(1 + T)a − 1

− 1
T
=

1
T

[
1

1 + a−1
2 T + · · ·

− 1
]
=

1
T

[
− a− 1

2
T + · · ·

]
= − a− 1

2
+ · · · ∈ Zp[[T]].

Finally, we can check that z ∈ (A ⊗̂Zp R) ⊗R T is invariant under ϕ (i.e.,
(ϕ− 1)(z) = 0) and so in fact z ∈ T.

Proposition 29 (Herr). Let T be an R–representation of GK. The vertical maps

Cϕ,γ(K, T) : 0 D(T) D(T)⊕D(T) D(T) 0

Cψ,γ(K, T) : 0 D(T) D(T)⊕D(T) D(T) 0

(ϕ−1,γ−1)

1

(γ−1)⊕(1−ϕ)

−ψ⊕1 −ψ

(ψ−1,γ−1) (γ−1)⊕(1−ψ)

define a quasi-isomorphism from Cϕ,γ(K, T) to Cψ,γ(K, T).
In particular, Hi

ψ,γ(K, T) ∼= Hi
ϕ,γ(K, T) ∼= Hi(K, T) for all i ≥ 0.

Idea of the proof. This is proposition 4.1 of Herr’s article [23]. The result follows
from the non-trivial fact that γ− 1 acts invertibly on D(T)ψ=0 (see theorem 3.8 of
ibid.) and because ψ is surjective.

Let us be more explicit for the isomorphism H1
ϕ,γ(K, T) ∼= H1

ψ,γ(K, T), as in
lemma I.5.2 of Cherbonnier–Colmez’s article [14].

• Surjectivity. Let (x, y) ∈ Z1
ψ,γ(K, T), so that (γ− 1)(x) = (ψ− 1)(y). Then

y = ψ(y)− (γ− 1)(x) and applying ϕ we get ϕ(y) = ϕψ(y)− (γ− 1)
(

ϕ(x)
)
.

Therefore,

(ϕ− 1)(y) = ϕψ(y)− y− (γ− 1)
(

ϕ(x)
)

= (γ− 1)
(
−ϕ(x) + (γ− 1)−1(ϕψ(y)− y)

)
,

which means that
(
−ϕ(x) + (γ− 1)−1(ϕψ(y)− y), y

)
∈ Z1

ϕ,γ(K, T). A direct
computation shows that this is a preimage of (x, y) under −ψ⊕ 1, as ψϕ = 1.
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• Injectivity. Let (x, y) ∈ Z1
ϕ,γ(K, T) and assume that

(
−ψ(x), y

)
=
(
(ψ− 1)(b), (γ− 1)(b)

)
for some b ∈ D(T).

Now, we compute

ψ
(
x− (ϕ− 1)(b)

)
= −(ψ− 1)(b)− (1− ψ)(b) = 0

and
(γ− 1)

(
x− (ϕ− 1)(b)

)
= (ϕ− 1)(y)− (ϕ− 1)(y) = 0.

Since γ− 1 acts invertibly on D(T)ψ=0, we conclude that x = (ϕ− 1)(b).
This equality and y = (γ− 1)(b), mean that (x, y) ∈ B1

ϕ,γ(K, T).

Thus, we can compute H1(K, T) using (ψ, ΓK)–cohomology. Our end goal,
however, is to compute H1

Iw(K, T) using the formalism of (ϕ, ΓK)–modules. This
will be possible by replacing K above with Kn for n ≥ 1 and taking limits. (In
particular, the assumption that ΓK is isomorphic to Zp is harmless.) We conclude
this subsection with the result that will allow us to study H1

Iw(K, T).

Lemma 30. Let T be an R–representation of GK. There is a short exact sequence

0
(
D(T)ψ=1)

ΓK
H1

ψ,γ(K, T)
(
D(T)/(ψ− 1)

)ΓK 0,

y (0, y)

(x, y) x

where ( · )ΓK denotes the ΓK–invariants and ( · )ΓK denotes the ΓK–coinvariants. (Since
we fixed a topological generator γ of ΓK, we could have written

(
D(T)ψ=1)

ΓK
=
(
D(T)ψ=1)/(γ− 1)

and (
D(T)/(ψ− 1)

)ΓK =
(
D(T)/(ψ− 1)

)γ=1

alternatively.)

Proof. This is lemma I.5.5 of Cherbonnier–Colmez’s article [14]. It follows formally
from the definition of H1

ψ,γ(K, T).
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Remark. Combining the first map of lemma 30 with proposition 28 and (the proof
of the surjectivity in) proposition 29, we get a morphism

(
D(T)ψ=1)

ΓK
→ H1(K, T)

that can be described as follows. To (the class of) y ∈ D(T)ψ=1 we attach (the class
of) (x, y) ∈ Z1

ϕ,γ(K, T), where

x = (γ− 1)−1(ϕ− 1)(y)

(this makes sense because (ϕ− 1)(y) ∈ D(T)ψ=0 and γ− 1 acts invertibly there).
After choosing b ∈ (A ⊗̂Zp R)⊗R T such that (ϕ− 1)(b) = x, the class of (x, y)
corresponds to the element in H1(K, T) given by the 1–cocycle

σ 7→ log0
p
(
χcyc(γ)

)[σ− 1
γ− 1

(y)− (σ− 1)(b)
]

.
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4 Some Iwasawa theory

Continuing with the notation from sections 2 and 3, we want to recall next the
results of Cherbonnier and Colmez to construct interesting maps of Iwasawa
theory using (ϕ, ΓK)–modules, as well as the extensions of such results to families
by Dee, Kedlaya, Liu, Pottharst, Xiao. . . TODO!!!

This part follows mostly sections II and IV of Cherbonnier–Colmez’s article
[14].

4.1 Iwasawa cohomology

Definition 31.
(1) Let T be an R–representation of GK. We define the Iwasawa cohomology groups

Hi
Iw(K, T) = Hi

Iw(K∞/K, T) = lim←−
n≥1

Hi(Kn, T),

where the projective limit is taken with respect to the corestriction maps.
(2) Let V be a Qp–representation of GK and let T be a stable Zp–lattice of V. We

define the Iwasawa cohomology groups

Hi
Iw(K, V) = Hi

Iw(K∞/K, V) = Hi
Iw(K, T)⊗Zp Qp.

(This is independent of the choice of lattice T.)

Remark. We are only interested in H1
Iw(K, T). The corestriction maps in the cyclo-

tomic tower can be described explicitly in terms of 1–cocycles as follows.
In general, consider a subgroup H of finite index of a profinite group G and

let M be a (continuous) G–module. Fix a system of representatives X of G/H
and write ĝ for the representative in X of g ∈ G. Given a cohomology class
[c] ∈ H1(H, M) represented by a 1–cocycle c, its corestriction cor([c]) ∈ H1(G, M)

is represented by
g 7→ ∑

x∈X
ĝx · c

(
(ĝx)−1gx

)
.

Consider the Iwasawa algebra Λ(ΓK) = Zp[[ΓK]], which can be interpreted as
the Zp–algebra of measures on ΓK with values in Zp. There is also an isomorphism
Λ(ΓK) ∼= Zp[[T]] (that we have already used in section 3) given by γ 7→ 1 + T. On
Λ(ΓK) there is a natural action of GK given by

σ · γ = σ̄γ, where σ̄ is the image of σ under GK →→ ΓK.
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More generally, let R be a coefficient ring in the sense of definition 7. We define

ΛR(ΓK) = Λ(ΓK) ⊗̂Zp R,

where the completed tensor product is computed with respect to the maximal
ideals of Λ(ΓK) and R.

If T is an R–representation of GK and [µ] ∈ H1(K, ΛR(ΓK)⊗R T
)
, we regard

the 1–cocycle µ as a family of measures: for every σ ∈ GK, µ(σ) corresponds to a
measure on ΓK with values in T. Thus, for any continuous map f : ΓK → R, we
will write ∫

ΓK

f (x) µ(x)

for the 1–cocycle

σ 7→
∫

ΓK

f (x)
(
µ(σ)

)
(x).

Lemma 32 (Shapiro). Let T be an R–representation of GK. There is a canonical iso-
morphism

H1(K, ΛR(ΓK)⊗R T
) ∼= H1

Iw(K, T)

that sends [µ] ∈ H1(K, ΛR(ΓK) ⊗R T
)

to the class in H1
Iw(K, T) represented by the

compatible family of 1–cocycles∫
ΓKn

1 µ(x) ∈ Z1(Kn, T) for n ≥ 1.

Proof. This is a “limit” of the more usual version of Shapiro’s lemma (using that in
finite index the induced and coinduced modules coincide).Indeed, we can write

ΛR(ΓK)⊗R T = Λ(ΓK) ⊗̂Zp T = lim←−
n≥1

(
Zp
[
GK/GKn

]
⊗Zp T

)
and Shapiro’s lemma gives isomorphisms

H1(GK, Zp
[
GK/GKn

]
⊗Zp T

) ∼= H1(GKn , T)

for all n ≥ 1. More precisely, HomZp

(
Zp[GK/GKn ], T

) ∼= Zp
[
GK/GKn

]
⊗Zp T as

Zp[GK]–modules (where GK acts on the coinduced module by conjugation) via(
f : Zp[GK/GKn ]→ T

)
7→ ∑

α∈GK/GKn

α⊗ f (α)

and there is an isomorphism H1(GK, HomZp(Zp[GK/GKn ], T)
) ∼= H1(GKn , T) that
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in terms of 1–cocycles is(
c : GK → HomZp

(
Zp[GK/GKn ], T

))
7−→

(
σ 7→

(
c(σ)

)
(1)
)

(i.e., restricting cocycles to GKn and evaluating their images at 1).
From the description of corestrictions given in the previous remark, one can

check that the transition maps in both projective limits are compatible with these
isomorphisms.

Finally, one proves that

H1(K, ΛR(ΓK)⊗R T
) ∼= lim←−

n≥1
H1(K, Zp[GK/GKn ]⊗Zp T

)
checking a Mittag–Leffler condition for the H0 groups. See proposition II.1.1 of
Colmez’s article [15] for more details.

Interpreting the elements of Zp
[
GK/GKn

]
⊗Zp T ∼= Zp

[
ΓK/ΓKn

]
⊗Zp T as

measures on ΓK, we can trace the definitions of the isomorphisms and see that the
evaluation at 1 corresponds to taking the measure of ΓKn , whence the last formula
follows.

Remark. More generally, Shapiro’s lemma provides an isomorphism of δ–functors.
Nevertheless, we will only use the version stated above.

Corollary 33. Let T be an R–representation of GK and let k ∈ Z. There is a canonical
isomorphism

H1(K, ΛR(ΓK)⊗R T
) ∼= lim←−

n≥1
H1(Kn, T(k)

)
given in terms of 1–cocycles by

µ 7→
((∫

ΓKn

χk
cyc(x) µ(x)

)
(k)
)

n≥1
,

where the notation (k) means the k–th Tate twist.
In particular, H1

Iw
(
K, T(k)

) ∼= H1
Iw(K, T).

Proof. This is proposition II.1.8 of Colmez’s article [15].
It follows from the isomorphism ΛR(ΓK)⊗R T ∼= ΛR(ΓK)⊗R T(k) induced by

ΛR(ΓK) ΛR(ΓK)(k)

γ χk
cyc(γ)γ

∼=
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and lemma 32 applied to T(k).

4.2 The regulator map

First of all, we introduce some notation for the rest of the section. Fix a topological
generator γ1 of ΓK1 and set γn = γ

[Kn :K1]
1 , which is a topological generator of ΓKn .

Let T be an R–representation of GK. For each n ≥ 1, we regard T as a repres-
entation of GKn by restriction. Then lemma 30 (and the remark after it) give a short
exact sequence

0
D(T)ψ=1

(γn − 1)
H1(Kn, T)

(
D(T)

(ψ− 1)

)γn=1

0

constructed in terms of (ψ, ΓKn)–cohomology. Observe that the ϕ–module D(T)

does not depend on n because HKn = HK. We will see that these sequences are
compatible for varying n ≥ 1.

Lemma 34. Let T be an R–representation of GK and let n ≥ 1. The corestriction map

H1(Kn+1, T) H1(Kn, T)

H1
ψ,γ(Kn+1, T) H1

ψ,γ(Kn, T)

cor

∼= ∼=

can be described on (ψ, Γ)–cohomology in terms of 1–cocycles as

(x, y) 7→ (x′, y) =
(γn+1 − 1

γn − 1
(x), y

)
.

Proof. This is lemma II.2.1 of Cherbonnier–Colmez’s article [14].
We can compute the corestriction using the remark after definition 31. More

concretely, set G = GKn , H = GKn+1 and X =
{

1, γ̃n, . . . , γ̃
p−1
n

}
for a fixed lift

γ̃n ∈ GKn of γn ∈ ΓKn . For c ∈ Z1(Kn+1, T), we can express cor(c) ∈ Z1(Kn, T) as

σ 7→
p−1

∑
i=0

σ̂γi
n · c

(
(σ̂γi

n)
−1σγ̃i

n
)
.

On the other hand, to every (x, y) ∈ Z1
ψ,γn+1

(Kn+1, T) equipped with a solution
b ∈ (A ⊗̂Zp R)⊗R T to

(ϕ− 1)(b) = −ϕ(x) + (γn+1 − 1)−1(ϕψ(y)− y
)

36



we attach c(x,y) ∈ Z1(Kn+1, T) defined by

c(x,y)(σ) = log0
p
(
χcyc(γn+1)

)[ σ− 1
γn+1 − 1

(y)− (σ− 1)(b)
]

.

Working in Frac
(

R[[GKn ]]
)
⊗R[[GKn ]]

(A ⊗̂Zp R)⊗R T, we can define

a(x,y) =
y

γ̃n+1 − 1
− b where γ̃n+1 = γ̃

p
n

and then c(x,y) is the 1–coboundary

c(x,y)(σ) = log0
p
(
χcyc(γn+1)

)
(σ− 1)

(
a(x,y)

)
.

We can rearrange the sum defining cor
(
c(x,y)

)
as follows:

p−1

∑
i=0

σ̂γi
n ·
(
(σ̂γi

n)
−1σγ̃i

n − 1
)(

a(x,y)
)
=

p−1

∑
i=0

σγ̃i
n
(
a(x,y)

)
−

p−1

∑
i=0

σ̂γi
n
(
a(x,y)

)
=

p−1

∑
i=0

σγ̃i
n
(
a(x,y)

)
−

p−1

∑
i=0

γ̃i
n
(
a(x,y)

)
= (σ− 1)

[p−1

∑
i=0

γ̃i
n
(
a(x,y)

)]
But

p−1

∑
i=0

γ̃i
n
(
a(x,y)

)
=

γ̃n+1 − 1
γ̃n − 1

[
y

γ̃n+1 − 1
− b
]
=

y
γ̃n − 1

− γ̃n+1 − 1
γ̃n − 1

b

and it is clear that

(ϕ− 1)
( γ̃n+1 − 1

γ̃n − 1
b
)
= −ϕ(x′) + (γn − 1)−1(ϕψ(y)− y

)
.

All in all, we have checked that

cor
(
c(x,y)

)
(σ) = log0

p
(
χcyc(γn+1)

)
(σ− 1)

(
a(x′,y)

)
= log0

p
(
χcyc(γn)

)
(σ− 1)

(
a(x′,y)

)
= c(x′,y)(σ)

where log0
p
(
χcyc(γn+1)

)
= log0

p
(
χcyc(γn)

)
because γn+1 = γ

p
n.
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Therefore, we obtain commutative diagrams

0
D(T)ψ=1

(γn+1 − 1)
H1(Kn+1, T)

(
D(T)

(ψ− 1)

)γn+1=1

0

0
D(T)ψ=1

(γn − 1)
H1(Kn, T)

(
D(T)

(ψ− 1)

)γn=1

0

1 cor γn+1−1
γn−1

with exact rows for all n ≥ 1. We can take projective limits.

Proposition 35. Let T be an R–representation of GK.
(1) The natural map

D(T)ψ=1 −→ lim←−
n≥1

D(T)ψ=1

(γn − 1)

(where the transition maps are induced by the identity on D(T)) is an isomorphism.
(2) We have

lim←−
n≥1

(
D(T)

(ψ− 1)

)γn=1

= 0,

where the transition maps are given by multiplication by (γn+1 − 1)/(γn − 1).

Proof. If R = Zp, this is proposition II.3.1 of Cherbonnier–Colmez’s article [14].
The general case follows from this by regarding T as a projective limit of the
Zp–representations Tn = T/mn

RT for n ≥ 1 and using the techniques of Dee’s
article [19].

Putting everything together, we obtain the following result.

Theorem 36 (Fontaine). Let T be an R–representation of GK. The map

Log∗T∗(1) : D(T)ψ=1 → H1
Iw(K, T)

that sends y ∈ D(T)ψ=1 to the system of cohomology classes in H1
Iw(K, T) represented

by the cocycles

σ 7→ log0
p
(
χcyc(γn)

)[ σ− 1
γn − 1

(y)− (σ− 1)(bn)

]
,

where bn ∈ (A ⊗̂Zp R)⊗R T is a solution to

(ϕ− 1)(bn) = (γn − 1)−1(ϕ− 1)(y),
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is an isomorphism.

Remark. This is theorem II.1.3 of Cherbonnier–Colmez’s article [14] for R = Zp

and proposition III.3.2 of Dee’s article [19] in the general case. Cherbonnier and
Colmez attribute it to Fontaine (even though he did not publish it).

Definition 37. Let T be an R–representation of GK. We define

Exp∗T∗(1) : H1
Iw(K, T)→ D(T)ψ=1

to be the inverse of the isomorphism Log∗T∗(1) described in theorem 36.

As a matter of fact, the whole Iwasawa cohomology can be computed in this
way in terms of (ϕ, ΓK)–modules.

Theorem 38. Let T be an R–representation of GK. The Iwasawa cohomology groups
Hi

Iw(K, T) for i ≥ 0 are computed by the complex

0 D(T) D(T) 0
ψ−1

concentrated in degrees 1 and 2.

Remark. This is theorem 3.3.4 of Dee’s article [19].

4.3 Bloch–Kato’s exponential maps

In their article [10], Bloch and Kato introduced certain maps relating the first
cohomology groups of representations and their Dieudonné modules.

Definition 39.
(1) Let V be a Qp–representation of GK. We define the following subgroups of

H1(K, V):
• the exponential part H1

e(K, V) = Ker
(
H1(K, V)→ H1(K, Bϕ=1

crys ⊗Qp V)
)
;

• the finite part H1
f (K, V) = Ker

(
H1(K, V)→ H1(K, Bcrys ⊗Qp V)

)
, and

• the geometric part H1
g(K, V) = Ker

(
H1(K, V)→ H1(K, BdR ⊗Qp V)

)
.

(2) Let T be a Zp–representation of GK and consider V = T ⊗Zp Qp, so that T
is a stable Zp–lattice of V. Let i : H1(K, T) → H1(K, V) be the morphism
induced by the inclusion T ↪→ V. For ∗ ∈ { e, f, g }, define the subgroup

H1
∗(K, T) = i−1(H1

∗(K, V)
)
⊂ H1(K, T).
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Let V be a Qp–representation of GK. The fundamental exact sequence from
proposition 4 can be rewritten as

0 Qp Bϕ=1
max BdR/B+

dR 0.

Tensoring it with V, we obtain a short exact sequence

0 V Bmax ⊗Qp V (BdR/B+
dR)⊗Qp V 0

whose long exact sequence of cohomology is

0 VGK Dϕ=1
crys (V)

DdR(V)

Fil0 DdR(V)

H1(K, V) H1(K, Bϕ=1
max ⊗Qp V) · · ·

Therefore, the connecting morphism induces an isomorphism

DdR(V)

Fil0 DdR(V) + Dϕ=1
crys (V)

∼= H1
e(K, V)

Definition 40. Let V be a Qp–representation of GK. We define Bloch–Kato’s expo-
nential map

expV :
DdR(V)

Fil0 DdR(V) + Dϕ=1
crys (V)

−→ H1
e(K, V)

to be the isomorphism induced by the connecting morphism of the fundamental
exact sequence as in the paragraph above. Its inverse is Bloch–Kato’s logarithm map

logV : H1
e(K, V) −→ DdR(V)

Fil0 DdR(V) + Dϕ=1
crys (V)

.

Remark. By abuse of notation, we often write

expV :
DdR(V)

Fil0 DdR(V)
−→ H1(K, V)

or even expV : DdR(V) → H1(K, V) for the maps induced by the isomorphism
version of expV in the obvious way.

Consider the Kummer dual V∗(1) = HomQp(V, Qp)⊗Qp Qp(1) of V. The cup
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product gives a perfect pairing

` : H1(K, V)×H1(K, V∗(1)
)
→ H2(K, Qp(1)

) ∼= Qp

which allows us to identify H1(K, V∗(1)
)

with the dual of H1(K, V). On the other
hand, our fixed choice of ε provides an isomorphism between DdR(Qp(1)) = t−1K
and K. Since DdR preserves tensor products, we get a perfect pairing

DdR(V)⊗K DdR
(
V∗(1)

) ∼= DdR
(
V ⊗Qp V∗(1)

)
−→ DdR

(
Qp(1)

) ∼= K
TrK/Qp−−−→ Qp.

This in turn induces the perfect pairing

[ · , · ]DdR(V) : Fil0 DdR(V)×
DdR

(
V∗(1)

)
Fil0 DdR

(
V∗(1)

) −→ Qp

by means of which we identify DdR
(
V∗(1)

)
/ Fil0 with the dual of Fil0 DdR(V).

From the Bloch–Kato exponential map for V∗(1)

expV∗(1) : DdR
(
V∗(1)

)
→→

DdR
(
V∗(1)

)
Fil0 DdR

(
V∗(1)

) → H1
e
(
K, V∗(1)

)
↪→ H1(K, V∗(1)

)
we obtain by duality a morphism

exp∗V∗(1) : H1(K, V
)
→ Fil0 DdR(V) ↪→ DdR(V).

Explicitly,

φ exp∗V∗(1)(φ)

H1(K, V) Fil0 DdR(V)

H1(K, V∗(1)
)∗ (

DdR
(
V∗(1)

)
Fil0 DdR

(
V∗(1)

))∗
φ ` · φ ` expV∗(1)( · )

∈ ∈

exp∗V∗(1)

∼= ∼=

∈ ∈

and so the relation between expV∗(1) and exp∗V∗(1) is given by

[exp∗V∗(1)(φ), · ]DdR(V) = φ ` expV∗(1)( · ).

Remark. Suppose that V is de Rham. Let k ∈ Z. If k� 0, then Fil0 DdR
(
V(k)

)
= 0
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and Fil0 DdR
(
V(−k)

)
= DdR

(
V(−k)

)
. In fact,

exp∗V∗(1+k) : H1(K, V(−k)
)
→ DdR

(
V(−k)

)
is an isomorphism for k� 0.

Let us explain how to compute with the dual exponential maps. But before
that, we need to introduce some operators.

For each m ≥ 1, we define Trm : K∞ → Km and prKm
: K∞ → Km as follows:

given x ∈ K∞, we can choose n� 0 such that x ∈ Kn and then

Trm(x) =
1
pn TrKn/Km(x) and prKm

(x) =
1

[Kn : Km]
TrKn/Km(x)

(these definitions are independent of the choice of n). For m� 0, so that Km+1/Km

is a cyclic extension of degree p, we have prKm
= pm Trm.

Recall that BdR contains K and the distinguished element t, on which GK acts
through χcyc. In particular, K∞((t)) ⊂ BHK

dR . We extend the previous maps to
Trm, prKm

: K∞((t))→ Km((t)) by t 7→ t.

Proposition 41. The subfield K∞((t)) is dense in BHK
dR . Therefore, for each m ≥ 1, we can

extend Trm and prKm
by continuity to Qp–linear maps BHK

dR → Km((t)). Furthermore,

lim
m→∞

prKm
(x) = x for all x ∈ BHK

dR .

Proof. This is proposition IV.1.1 of Cherbonnier–Colmez’s article [14].

Let V be a de Rham Qp–representation of GK. For every m ≥ 1, we extend the
maps Trm and prKm

by DdR(V)–linearity and get

Trm, prKm
: BHK

dR ⊗K DdR(V)→ Km((t))⊗K DdR(V).

We also define a “projection”

∂V(−k) : K∞((t))⊗K DdR(V)→ K∞ ⊗K DdR
(
V(−k)

)
for each k ∈ Z as follows. Every x ∈ K∞((t))⊗K DdR(V) has a unique expansion

x = ∑
i�−∞

tixi with xi ∈ K∞ ⊗K DdR(V) for all i ∈ Z

and we set ∂V(−k) = tkxk ∈ K∞ ⊗K DdR
(
V(−k)

)
.
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TODO: I think that the last part is explained more systematically in something
called Sen–Tate theory. It might be worth learning what Ddif is (it links (ϕ, ΓK)–
modules with DdR).

Since V is de Rham, the natural map

BdR ⊗K DdR(V)→ BdR ⊗Qp V

(given by multiplication in BdR) is an isomorphism. Taking HK–invariants on both
sides, we obtain BHK

dR ⊗K DdR(V) ∼=
(
BdR ⊗Qp V

)HK .

Proposition 42. Let V be a de Rham Qp–representation of GKn and let k ∈ Z. Let
n ∈ Z≥1 and take α ∈ H1(Kn, V(−k)

)
. We have an inflation-restriction exact sequence

0 H1(ΓKn , (BdR ⊗Qp V(−k))HK
)

H1(GKn , BdR ⊗Qp V(−k)
)
−

H1(HK, BdR ⊗Qp V(−k)
)
= 0.

inf

res

Then, given [c] ∈ H1(ΓKn , (BdR ⊗Qp V(−k))HK
)
, represented by a 1–cocycle

c : ΓKn −→
(
BdR ⊗Qp V(−k)

)HK ∼= BHK
dR ⊗K DdR

(
V(−k)

)
,

such that the image of α under H1(GKn , V(−k)
)
→ H1(GKn , BdR⊗Qp V(−k)

)
coincides

with inf
(
[c]
)
,

exp∗V∗(1+k)(α) = (∂V(−k) ◦ prKn
)

(
c(σ)

logp
(
χcyc(σ)

))

for any σ ∈ ΓKn with logp
(
χcyc(σ)

)
6= 0.

Proof. This is proposition IV.1.2 of Cherbonnier–Colmez’s article [14]. TODO: give
a better reference. I think this is (related to?) a result of Kato.

4.4 Reciprocity laws

In this subsection, let V be a de Rham Qp–representation of GK. We want to
describe Exp∗V∗(1) : H1

Iw(K, V)→ D(V)ψ=1 and relate its image to DdR(V).

Lemma 43. For every n ∈ Z≥1, let sn = pn−1(p− 1) (as in the remark of section 2.2.1).
For n� 0 we have D(V)ψ=1 ⊂ D†,sn(V).

Proof. See proposition III.3.2 of Cherbonnier–Colmez’s article [14].
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In particular, given [µ] ∈ H1
Iw(K, V), we can view

ϕ−n(Exp∗V∗(1)([µ])
)
∈
(
BdR ⊗Qp V

)HK ∼= BHK
dR ⊗K DdR(V)

and so we can apply the operators Trm and prKm
to it.

Theorem 44 (Cherbonnier–Colmez). Let V be a de Rham Qp–representation of GK

and let m ∈ Z≥1. Let [µ] ∈ H1
Iw(K, V) ∼= H1(K, Λ(ΓK)⊗Zp V

)
.

(1) The element

Exp∗V∗(1),Km

(
[µ]
)
= Trm

(
ϕ−n(Exp∗V∗(1)([µ])

))
∈ Km((t))⊗K DdR(V)

(which makes sense for n � 0 so that we can apply lemma 43 and n ≥ m) is
independent of n.

(2) For every k ∈ Z, consider

[µm,k] =

[(∫
ΓKm

χ−k
cyc(x) µ(x)

)
(−k)

]
∈ H1(Km, V(−k)

)
and

em,k = exp∗V∗(1+k)
(
[µm,k]

)
∈ DdR,Km

(
V(−k)

)
= t−kDdR,Km(V)

⊂ Km((t))⊗K DdR,K(V) ⊂ BHK
dR ⊗K DdR,K(V).

Then
Exp∗V∗(1),Km

(
[µ]
)
= ∑

k∈Z

em,k.

(3) If m� 0, then

Exp∗V∗(1),Km

(
[µ]
)
= p−m ϕ−m(Exp∗V∗(1)([µ])

)
or, equivalently,

prKm

(
ϕ−m(Exp∗V∗(1)([µ])

))
= ϕ−m(Exp∗V∗(1)([µ])

)
.

Proof. This is theorem IV.2.1 of Cherbonnier–Colmez’s article [14]. TODO: explain
some of the ideas.

This important theorem allows us to recover the dual exponential maps on
Tate twists of a de Rham Qp–representation V of GK (and not only its restrictions
to GKm for m� 0) using the following fact:
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Fact. Let L/E be finite extensions of K. The diagram

H1(L, V) DdR,L(V) ∼= L⊗K DdR(V)

H1(E, V) DdR,E(V) ∼= E⊗K DdR(V)

exp∗V∗(1)

cor TrL/E ⊗ idDdR(V)

exp∗V∗(1)

is commutative.

Consider m ∈ Z≥1 large enough (depending only on V) to apply part (3) of
theorem 44. We define

Spcyc,V : D(V)ψ=1 Km((t))⊗K DdR(V) K((t))⊗K DdR(V)
p−m ϕ−m TrKm/K ⊗ idDdR(V)

(which is independent of m by part (1) of theorem 44 and because of the equality
Trm = TrKn/Km ◦Trn for n ≥ m). Given [µ] ∈ H1

Iw(K, V), the fact above and part (2)
of theorem 44 imply that

Spcyc,V
(
Exp∗V∗(1)([µ])

)
= ∑

k∈Z

exp∗V∗(1+k)([µ0,k])tk,

where

[µ0,k] =

[(∫
ΓK

χ−k
cyc(x) µ(x)

)
(−k)

]
∈ H1(K, V) for all k ∈ Z.

We can recover the coefficient of tk by composing with ∂V(−k).
TODO: Should I express this power series as a measure on ΓK? Right now, I

have a Laurent series whose coefficients should correspond to
∫

Z×p
xk ν(x) and

from this I could recover the Amice transform
∫

Z×p
(x

k) ν(x).

4.5 Interpolation in an integral family

Throughout this subsection, let R be a finite flat Λ(ΓK)–algebra that is a coefficient
ring in the sense of Mazur (cf. definition 7).

Definition 45. An arithmetic point of R is a continuous Zp–algebra homomorphism
ν : R→ Qp with the property that the composition

ΓK → R ν−→ Qp
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is of the form γ 7→ ν0(γ)γ
k−2 for some integer k ≥ 2 and some finite-order

character ν0 : ΓK → µp∞ . In this situation, we say that ν has weight (k, ν0) and call
Ker(ν) an arithmetic prime of R. Let Fν denote the residue field of Ker(ν) and let
Oν be the ring of integers of Fν.

We write Xarith(R) for the set of arithmetic points of R.

Let T be an R–representation of GK and let ν ∈ Xarith(R). We define

Tν = T⊗R,ν Oν and Vν = Tν ⊗Zp Qp.

Then, the natural map T→ Vν induces specialization maps

H1
Iw(K, T) H1

Iw(K, Vν)
Spν and D(T)ψ=1 D(Vν)ψ=1.

Spν

Combining this with the results of section 4.4, for every ν ∈ Xarith(R) and every
k ∈ Z, the diagram

H1
Iw(K, T) D(T)ψ=1

H1
Iw(K, V) D(Vν)ψ=1

H1(K, Vν(−k)
)

DdR
(
Vν(−k)

)

Exp∗
T∗(1)

Spν Spν

Exp∗V∗(1)

∫
ΓK

χ−k
cyc ∂V(−k)◦Spcyc,Vν

exp∗V∗ν (1+k)

is commutative.
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Part II

The theory for (relative) Lubin–Tate
extensions
The previous sections all deal with the most classical and well-understood situation
where K∞/K is a cyclotomic extension. It is natural to hope that a similar theory
can be developed for other kinds of extensions. Unfortunately, the theory of
fields of norms of Fontaine and Wintenberger, which is essential to define the
base rings for (ϕ, Γ)–modules, imposes certain restrictions on the extension K∞/K.
Specifically on the ramification properties of such extension.

The fundamental article [28] of Kisin and Ren, following ideas that had ap-
peared in work of Colmez and others, initiated the systematic study of p–adic
Galois representations through (ϕ, Γ)–modules when K∞/K is the extension ob-
tained from the torsion points of a Lubin–Tate formal group. There has been a lot
of progress in this subject since then, thanks to the work of Berger, Fourquaux,
Schneider, Venjakob, Xie. . .

The objective of this second part is to (slightly) generalize the p–adic Hodge
theory and the Iwasawa theory of Lubin–Tate extensions to allow for what are
known as relative Lubin–Tate formal groups, which often appear more naturally.

For the first time, we replace some of the notation of the previous sections.
More specifically, the same symbols will now denote more general versions of the
objects that appeared before. One can recover the previous theory by regarding
the cyclotomic extension as obtained from the torsion points of the multiplicative
formal group.
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5 Relative Lubin–Tate groups

Throughout this section, let K denote a fixed finite extension of Qp and write OK

for its ring of integers and k = Fq for its residue field.
To begin with, we recall the basic theory of Lubin–Tate formal groups relative to

an unramified extension L/K, as introduced in de Shalit’s short article [36]. A more
detailed exposition with proofs is included in the first chapter of de Shalit’s book
[37] or in Schneider’s course notes [32]. Some results will not be stated in their
most general form here.

Let L be the finite unramified extension of degree d over K, with ring of integers
OL and residue field kL. The Galois group Gal(L/K) is generated by the Frobenius
element ϕq, which lifts the q–th power map on kL. Our goal is to describe Lubin–
Tate towers of extensions of the following shape:

L∞

...

Ln

L0 L

K

Qp

O×K

(q−1)qn−1totally
ramified

d
unramified

〈ϕq〉

finite

5.1 The formal module

Definition 46. Let πL be a uniformizer of OL. A Frobenius power series for πL is a
formal power series φ(Z) ∈ OL[[Z]] satisfying that

(i) φ(Z) ≡ πLZ mod Z2 and
(ii) φ(Z) ≡ Zq mod πL.

Fix once and for all a uniformizer πL and a Frobenius power series φ(Z) for
πL. We will write ξK = NL/K(πL) ∈ OK. As in the original theory of Lubin and
Tate, we can attach a formal group law to these objects.
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Lemma 47. Let n ∈ Z≥1. For every linear homogeneous polynomial

F1(Z1, . . . , Zn) = a1Z1 + · · ·+ anZn ∈ OK[Z1, . . . , Zn]

(with coefficients in OK), there exists a unique power series

F(Z1, . . . , Zn) ∈ OL[[Z1, . . . , Zn]]

(with coefficients in OL, not necessarily in OK) such that
(i) F(Z1, . . . , Zn) ≡ F1(Z1, . . . , Zn) mod (Z1, . . . , Zn)2 and

(ii) φ
(

F(Z1, . . . , Zn)
)
= Fϕq

(
φ(Z1), . . . , φ(Zn)

)
.

Proof. See lemma I.1.4 of de Shalit’s book [37].

As an immediate application of lemma 47, we obtain the following result.

Theorem 48.
(1) There exists a unique formal group law F = Fφ(X, Y) ∈ OL[[X, Y]] for which the

Frobenius power series φ(Z) defines a homomorphism F→ Fϕq of formal groups
over OL (i.e., φ

(
F(X, Y)

)
= Fϕq

(
φ(X), φ(Y)

)
). Here, Fϕq denotes the power series

obtained by applying ϕq to the coefficients of F.
(2) There is an injective morphism of rings [ · ]φ : OK → EndOL(Fφ) defined as follows:

for every a ∈ OK, the power series [a]φ(Z) ∈ OL[[Z]] is characterized by the
properties

[a]φ(Z) ≡ aZ mod Z2 and φ
(
[a]φ(Z)

)
= [a]ϕq

φ

(
φ(Z)

)
.

Proof. See theorem I.1.3 and proposition I.1.5 of de Shalit’s book [37].

Remark. Lemma 47 (resp. the second part of theorem 48) is a special case of lemma
I.1.4 (resp. proposition I.1.5) of de Shalit’s book [37]. The more general results
allow one to relate the formal group laws obtained from different uniformizers
and Frobenius power series. For our applications, it is sufficient to note that φϕq(Z)
is a Frobenius power series for the uniformizer ϕq(πL) and then F

ϕq
φ = Fφϕq and

[a]ϕq
φ = [a]φϕq . Thus, we obtain at most d formal groups corresponding to the

Frobenius iterates of πL, all of which have the same norm ξK.

Definition 49. The formal group Fφ from theorem 48 is the Lubin–Tate formal group
(relative to the extension L/K) associated with the Frobenius power series φ.
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5.2 Torsion points

Define φ1 = φ and φn+1 = φϕn
q ◦ φn = φϕn

q ◦ φϕn−1
q ◦ · · · ◦ φϕq ◦ φ for n ≥ 1. That is,

φn ∈ HomOL(Fφ,F
ϕn

q
φ ) for all n ∈ Z≥1. (In particular, φd = [ξK]φ.) To these power

series we attach the torsion modules

Fφ,n = Fφ[φn] = { z ∈ mCp : φn(z) = 0 }.

If πK is any uniformizer of OK, one can prove (using Weierstrass’s preparation
theorem and counting points) that

Fφ,n = { z ∈ mCp : [πn
K]φ(z) = 0 } = { z ∈ mCp : [a]φ(z) = 0 for all a ∈ mn

K }

Set Ln = L(Fφ,n) for every n ≥ 1.

Proposition 50. For every n ∈ Z≥1, the set Fφ,n becomes a free (OK/mK)–module of
rank 1 with the addition given by Fφ and the multiplication by scalars induced by [ · ]φ.

Proof. See proposition 3.3 of Schneider’s notes [32].

Proposition 51. Let n ∈ Z≥1. The extension Ln/L is finite and Galois with a canonical
isomorphism Gal(Ln/L) ∼= (OK/mn

K)
×. Furthermore, Ln/L is totally ramified and any

generator zn of Fφ,n generates OLn over OL.

Proof. See proposition 3.5 of Schneider’s notes [32].

Definition 52. Let

L∞ =
⋃

n≥1

Ln = L
(⋃

n≥1

Fφ,n

)
.

The Lubin–Tate character of Fφ is the isomorphism χξK = χφ : Gal(L∞/L) → O×K
characterized by

σ(z) = [χφ(σ)]φ(z) for all z ∈
⋃

n≥1

Fφ,n and all σ ∈ Gal(L∞/L).

Remark. One can prove that the fields Ln for n ∈ Z≥1 and the character χξK depend
only on ξK = NL/K(πL) (cf. proposition I.1.8 of de Shalit’s book [37]). In particular,

we may replace Fφ with F
ϕn

q
φ = F

φ
ϕn

q for any n ∈ Z. We write χξK instead of χφ

whenever we want to stress this independence of φ.

Theorem 53. Let vK : K →→ Z ∪ {∞ } denote the normalized valuation of K. Recall
that d = [L : K].

50



(1) The compositum of L∞ and the maximal unramified extension Kur of K is the
maximal abelian extension Kab of K. Consequently,

Gal(Kab/L) = Gal(L∞/L)×Gal(Kur/L).

(2) The map v−1
K (dZ) = O×K · ξZ

K → Gal(Kab/L) defined by

u · ξ j
K 7→

(
[u−1]φ, ϕ

dj
q
)
∈ Gal(L∞/L)×Gal(Kur/L)

(where [u−1]φ denotes the element of Gal(L∞/L) corresponding to u−1 via the
Lubin–Tate character χφ) is the restriction of the (local) Artin reciprocity map
recK : K× → Gal(Kab/K).

Proof. See proposition 5.8, theorems 5.9 and 5.26 and corollary 5.12 of Schneider’s
notes [32].

For our applications, we are going to need some more constructions and
notations. Throughout this section, let GL = Gal(K/L), HL = Gal(K/L∞) and
ΓL = GL/HL

∼= Gal(L∞/L). We sometimes identify ΓL with O×K via the Lubin–
Tate character χξK .

Definition 54. The Tate module of the (relative) Lubin–Tate group Fφ is

Tφ Fφ = lim←−
n≥0

F
φ

ϕ−n
q , n

= lim←−
n≥0

F
ϕ−n

q
φ

[
(φϕ−n

q )n
]
= lim←−

n≥0
Ker

(
φϕ−1

q ◦ φϕ−2
q ◦ · · · ◦ φϕ−n

q
)
,

where the projective limit is taken with respect to the transition maps given by

φϕ−n
q : F

ϕ−n
q

φ → F
ϕ−n+1

q
φ .

Remark. The set Tφ Fφ inherits the structure of an O×K –module and an action of ΓL

from the respective structures on each F
φ

ϕ−n
q , n

. Propositions 50 and 51 imply that

Tφ Fφ
∼= OK(χξK). That is, for every (zn)n≥0 ∈ Tφ Fφ and every σ ∈ ΓL,

σ
(
(zn)n≥0

)
=
(
[χξK(σ)]φϕ−n

q
(zn)

)
n≥0.

5.3 The formal logarithm

Definition 55. Let ω(Z) = (1 + · · · ) dZ ∈ OL[[Z]] dZ be the (normalized) invariant
differential of the formal group Fφ, characterized by

ω ◦ Fφ(X, Y) = ω(X) + ω(Y).
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The formal logarithm of the formal group Fφ is the formal integral

logφ(Z) = logFφ
(Z) =

∫
ω(Z) = Z + · · · ∈ Z · L[[Z]].

Remark. The formal logarithm defines an isomorphism logφ : Fφ → Ĝa of formal
groups over L. Its inverse is the formal exponential expφ : Ĝa → Fφ. In particular,
logφ

(
Fφ(X, Y)

)
= logφ(X) + logφ(Y) and logφ

(
[a]φ(Z)

)
= a · logφ(Z) for every

a ∈ OK.

Lemma 56. The formal logarithm of Fφ can also be computed as

logφ(Z) = lim
n→∞

φn(Z)
ϕn−1

q (πL) · · · ϕq(πL)πL
,

where the limit is taken with respect to the (πL, Z)–adic topology of L[[Z]].

Proof. This is similar to part of the proof of lemma 9.8 of Colmez’s article [16]. We
reproduce the relevant parts here for the convenience of the reader.

Let

ln(Z) =
φn(Z)

ϕn−1
q (πL) · · · ϕq(πL)πL

=
φϕn−1

q ◦ · · · ◦ φϕq ◦ φ(Z)
ϕn−1

q (πL) · · · ϕq(πL)πL
.

We need to check that the sequence (ln)n≥1 converges in L[[Z]].
We can write

ln+1(Z)− ln(Z) =
φϕn

q ◦ φn(Z)− ϕn
q (πL)φn(Z)

ϕn
q (πL) · · · ϕq(πL)πL

=
ρϕn

q
(
φn(Z)

)
ϕn

q (πL) · · · ϕq(πL)πL

with ρ(Z) = φ(Z)− πLZ ∈ Z2OL[[Z]]. But the action of ϕq does not change the
valuations and φ(Z) ≡ Zq mod πL. Thus, the coefficient of Zk in ln+1(Z)− ln(Z)
has πL–adic valuation at least

2
(
n− blogq(k)c

)
− (n + 1) = n− 1− blogq(k)c −−−→n→∞

+∞.

The previous estimate proves the convergence of the sequence (ln(Z))n≥1; let
l(Z) denote its limit in L[[Z]]. We can check that it satisfies the defining properties
of logφ:

• By definition, ln(Z) = Z + · · ·. Therefore, the coefficient of Z in l(Z) is 1.
• We claim that l(Z) defines a homomorphism of formal groups Fφ → Ĝa.
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Indeed,

l(Fφ(X, Y)) = lim
n→∞

φn(Fφ(X, Y))

ϕn−1
q (πL) · · · ϕq(πL)πL

= lim
n→∞

F
ϕn

q
φ (φn(X), φn(Y))

ϕn−1
q (πL) · · · ϕq(πL)πL

= lim
n→∞

φn(X) + φn(Y)
ϕn−1

q (πL) · · · ϕq(πL)πL
= l(X) + l(Y),

where in the third equality we used that F
ϕn

q
φ (X, Y) ≡ X + Y mod (X, Y)2

and so the contribution of the higher order terms tends to 0 (as can be seen
from a rough estimate as above).

Corollary 57. The formal logarithm of Fφ satisfies the equation log
ϕq
φ ◦ φ = πL · logφ.

Corollary 58. The zeros of the formal logarithm logφ(Z) are exactly the torsion points
of Fφ, namely ⋃

n≥1

Fφ[φn],

each with multiplicity 1.

Definition 59. The invariant derivation of the formal group Fφ is

∂φ =
d

d
(
logφ(Z)

) .

Remark. Write dlogφ(Z) = gφ(Z) dZ. By the definition of ∂φ, for every formal
series f (Z) ∈ L[[Z, Z−1]] we get f ′(Z) dZ = ∂φ( f )(Z)dlogφ(Z) or, equivalently,

∂φ( f )(Z) =
f ′(Z)
gφ(Z)

.
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6 (Modified) period rings

Since the extension L∞/L is no longer cyclotomic, we have to modify the con-
struction of some of the period rings of p–adic Hodge theory. The exposition in
this section is mostly based on the very detailed presentation in Schneider and
Venjakob’s article [34], even if the main constructions were already present in Kisin
and Ren’s previous work [28].

6.1 Rings of formal series

Define E′L = kL((Z)) and A′,+L = OL[[Z]]. Let A′L be the πL–adic completion of
OL((Z)) and let B′L be its field of fractions. In more concrete terms,

A′L =

{
∑

k∈Z

akZk ∈ OL[[Z, Z−1]] : lim
k→−∞

|ak|p = 0
}

and

B′L =

{
∑

k∈Z

akZk ∈ L[[Z, Z−1]] : sup
k∈Z

|ak|p < ∞ and lim
k→−∞

|ak|p = 0
}

.

Then A′L is a Cohen ring with residue field E′L and B′L = A′L[π
−1
L ]. We endow A′L

with the weak topology, for which the OL–submodules

πk
LA′L + ZnA′,+L for k, n ∈ Z≥0

form a basis of open neighbourhoods of 0, and

B′L =
⋃

n≥0
π−n

L A′L

with the direct limit topology.
We also consider the ring

B+
rig,L =

{
∑
k≥0

akZk ∈ L[[Z]] : lim
k→∞
|ak|prk = 0 for all r ∈ [0, 1)

}

of rigid analytic functions on the open unit disc B. Since the rigid variety B over
L is quasi-Stein (namely, it is the rising union of closed discs B[r] of increasing
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radius r), the ring B+
rig,L is a Fréchet L–algebra with respect to the norms

∥∥∥∑
k≥0

akZk
∥∥∥
B[r]

= max
k≥0

(
|ak|prk) for r ∈ pQ with r < 1.

6.1.1 Operators

Definition 60. The Coleman Frobenius operator (associated with the relative Lubin–
Tate formal group Fφ) is the morphism of K–algebras ϕq : A′,+L → A′,+L defined by
ϕq
(

f (Z)
)
= f ϕq

(
φ(Z)

)
.

Lemma 61. The morphism ϕq : A′,+L → A′,+L is injective and

Im(ϕq) = { f (Z) ∈ A′,+L : f
(
Fφ(Z, v1)

)
= f (Z) for all v1 ∈ Fφ,1 }.

Proof. See lemma 4.1 of Schneider’s notes [32] (and observe that applying ϕq on
the coefficients of power series is an automorphism).

Remark. The Coleman Frobenius operator can be used to define Coleman norm
and trace operators and a Coleman map on norm-compatible systems of units
as in the classical theory (cf. section 4 of Schneider’s notes [32] or section 2 of
Schneider–Venjakob’s article [34]).

Since ϕq(Z) = φ(Z) ≡ Zq mod πL is a unit in A′L, we can extend ϕq to a
morphism OL((Z)) → A′L and by continuity to ϕq : A′L → A′L and ϕq : B′L → B′L.
Similarly, we obtain ϕq : B+

rig,L → B+
rig,L. Analogously, there are actions of ΓL on

A′L, B′L and B+
rig,L defined by

(
γ, f (Z)

)
7→ f

(
[χφ(γ)]φ(Z)

)
.

Remark. The formal logarithm logφ(Z) converges on the open unit disc and so is
an element of B+

rig,L. Corollary 57 says that ϕq acts on logφ(Z) as multiplication by
πL.

Lemma 62. The ϕq(A′L)–module A′L (resp. the ϕq(B′L)–module B′L) is free with basis
1, Z, . . . , Zq−1.

Proof. See proposition 1.7.3 of Schneider’s book [31] (where the result is stated
for the classical Lubin–Tate case, but the proof works verbatim for the relative
Lubin–Tate situation.)
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Definition 63. The operator ψq on A′L is the unique additive endomorphism of
A′L satisfying that

ϕq ◦ ψq =
1

πL
TrA′L/ϕq(A′L)

.

We define ψq on B′L and B+
rig,L by the same formula.

Remarks.
(1) The fact that ψq on A′L is well-defined is not obvious, but it can be proved

exactly as in remark 3.2.i of Schneider–Venjakob’s article [34].
(2) By definition, ψq is almost a left inverse of ϕq:

ψq ◦ ϕq =
q

ϕ−1
q (πL)

.

The reason to normalize ψq in this way instead of making it an actual left
inverse of ϕq is that, with this definition, the operators ϕq and ψq are adjoint
via a certain Pontryagin duality, as Schneider and Venjakob showed in their
article [34].

(3) There is the projection formula

ψq
(

ϕq( f )g
)
= f ψq(g) for all f , g ∈ B′L (resp. B+

rig,L).

Lemma 64. The actions of ϕq, ψq and ΓL on A′L (resp. B′L, B+
rig,L) are continuous.

Proof. See proposition 1.7.8 of Schneider’s book [31] and proposition 2.4.(b) of
Fourquaux–Xie’s article [22] for the continuity on A′L and B′L (where the result
is stated for the classical Lubin–Tate case, but the proofs work verbatim for the
relative Lubin–Tate situation.)

TODO: find references for B+
rig,L

Lemma 65. The operators ϕq, ψq and ∂φ (on either of the rings A′L, B′L or B+
rig,L) satisfy

the relations

∂φ ◦ ϕq = πL ϕq ◦ ∂φ and ϕq ◦ ψq ◦ ∂φ = ∂φ ◦ ϕq ◦ ψq.

Proof. Write dlogφ(Z) = gφ(Z) dZ. Differentiating both sides of the identity
ϕq
(
logφ(Z)

)
= πL logφ(Z), we see that ϕq(gφ(Z))φ′(Z) = πLgφ(Z). That is,

φ′(Z)
gφ(Z)

=
πL

ϕq(gφ(Z))
.
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Therefore,

∂φ ◦ ϕq( f ) =
ϕq( f ′)φ′

gφ
=

ϕq( f ′)πL

ϕq(gφ)
= πL ϕq

(
f ′

gφ

)
= πL ϕq ◦ ∂φ( f ).

On the other hand, one checks that

TrA′L/ϕq(A′L)
( f ) = ∑

v1∈Fφ,1

f
(
Fφ(v1, · )

)
(see the proof of remark 3.2.ii of Schneider–Venjakob’s article [34] for more details).
But ∂φ is invariant under Fφ, which implies that

∂φ

(
f (Fφ(v1, · ))

)
=
(
∂φ( f )

)(
Fφ(v1, · )

)
for all v1 ∈ Fφ,1.

All in all, ∂φ commutes with ϕq ◦ ψq.

6.2 Constructions of p–adic Hodge theory

The rings introduced in the previous subsection are very simple but have the
disadvantage that the actions of ϕq and GL seem to be defined in a very ad hoc
way in comparison to their analogues for the usual period rings of p–adic Hodge
theory. In this subsection, we give other constructions that resemble the ones
introduced by Fontaine (cf. sections 2.1 to 2.4).

6.2.1 Perfect rings of characteristic p

Consider the rings

Ẽ+ = lim←−
x 7→xq

OCp
∼= lim←−

x 7→xq

(
OCp /πLOCp

)
and Ẽ = lim←−

x 7→xq
Cp,

with the addition and multiplication laws defined as follows: for x =
(
x(n)

)
n≥0

and y =
(
y(n)

)
n≥0 in Ẽ, the elements x + y and xy of Ẽ are given by

(x + y)(n) = lim
m→∞

(
x(n+m) + y(n+m)

)qm
and (xy)(n) = x(n)y(n).

One can show that Ẽ+ is a valuation ring with fraction field Ẽ of characteristic p.
We write ϕq for the q–th power Frobenius endomorphism x 7→ xq of Ẽ.
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6.2.2 Perfect rings of characteristic 0

To lift the constructions to characteristic 0, one can use rings of Witt vectors. In
fact, since we allow K to have ramification over Qp, it is more convenient to work
with ramified Witt vectors. (See section 1.1 of Schneider’s book [31] for a systematic
account of ramified Witt vectors.)

Let F = W(k)[p−1] be the maximal absolutely unramified subfield of K. Con-
sider the rings Ã+ = WK(Ẽ+) = W(Ẽ+)⊗OF OK and Ã = WK(Ẽ) = W(Ẽ)⊗OF OK

and let B̃+ = Ã+[π−1
L ] and B̃ = Ã[π−1

L ]. We endow Ã with the weak topology,
which is the product topology coming from the valuation topology on Ẽ. Al-
ternatively, if π̃L is an element of Ẽ with π̃

(0)
L = πL and [π̃L] is its Teichmüller

representative in Ã, the sets

πk
LÃ + [π̃L]

nÃ+ for k, n ≥ 0

form a basis of neighbourhoods of 0 for the weak topology on Ã. Then the weak
topologies on Ã+, B̃+ and B̃ are the induced ones regarding

Ã+ ⊂ Ã, B̃ =
⋃

n≥0
π−n

L Ã, B̃+ ⊂ B̃.

By the functoriality of the Witt vectors constructions, the q–th power Frobenius
endomorphism ϕq and the action of the Galois group GL naturally lift to continu-
ous actions on the rings Ã+, Ã, B̃+ and B̃ in characteristic 0 (cf. lemma 1.5.3 of
Schneider’s book [31]).

6.2.3 Imperfect rings of characteristic p

Since φϕ−n
q (Z) ≡ Zq mod πL, reduction modulo πL at each level yields a well-

defined map

ι : Tφ Fφ −→ Ẽ+

(zn)n≥0 7−→ (zn mod πL)n≥0

(not a morphism in any clear way). As a matter of fact, the image of ι lies in the
maximal ideal of Ẽ+.

Fix once and for all a generator t0 of Tφ Fφ (as an OK–module). We obtain
an embedding of E′L into Ẽ given by Z 7→ ι(t0). One can prove that its image is
independent of the choice of t0. Let EL = Im

(
E′L ↪→ Ẽ

)
. If ι(t0) = (zn)n≥0, there is
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an induced action of ΓL on EL defined by

γ( f (ι(t0))) = f (ι(γ(t0))) = f
((
[χξK(γ)]φϕ−n

q
(zn)

)
n≥0

)
(where the power series [χξK(γ)]φϕ−n

q
is reduced modulo πL). There is also a q–th

power Frobenius morphism:

f (ι(t0))
q = f ϕq

(
ι(t0)

q) = f ϕq(φ(ι(t0)))

(where the power series φ is reduced modulo πL). Next, we want to lift these
constructions to the rings of characteristic 0.

6.2.4 Imperfect rings of characteristic 0

Lemma 66. There is a unique map { · } : Ẽ+ → Ã+ (not a morphism in any clear sense)
such that, for every x ∈ Ẽ+, {x} is a lift of x with the property that ϕq({x}) = φ({x}).
Moreover, { · } respects the action of GL and commutes with [a]φ for all a ∈ OK.

Proof. This result is the analogue of lemma 1.2 of Kisin–Ren’s article [28], which in
turn is based on lemma 9.3 of Colmez’s article [16]. We adapt it here to the relative
Lubin–Tate situation for the convenience of the reader.

Let x̃ be an arbitrary lift of x in Ã+. We want to define

{x} = lim
n→∞

(ϕ−1
q ◦ φ)n(x̃)

(where the exponent n denotes the composition of ϕ−1
q ◦ φ with itself n times). If

we can prove that this limit exists and is independent of the choice of x̃, it will
clearly satisfy the defining properties of {x}.

Observe that the set of lifts of x is precisely x̃ + πLÃ+. Since ϕ−1
q (πL)/πL

is a unit and φ(πk
LÃ+) ⊂ πk+1

L Ã+ (as φ(Z) ≡ Zq mod πL), the map ϕ−1
q ◦ φ is

contractive on x̃ + πLÃ+. But x̃ + πLÃ+ is complete with respect to the πL–adic
topology. Therefore, there is a unique fixed point that must be {x}.

Next let σ ∈ GL. We can write

σ ◦ (ϕ−1
q ◦ φ)n(x̃) = φϕ−1

q ◦ φϕ−2
q ◦ · · · ◦ φϕ−n

q (σϕ−n
q (x̃)).

Since σ ◦ ϕ−1
q = ϕ−1

q ◦ σ on Ã+, we deduce that σ({x}) is a lift of σ(x) and that
ϕq
(
σ({x})

)
= φ

(
σ({x})

)
. Therefore, σ({x}) = {σ(x)}.
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Finally, for a ∈ OK, we can write

[a]φ ◦ (ϕ−1
q ◦ φ)n(x̃) = φϕ−1

q ◦ φϕ−2
q ◦ · · · ◦ φϕ−n

q
(
[a]

ϕ−n
q

φ ◦ ϕ−n
q (x̃)

)
= φϕ−1

q ◦ φϕ−2
q ◦ · · · ◦ φϕ−n

q
(

ϕ−n
q ◦ [a]φ(x̃)

)
and we conclude that [a]φ({x}) = {[a]φ(x)} by the same argument.

Proposition 67. The map

ιφ : Tφ Fφ −→ Ã+

t 7−→ {ι(t)}

satisfies the following properties:
(1) [a]φ(ιφ(t)) = ιφ(a · t) for every a ∈ OK;
(2) ϕq(ιφ(t)) = φ(ιφ(t)), and
(3) σ(ιφ(t)) = ιφ(σ(t)) = ιφ

(
[χφ(σ)]φ(t)

)
= [χφ(σ)]φ(ιφ(t)) for every σ ∈ GL.

Proof. These properties follow immediately from lemma 66 and the corresponding
properties of ι.

Recall that we fixed a generator t0 of Tφ Fφ. Define ωφ = ιφ(t0) ∈ Ã+. By
analogy with the situation in characteristic p, we can define an embedding of
OL–algebras A′,+L ↪→ Ã+ by Z 7→ ωφ. We observe that ωφ is a unit in the local ring
Ã, as its reduction in Ẽ is ι(t0) 6= 0. Thus, and by continuity with respect to the
πL–adic topologies, the embedding can be extended to

A′L ↪→ Ã and B′L ↪→ B̃.

Proposition 67 implies that these maps are compatible with the Frobenius operators
ϕq and the actions of GL. One can prove that the images of these embeddings are
independent of the choice of t0 (cf. remark 2.1.17 of Schneider’s book [31]). Let
A+

L = Im
(
A′,+L ↪→ Ã+

)
, AL = Im

(
A′L ↪→ Ã

)
and BL = Im

(
B′L ↪→ B̃

)
. The main

result that we are going to use is the following:

Proposition 68. The morphism of OL–algebras A′L → AL defined by Z 7→ ωφ is an
isomorphism of topological OL–algebras (with respect to the weak topologies) compatible
with the continuous actions of the Frobenius operator ϕq and the Galois group ΓL.

Proof. Only the fact that this map is a homeomorphism with respect to the weak
topologies is unclear, but that is the content of proposition 2.1.16.(i) of Schneider’s
book [31].
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This result allows us to work more concretely in terms of formal series and
then translate the constructions to work over AL, as is done in the article [34] of
Schneider and Venjakob.

6.2.5 Larger rings of periods

Let E denote the separable closure of EL inside Ẽ. Let B be the p–adic completion
of the maximal unramified extension of BL inside B̃ and put A = B ∩ Ã and
A+ = B ∩ Ã+. One can prove that A is a complete discrete valuation ring with
field of fractions B and residue field E. Moreover, the theory of fields of norms of
Fontaine and Wintenberger gives natural isomorphisms

Gal(B/BL) ∼= Gal(A/AL) ∼= Gal(E/EL) ∼= HL,

where for the characteristic 0 rings Gal( · / · ) means continuous automorphisms
(cf. lemma 1.4 of Kisin–Ren’s article [28]).

Lemma 69. The sequence

0 OK A A 0
ϕq−1

is exact.

Proof. This is analogous to remark 5.1 of Schneider–Venjakob’s article [34]. We
recall the main idea of the proof here.

The sequence of the statement can be expressed as the projective limit of the
sequences

0 OK/πn
KOK A/πn

KA A/πn
KA 0

ϕq−1

for n ≥ 1, so it suffices to prove that each of those is exact (as the first terms satisfy
the Mittag–Leffler condition). An induction argument on n reduces the assertion
to the case of n = 1, but the exactness of

0 Fq E E 0
ϕq−1

is clear.

Recall that Acrys is the p–adic completion of a divided power envelope of
W(Ẽ+). Consider Acrys,K = Acrys ⊗F K. We have embeddings A+

L ⊆ Ã+ ⊆ Acrys,K.
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Recall also that Bcrys is constructed from Acrys by inverting a period that is usually
called t (“a p–adic analogue of 2πi”). Consider Bcrys,K = Bcrys ⊗F K. By (the
analogues of) proposition 9.10 and lemma 9.17 of Colmez’s article [16], we obtain
a period tφ = logφ(ωφ) ∈ B×crys,K that can play the role of t in the (relative) Lubin–
Tate situation. Since tφ is a unit, we see that ωφ is also a unit in Bcrys,K.

It turns out that the inclusion A′,+L ↪→ Acrys,K given by Z 7→ ωφ extends to a
continuous ring homomorphism B+

rig,L → Acrys,K[π
−1
L ], where we consider the

natural Fréchet topology on B+
rig,L and the πL–adic topology on Acrys,K[π

−1
L ] (cf.

lemma 1.4 of Schneider–Venjakob’s preprint [35]).

6.3 Rings of functions on annuli

Recall that we defined B+
rig,L to be the ring of global (rigid analytic) functions on B,

the p–adic unit disc over L centred at the origin. We can obtain other rings if we
consider annuli inside B.

Consider r, s ∈ pQ with r ≤ s < 1 (resp. r < s ≤ 1). The closed disc B[r]
of radius r is the affinoid subdomain of B defined by the inequality |Z|p ≤ r.
The closed annulus B[r, s] (resp. the half-open annulus B[r, s)) is the affinoid
subdomain (resp. admissible open) of B defined by the inequalities r ≤ |Z|p ≤ s
(resp. r ≤ |Z|p < s). Observe that

B[r, s) =
⋃

r<s′<s

B[r, s′]

and so we may view B[r, s) as a quasi-Stein rigid space.
Given a rigid analytic space Y over L and a complete extension L′ of L, we

write O(Y/L′) for the ring of global (rigid analytic) functions on the base change
YL′ and Obd(Y/L′) for the subring of O(Y/L′) consisting of those functions that
are bounded.

For every closed interval [r, s] ⊂ (0, 1) as above, we define the Banach algebras
B†,[r,s]

rig,L = O(B[r, s]/L) and B†,[r,s]
L = Obd(B[r, s]/L). Then, for every half-open

interval [r, 1) ⊂ (0, 1) as above, we define the Fréchet algebras

B†,[r,1)
rig,L = O(B[r, 1)/L) = lim←−

r<s<1
B†,[r,s]

rig,L and B†,[r,1)
L = O(B[r, 1)/L) = lim←−

r<s<1
B†,[r,s]

L .

Finally, we define the LF algebras

B†
rig,L = lim−→

r<1
B†,[r,1)

rig,L and B†
L = lim−→

r<1
B†,[r,1)

L .
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The ring B†
rig,L is called the Robba ring of L, while B†

L is the subring of overconver-
gent elements of B′L. One can check that B†

rig,L is a Bézout domain and that B†
L is a

field whose subring of functions that are bounded by 1 is local (even henselian),
thus giving rise to another topology on B†

L. The completion of B†
L with respect to

that topology coincides with B′L.
In more concrete terms, we can write

B†
L =

{
∑

k∈Z

akZk ∈ L[[Z, Z−1]] : sup
k∈Z

|ak|p < ∞ and

lim
k→−∞

|ak|prk = 0 for some r ∈ (0, 1)
}

and

B†
rig,L =

{
∑

k∈Z

akZk ∈ L[[Z, Z−1]] : lim
k→−∞

|ak|prk = 0 for some r ∈ (0, 1)
}

.

6.3.1 Operators

We can extend the operators ϕq and γ ∈ ΓL from A′,+L to B†
L and B†

rig,L by continuity,
as was done for B′L in section 6.1.1.

More geometrically, one checks as in lemma 2.6 of Fourquaux–Xie’s article
[22] that, if r, s ∈ pQ satisfy that p−1/e(q−1) < r ≤ s < 1, then every γ ∈ ΓL

defines a bijective morphism B[r, s]→ B[r, s] given on points by z 7→ [χφ(γ)]φ(z)
and that ϕq defines a surjective morphism B[r, s] → L ⊗ϕq,L B[rq, sq] given on

points by z 7→ φ(z). Furthermore, the induced morphisms γ : B†,[r,s]
rig,L → B†,[r,s]

rig,L and

ϕq : B†,[rq,sq]
rig,L → B†,[r,s]

rig,L are isometries with respect to the supremum norms.
To extend ψq, observe that each v1 ∈ Fφ,1 defines an isomorphism of affinoids

B[r, s]→ B[r, s] given on points by z 7→ Fφ(v1, z). We define Trϕq : B†,[r,s]
rig,L → B†,[r,s]

rig,L
by

Trϕq( f ) = ∑
v1∈Fφ,1

f
(
Fφ(v1, · )

)
(cf. the proof of lemma 65) and claim that its image is contained in the image of ϕq.
Indeed, by continuity it suffices to prove it for Trϕq(Zn) for n ∈ Z. If n ≥ 0, this is
a consequence of the analogous statement for A′,+L (see the proof of remark 3.2.ii
of Schneider–Venjakob’s article [34]). If n < 0, we adapt the calculation of page 37
of Schneider–Venjakob’s preprint [35] using the previous case:

ϕq

(
ZnπLψq

(φ(Z)−n

Z−n

))
= ϕq(Zn)Trϕq

(φ(Z)−n

Z−n

)
= φ(Z)n ∑

v1∈Fφ,1

φ(Fφ(v1, Z))−n

Fφ(v1, Z)−n
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= φ(Z)n ∑
v1∈Fφ,1

φ(Z)−n

Fφ(v1, Z)−n = ∑
v1∈Fφ,1

Fφ(v1, Z)n = Trϕq(Zn).

All in all, we can define

ψq = ϕ−1
q

( 1
πL

Trϕq( · )
)

,

first as an operator ψq : B†,[r,s]
rig,L → B†,[rq,sq]

rig,L and then by taking projective and induct-
ive limits as an operator ψq : B†

rig,L → B†
rig,L.
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7 (ϕq, ΓL)–modules

In this section we recall the definitions and results from Kisin and Ren’s article [28]
but adapted to our situation in which the Lubin–Tate formal group is relative. We
provide the proofs whenever they are not the same as in the original references.

7.1 Modules over AL or BL

Definition 70.
(1) An étale ϕq–module over AL is a finitely generated AL–module M endowed

with a ϕq–semilinear morphism ϕq = ϕM : M→ M whose AL–linearization
ϕ∗q(M) = AL ⊗ϕq,AL M→ M is an isomorphism.

(2) An étale ϕq–module over BL is a finitely generated BL–module M endowed
with a ϕq–semilinear morphism ϕq = ϕM : M → M admitting a ϕq–stable
AL–lattice N that is an étale ϕq–module over AL with respect to ϕN = ϕM|N .

We write ϕq–Modét
AL

(resp. ϕq–Modét
BL

) for the category of étale ϕq–modules over
AL (resp. over BL).

Remark. The Frobenius endomorphism ϕq of an étale ϕq–module is automatically
continuous (see remark 3.8 of Schneider–Venjakob’s article [34]).

Definition 71. Let M be an étale ϕq–module (over AL or BL). We define the
endomorphism

ψq = ψM : M ϕ∗q(M) M

f ϕq(m) f ⊗m ψq( f )m

∼=

characterized by
ψq ◦ ϕq =

q
ϕ−1

q (πL)
idM .

Remark. The endomorphism ψq is automatically continuous (see remark 3.8 of
Schneider–Venjakob’s article [34]) and we have the projection formulae

ψq( f ϕq(m)) = ψq( f )m and ψq(ϕq( f )m) = f ψq(m)

by construction.

Definition 72. An étale (ϕq, ΓL)–module over AL or BL is an étale ϕq–module with
an AL– or BL–semilinear continuous action of ΓL commuting with ϕq. We write
(ϕq, ΓL)–Modét

AL
(resp. (ϕq, ΓL)–Modét

BL
) for the category of étale (ϕq, ΓL)–modules

over AL (resp. over BL).
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7.1.1 Equivalence with representations

Let RepOK
(GL) (resp. RepK(GL)) denote the category of finite OK–modules (resp.

K–vector spaces) endowed with a continuous OK–linear (resp. K–linear) action
of the Galois group GL. Let RepOK ,fr(GL) (resp. RepOK ,tor(GL)) denote the full
subcategory of objects of RepOK

(GL) that are free (resp. killed by πn
K for some

uniformizer πK of K and some n ≥ 1) as OK–modules.

Definition 73.
(1) The (ϕq, ΓL)–module (over AL) associated with T ∈ Ob(RepOK

(GL)) is

D(T) = (A⊗OK T)HL .

(2) The (ϕq, ΓL)–module (over BL) associated with V ∈ Ob(RepK(GL)) is

D(V) = (B⊗K V)HL .

(3) The (OK–linear) representation associated with M ∈ Ob
(
(ϕq, ΓL)–Modét

AL

)
is

V(M) = (A⊗AL M)ϕq=1.

(4) The (K–linear) representation associated with M ∈ Ob
(
(ϕq, ΓL)–Modét

BL

)
is

V(M) = (B⊗BL M)ϕq=1.

Theorem 74 (Kisin–Ren). The functors

RepOK
(GL) (ϕq, ΓL)–Modét

AL

D

V

(resp.

RepK(GL) (ϕq, ΓL)–Modét
BL

)
D

V

are exact quasi-inverse equivalences of categories that are compatible with tensor products
and duality.

Proof. For the non-relative Lubin–Tate case, this is theorem 1.6 of Kisin–Ren’s
article [28], which in turn uses the same arguments of sections A1.2 and A3.4
of Fontaine’s article [21] for the cyclotomic case. (Alternatively, section 3 of
Brinon–Conrad’s notes [11] contains all the details of the proof once we know that
Gal(E/EL) ∼= HL.) Exactly the same arguments work in the relative Lubin–Tate
situation too. Here we just summarize the general strategy.
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The proof of this theorem can be seen as a series of reductions to simpler cases.
• The statement for RepK(GL) and (ϕq, ΓL)–Modét

BL
can be reduced to the

statement for RepOK
(GL) and (ϕq, ΓL)–Modét

AL
by choosing Zp–lattices and

AL–lattices.
• The objects of RepOK

(GL) (resp. of (ϕq, ΓL)–Modét
AL

) that are finite free as
OK–modules (resp. as AL–modules) can be written as the projective limit of
their quotients by powers of πK. Therefore, one can reduce to the torsion
case (i.e., to objects that are killed by some power of πK).

• The case of objects of RepOK
(GL) and (ϕq, ΓL)–Modét

AL
that are killed by πn

K

for some n ∈ Z≥1 can be reduced to the case by an induction argument on n
in which objects are killed by πK.

• In the end the proof boils down to showing that (in the killed-by-πK case)
the maps

E⊗EL D(T)→ E⊗Fq T and E⊗Fq V(M)→ E⊗EL M

induced by multiplication in E are isomorphisms. Then one can deduce that,
in the most general cases of the statement of the theorem, the analogous
maps

A⊗AL D(T)→ A⊗OK T and A⊗OK V(M)→ A⊗AL M

(resp.

B⊗BL D(V)→ B⊗K V and B⊗K V(M)→ B⊗BL M)

are isomorphisms.

7.1.2 Overconvergent representations

Definition 75. An étale ϕq–module over B†
L is a finite B†

L–vector space M endowed
with a ϕq–semilinear morphism ϕq = ϕM : M→ M whose matrix (in some basis)
is invertible. We write ϕq–Modét

B†
L

for the category of étale ϕq–modules over B†
L.

Definition 76. An étale (ϕq, ΓL)–module over B†
L is an étale ϕq–module over B†

L

with a B†
L–semilinear continuous action of ΓL that commutes with ϕq. We write

(ϕq, ΓL)–Modét
B†

L
for the category of étale (ϕq, ΓL)–modules over B†

L.

Base change from B†
L to BL (via the natural inclusion B†

L ↪→ B′L and the iso-
morphism B′L ∼= BL given by Z 7→ ωφ; cf. proposition 68) induces a functor
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(ϕq, ΓL)–Modét
B†

L
→ (ϕq, ΓL)–Modét

BL
. Its essential image can be related to other

rings introduced in section 6.

Definition 77.
(1) An étale (ϕq, ΓL)–module M is called overconvergent if it admits a BL–basis

in terms of which the matrices of ϕq and of every γ ∈ ΓL have coefficients in
(the image of) B†

L. Such a basis generates M† ∈ Ob
(
(ϕq, ΓL)–Modét

B†
L

)
with

the property that BL ⊗B†
L

M† ∼= M.
(2) A representation V ∈ RepK(GL) is called overconvergent if its associated

(ϕq, ΓL)–module D(V) is overconvergent. In that case, we write D†(V) for
the corresponding module in (ϕq, ΓL)–Modét

B†
L
.

We write (ϕq, ΓL)–Mod†,ét
BL

for the full subcategory of overconvergent modules in
(ϕq, ΓL)–Modét

BL
and Rep†

K(GL) for the full subcategory of overconvergent repres-
entations in RepK(GL).

7.2 Modules over B†
rig,L

Definition 78. A free ϕq–module over B†
rig,L is a free B†

rig,L–module M of finite
rank endowed with a ϕq–semilinear endomorphism ϕq = ϕM : M → M such
that the B†

rig,L–linearization 1⊗ ϕq : ϕ∗q(M ) → M is an isomorphism. We write
ϕq–ModB†

rig,L,fr for the category of such modules.

Definition 79. A free (ϕq, ΓL)–module over B†
rig,L is a free ϕq–module over B†

rig,L

endowed with a B†
rig,L–semilinear continuous action of ΓL commuting with ϕq. We

write (ϕq, ΓL)–ModB†
rig,L,fr for the category of such modules.

Proposition 80. For each M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)
, there exist a radius r0 ∈ pQ

such that p−1/(q−1)e < r0 < 1 and a finite free B†,[r0,1)
rig,L –module M0 endowed with

(i) a ϕq–semilinear continuous morphism

ϕq : M0 → B†,[r1/q
0 ,1)

rig,L ⊗
B

†,[r0,1)
rig,L

M0

such that the B†,[r1/q
0 ,1)

rig,L –linearization

1⊗ ϕq : B†,[r1/q
0 ,1)

rig,L ⊗
ϕq,B

†,[r0,1)
rig,L

M0 → B†,[r1/q
0 ,1)

rig,L ⊗
B

†,[r0,1)
rig,L

M0

is an isomorphism and
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(ii) a B†,[r0,1)
rig,L –semilinear continuous action of ΓL commuting with ϕq

with the property that
M = B†

rig,L ⊗B
†,[r0,1)
rig,L

M0

compatibly with the actions of ϕq and ΓL.

Proof. See proposition 2.24 of Berger–Schneider–Xie’s article [8] for a proof of a
more general result.

In the notation of proposition 80, we may view M0 as the global sections of
a coherent sheaf on the annulus B[r0, 1). What is more, B[r0, 1) is a quasi-Stein
space and so its coherent sheaves are uniquely determined by their global sections.
Given r, s ∈ pQ with r0 ≤ r < s < 1, we write

M |B[r,s] = B†,[r,s]
rig,L ⊗B

†,[r0,1)
rig,L

M0 and M |B[r,1) = B†,[r,1)
rig,L ⊗B

†,[r0,1)
rig,L

M0.

In particular,

M |B[r,1) = lim←−
r<s′<1

M |B[r,s′] and M = lim−→
r′<1

M |B[r′,1).

7.2.1 Slope filtrations

In this subsection we briefly recall the theory of slope filtrations on ϕq–modules
over the Robba ring. The general theory is explained in sections 1.4 to 1.7 of
Kedlaya’s article [24].

Definition 81. Consider M ∈ Ob
(

ϕq–ModB†
rig,L,fr

)
of rank m over B†

rig,L.
(1) Choose a basis element

x ∈
m∧

M

and consider α ∈
(
B†

rig,L
)× such that ϕq(x) = αx. The degree of M is

deg(M ) = vB†
L
(α),

where vB†
L

is the normalized discrete valuation on B†
L given by the subring

of functions that are bounded by 1.
(2) If M is non-zero, we define the slope of M to be

µ(M ) =
deg(M )

m
.
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(3) Let s ∈ Q. We say that M is pure of slope s if µ(M ) = s and µ(N ) ≥ s for all
non-trivial subobjects N of M in ϕq–ModB†

rig,L,fr.

We write ϕq–Mods
B†

rig,L,fr (resp. (ϕq, ΓL)–Mods
B†

rig,L,fr) for the full subcategory of

modules that are pure of slope s in ϕq–ModB†
rig,L,fr (resp. in (ϕq, ΓL)–ModB†

rig,L,fr).

Theorem 82 (Kedlaya). Every M ∈ Ob
(

ϕq–ModB†
rig,L,fr

)
admits a unique filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

by saturated ϕq–submodules such that the successive quotients are pure of slopes

µ(M1/M0) < · · · < µ(Mr/Mr−1).

This filtration is known as Kedlaya’s slope filtration of M .

Proof. See proposition 1.4.15 in Kedlaya’s article [24].

Definition 83. We say that M ∈ Ob
(

ϕq–ModB†
rig,L,fr

)
is étale if it admits a lattice

N over the subring of functions bounded by 1 in B†
L (i.e., of series with coefficients

in OL) with the property that ϕq induces an isomorphism ϕ∗q(N )→ N .

Theorem 84 (Kedlaya). A free ϕq–module M over B†
rig,L is étale if and only if it is pure

of slope 0.

Proof. See theorems 1.6.10 and 1.7.1 of Kedlaya’s article [24], noting that our
definitions are different from the (equivalent) definitions 1.4.6 and 1.6.1 in ibid.

7.2.2 Equivalence with K–analytic representations

Definition 85. The (ϕq, ΓL)–module over B†
rig,L associated with an overconvergent

representation V ∈ Ob
(
Rep†

K(GL)
)

is

D†
rig(V) = B†

rig,L ⊗B†
L

D†(V).

One can check that D†
rig defines a functor Rep†

K(GL) → (ϕq, ΓL)–Mod0
B†

rig,L,fr,

but it is not an equivalence of categories unless we restrict to certain subcategories.

Definition 86. We say that a representation V ∈ Ob
(
RepK(GL)

)
is K–analytic if

the Cp–semilinear representations Cp ⊗σ,K V of GL are isomorphic to the trivial
representation for all the embeddings σ : K ↪→ Cp other than the identity.
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Theorem 87 (Berger). Every V ∈ Ob
(
Repan

K (GL)
)

is overconvergent.

Proof. This is theorem C (or theorem 10.1) of Berger’s article [6].

Next we describe the essential image of Repan
K (GL) under D†

rig. More precisely,
we define a notion of analyticity of (ϕq, ΓL)–modules based on the differential of
the action of ΓL.

Lemma 88. Let M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)
.

(1) For every r, s ∈ pQ with r ≤ s < 1 and for γ ∈ ΓL sufficiently close to 1 (depending
on r and s), the series

log(γ) = ∑
k≥1

(−1)k−1 (γ− 1)k

k

induces a well-defined operator on M |B[r,s].
(2) Let Lie(ΓL) be the Lie algebra of ΓL (regarded as a p–adic Lie group) and let

expΓL
: Lie(ΓL) ΓL be the corresponding exponential map. There is a well-

defined Zp–linear map of Lie algebras

dΓL : Lie(ΓL) −→ EndL(M )

x 7−→ log
(
expΓL

(x)
)

such that, for every x ∈ Lie(ΓL),(
dΓL(x)

)
( f m) =

(
dΓL(x)

)
( f ) ·m + f ·

(
dΓL(x)

)
(m)

for all f ∈ B†
rig,L and all m ∈M .

Proof. See section 1.3 (until equation 1.2) of Fourquaux–Xie’s article [22], which
in turn adapts the calculations of lemma 2.1.2 of Kisin–Ren’s article [28]. The
arguments work exactly in the same way for the relative Lubin–Tate situation too.

Definition 89. A module M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)

is called OK–analytic if

the Zp–linear map dΓL : Lie(ΓL)→ EndL(M ) from lemma 88 is in fact OK–linear.
We write (ϕq, ΓL)–Modan

B†
rig,L,fr (resp. (ϕq, ΓL)–Mod0,an

B†
rig,L,fr

) for the full subcategory

of OK–analytic objects in (ϕq, ΓL)–ModB†
rig,L,fr (resp. (ϕq, ΓL)–Mod0

B†
rig,L,fr).

Lemma 90. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,L,fr

)
.
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(1) For every r, s ∈ pQ with r ≤ s < 1, the operator

N∇ =
log(γ)

log(χφ(γ))
on M |B[r,s]

is well-defined (for γ ∈ ΓL sufficiently close to 1 but 6= 1) and is independent of γ.
(2) Gluing these operators for varying r and s, we obtain an L–linear differential

operator N∇ : M →M that commutes with ϕq. In particular,

N∇( f m) = N∇( f ) ·m + f · N∇(m)

for all f ∈ B†
rig,L and all m ∈M .

(3) There is a singular connection ∇ on M with simple poles at the non-zero torsion
points of Fφ (i.e., the zeros of φn(Z) for n ≥ 1 other than 0) such that

N∇ = 〈∇, logφ(Z)∂φ〉.

Proof. See equation 1.3 of Fourquaux–Xie’s article [22] and the calculations of
lemma 2.1.4 of Kisin–Ren’s article [28] over B+

rig,L. The arguments work exactly in
the same way for the relative Lubin–Tate situation.

Theorem 91 (Berger). The functor

D†
rig : Repan

K (GL) −→ (ϕq, ΓL)–Mod0,an
B†

rig,L,fr

is an exact equivalence of categories that is compatible with tensor products and duality.

Proof. This is theorem D (or theorem 10.4) of Berger’s article [6].

7.3 Modules over B+
rig,L

Let Q(Z) = φ(Z)/Z = πL + · · · ∈ A′,+L ⊂ B+
rig,L, which by definition satisfies that

ϕq(ωφ) = Q(ωφ) ·ωφ.

Definition 92. A free ϕq–module over B+
rig,L is a free B+

rig,L–module M of finite rank
endowed with a ϕq–semilinear morphism ϕq = ϕM : M → M [Q−1] such that
the linearization 1⊗ ϕq : ϕ∗q(M )[Q−1] →M [Q−1] is an isomorphism. We write
ϕq–ModB+

rig,L,fr for the category of such modules.

Remark. The module M , being finite free over the ring B+
rig,L of global rigid analytic

functions on B, corresponds to a coherent sheaf on the quasi-Stein space B. Given
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r ∈ pQ with r < 1, we write M |B[r] for the sections of that sheaf on the affinoid
subdomain B[r] (the closed disc of radius r).

Definition 93. A free (ϕq, ΓL)–module over B+
rig,L is a free ϕq–module M with a

B+
rig,L–semilinear continuous action of ΓL commuting with ϕq and such that the

induced action on M /ZM is trivial. We write (ϕq, ΓL)–ModB+
rig,L,fr for the category

of such modules.

Example 94. The ring B+
rig,L itself, with the actions of ϕq and ΓL induced by the

relative Lubin–Tate structures associated with φ as in section 6.1, is an object of
(ϕq, ΓL)–ModB+

rig,L,fr (cf. lemma 2.1.1 of Kisin–Ren’s article [28]).

7.3.1 Differential operators

Lemma 95. Let M ∈ Ob
(
(ϕq, ΓL)–ModB+

rig,L,fr
)
.

(1) For every r ∈ pQ with r < 1 and for γ ∈ ΓL sufficiently close to 1 (depending on
r), the series

log(γ) = ∑
k≥1

(−1)k−1 (γ− 1)k

k

induces a well-defined operator on M |B[r].
(2) Let Lie(ΓL) be the Lie algebra of ΓL (regarded as a p–adic Lie group) and let

expΓL
: Lie(ΓL) ΓL be the corresponding exponential map. There is a well-

defined Zp–linear map of Lie algebras

dΓL : Lie(ΓL) −→ EndL(M )

x 7−→ log
(
expΓL

(x)
)

such that, for every x ∈ Lie(ΓL),(
dΓL(x)

)
( f m) =

(
dΓL(x)

)
( f ) ·m + f ·

(
dΓL(x)

)
(m)

for all f ∈ B+
rig,L and all m ∈M .

Proof. See lemma 2.1.2 of Kisin–Ren’s article [28], whose proof works verbatim for
the relative Lubin–Tate situation too.

Definition 96. A module M ∈ Ob
(
(ϕq, ΓL)–ModB+

rig,L,fr
)

is called OK–analytic if

the Zp–linear map dΓL : Lie(ΓL)→ EndL(M ) from lemma 95 is in fact OK–linear.
We write (ϕq, ΓL)–Modan

B+
rig,L,fr for the full subcategory of OK–analytic objects in

(ϕq, ΓL)–ModB+
rig,L,fr.
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Remark. By lemma 3.4.13 and remark 3.4.15 of Berger–Schneider–Xie’s article [8],
every M ∈ Ob

(
(ϕq, ΓL)–ModB+

rig,L,fr
)

is automatically OK–analytic just because the
action of ΓL is trivial modulo Z. (The proof of this fact is not easy and we will not
use it.)

Lemma 97. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B+
rig,L,fr

)
.

(1) For every r ∈ pQ with r < 1, the operator

N∇ =
log(γ)

log(χφ(γ))
on M |B[r]

is well-defined (for γ ∈ ΓL sufficiently close to 1 but 6= 1) and is independent of γ.
(2) Gluing these operators for varying r, we obtain an L–linear differential operator

N∇ : M →M that commutes with ϕq. In particular,

N∇( f m) = N∇( f ) ·m + f · N∇(m)

for all f ∈ B+
rig,L and all m ∈M .

(3) There is a singular connection ∇ on M with simple poles at the non-zero torsion
points of Fφ (i.e., the zeros of φn(Z) for n ≥ 1 other than 0) such that

N∇ = 〈∇, logφ(Z)∂φ〉.

Proof. See lemma 2.1.4 of Kisin–Ren’s article [28], which works exactly in the same
way for the relative Lubin–Tate situation.

7.3.2 Filtered ϕq–modules

Definition 98. A filtered ϕq–module over L is a finite-dimensional L–vector space D
endowed with a ϕq–semilinear bijective map ϕq = ϕD : D → D and a decreasing,
separated and exhaustive filtration, indexed by Z, by L–subspaces. We write
(Fil, ϕq)–ModL for the category of filtered ϕq–modules over L.

Following subsection 2.2 of the article [28] of Kisin and Ren, which in turn
adapts the constructions of subsection 1.2 of Kisin’s article [27] to the Lubin–Tate
situation, we want to exhibit an equivalence between the categories (Fil, ϕq)–ModL

and (ϕq, ΓL)–Modan
B+

rig,L,fr.
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7.3.3 The functorM

Fix once and for all a lift of ϕq ∈ Gal(L/K) to ϕq ∈ GK. Write t0 = (zn)n≥0 and
let vn = ϕn

q (zn) ∈ Fφ,n for all n ∈ Z≥0. Since t0 is a generator of Tφ Fφ, for every
n ≥ 1 the element vn ∈ Ln is a zero of

φn(Z)
φn−1(Z)

= ϕn−1
q (Q(Z))

and Ln = L(vn). Kisin and Ren define

λ(Z) = ∏
n≥0

ϕn
q

(
Q(Z)

πL

)
∈ B+

rig,L

that, by lemma 56, is nothing else than λ(Z) = logφ(Z)/Z. In particular, the zeros
of λ(Z) are the non-zero torsion points of Fφ (cf. corollary 58), namely the Galois
conjugates of the vn for n ≥ 1. Therefore, given n ∈ Z≥1, the function λϕ−n

q (Z) has
a simple zero at zn. Also,

ϕq(λ(Z)) =
πL logφ(Z)

φ(Z)
= πL ·

Z
φ(Z)

· λ(Z) =
πL

Q(Z)
· λ(Z)

by corollary 57.
Let n ≥ 1 and write xn for the point of B corresponding to the Galois conjugacy

class of zn. Let Sn denote the complete local ring of B at xn, which is a complete
discrete valuation ring with residue field Ln = L(zn). The field Ln can be viewed
canonically inside Sn and so we have an obvious uniformizer Z − zn. By the
observation at the end of the last paragraph, λϕ−n

q (Z) is another uniformizer for
Sn. We consider Sn with the natural filtration given by its discrete valuation.

Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
. For every n ≥ 1, we define

ιn : B+
rig,L[λ

−1]⊗L D Sn[(Z− zn)−1]⊗L D

f (Z)⊗ δ f ϕ−n
q (Z)⊗ ϕ−n

q (δ)

(where we use the canonical morphism B+
rig,L → Sn and the fact that ϕq : D → D

is bijective). Set

M (D) =
{

x ∈ B+
rig,L[λ

−1]⊗L D : ιn(x) ∈ Fil0
(
Sn[(Z− zn)

−1]⊗L D
)

for all n ∈ Z≥1

}
,
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where the filtration on Sn[(Z− zn)−1]⊗L D is the tensor product of the filtrations
on Sn[(Z− zn)−1] and on D.

Lemma 99. Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
. The operator ϕq on B+

rig,L[λ
−1]⊗L D in-

duces the structure of a free ϕq–module over B+
rig,L onM (D).

Proof. This is analogous to lemma 1.2.2 of Kisin’s article [27]. We reproduce (most
of) the proof with the necessary changes here.

Let r ∈ Z≥0 such that Filr+1(D) = 0. Since ιn(λ) is the product of Z− zn and a
unit in Sn and

Fil0
(
Sn[(Z− zn)

−1]⊗L D
)
= ∑

j∈Z

(Z− zn)
−jSn ⊗L Filj(D),

we deduce thatM (D) ⊂ λ−rB+
rig,L ⊗L D. But λ−rB+

rig,L ⊗L D is finite free over
B+

rig,L and so are its closed submodules (cf. lemma 1.1.5 of Kisin’s article [27]). One
can prove thatM (D) is a closed submodule using the continuity of the maps ιn

for n ≥ 1.
To check that

ϕq : λ−rB+
rig,L ⊗L D −→ λ−rB+

rig,L ⊗L D

f (Z)⊗ δ 7−→ ϕq( f (Z))⊗ ϕq(δ) = f ϕq(φ(Z))⊗ ϕq(δ)

induces an isomorphism ϕ∗q
(
M (D)

)
[Q−1] ∼=M (D)[Q−1], we can identifyM (D)

with its corresponding coherent sheaf on B and work on points. The result is only
unclear at the points of B where λ is not a unit; that is, at the x′n corresponding to
the Galois conjugacy class of vn (or equivalently to ϕn−1

q (Q(Z))) for n ≥ 1.

Let n ∈ Z≥1. Since zn = φϕ−n−1
q (zn+1), we have a well-defined morphism of

Ln–algebras φϕ−n−1
q : Sn → Sn+1 defined by Z 7→ φϕ−n−1

q (Z). In fact, the diagram

λ−rB+
rig,L ⊗L D (Z− zn)−rSn ⊗L D

λ−rB+
rig,L ⊗L D (Z− zn+1)

−rSn+1 ⊗L D

ιn

ϕq φ
ϕ−n−1

q ⊗idD

ιn+1

is commutative. In particular, regarding Sn as a B+
rig,L–module via the morphism

f (Z) 7→ f ϕ−n
q (Z) (and analogously for Sn+1), the morphism φϕ−n−1

q : Sn → Sn+1 is
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ϕq–semilinear in the sense that the diagram

Sn Sn+1

B+
rig,L B+

rig,L

φ
ϕ−n−1

q

ϕq

is commutative. Then, the B+
rig,L–linearization

ϕ∗q
(
Sn[(Z− zn)

−1]
)
→ Sn+1[(Z− zn+1)

−1]

is an isomorphism taking ϕ∗q
(
(Z− zn)mSn

)
onto (Z− zn+1)

mSn+1 for all m ∈ Z.
Define

Mn(D) =
{

x ∈ B+
rig,L[λ

−1]⊗L D : ιn(x) ∈ Fil0
(
Sn[(Z− zn)

−1]⊗L D
) }

.

ClearlyM (D) ⊂Mn(D) and this inclusion becomes an isomorphism at the point
x′n of B. On the other hand, ιn induces (over the residue fields of x′n and xn) a
bijection

B+
rig,L ⊗L D(

ϕn−1
q (Q(Z))

) Sn ⊗L D
(Z− zn)

∼= Ln ⊗L D,
ιn
∼=

which implies that

0 Mn(D) λ−rB+
rig,L ⊗L D

(Z− zn)−rSn ⊗L D
Fil0
(
(Z− zn)−rSn ⊗L D

) 0
ιn

is a short exact sequence.
Since ϕq : B+

rig,L → B+
rig,L is flat, we obtain a commutative diagram

0 ϕ∗q(Mn(D)) ϕ∗q
(
λ−rB+

rig,L ⊗L D
)

ϕ∗q

(
(Z− zn)−rSn ⊗L D

Fil0

)
0

0 Mn+1(D) λ−rB+
rig,L ⊗L D

(Z− zn+1)
−rSn+1 ⊗L D

Fil0
0

1⊗ιn

∼=

ιn+1
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with exact rows. Using that

ϕq(λ
−1) =

Q(Z)
πL

λ−1,

we see that the vertical arrow in the middle has image Q(Z)rλ−rB+
rig,L ⊗L D and

we deduce by the snake lemma that the kernel and cokernel of the left vertical
arrow are 0 and

(
λ−rB+

rig,L ⊗L D
)
/
(
Q(Z)rλ−rB+

rig,L ⊗L D
)
, respectively. But these

are in fact the kernel and cokernel of ϕ∗q(M (D)) → M (D) at the point x′n+1,
as the inclusions ϕ∗q(M (D)) ⊂ ϕ∗q(Mn(D)) and M (D) ⊂ Mn+1(D) become
isomorphisms at x′n+1. Since Q(Z) is invertible at x′n+1, we obtain the desired
isomorphism at this point.

It remains to prove that ϕ∗q(M (D))[Q−1] → M (D)[Q−1] becomes an iso-
morphism at the point x′1. But x′1 corresponds to Q(Z) and so inverting Q makes
λ into a unit at this point too, which makes the result clear.

Proposition 100. Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
. ThenM (D) is naturally an object

of (ϕq, ΓL)–Modan
B+

rig,L,fr.

Proof. This is analogous to lemma 2.2.1 of Kisin–Ren’s article. We adapt it to the
relative Lubin–Tate situation here.

Having lemma 99, it remains to show thatM (D) has a natural OK–analytic
action of ΓL. For γ ∈ ΓL,

γ(λ(Z)) =
logφ

(
[χφ(γ)]φ(Z)

)
[χφ(γ)]φ(Z)

=
χφ(γ) logφ(Z)

[χφ(γ)]φ(Z)
=

χφ(γ) · Z
[χφ(γ)]φ(Z)

· λ(Z)

and so λ(Z) and γ(λ(Z)) differ (multiplicatively) by a unit in
(
A′,+L

)×. Thus, the
OK–analytic action of ΓL on B+

rig,L induces an action on B+
rig,L[λ

−1] ⊗L D that is
again OK–analytic.

The same argument shows that ΓL acts by automorphisms on Sn for each n ≥ 1.

Since, for every γ ∈ ΓL, composition with [χφ(γ)]φ(Z) (resp. [χφ(γ)]
ϕ−n

q
φ (Z))

preserves the order of vanishing on torsion points of Fφ (resp. F
ϕ−n

q
φ ), we see by

the definition ofM (D) ⊂ B+
rig,L[λ

−1]⊗L D thatM (D) is stable under the action
of ΓL.
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7.3.4 The functor D

To go in the opposite direction, consider M ∈ (ϕq, ΓL)–Modan
B+

rig,L,fr and set

D(M ) = M /ZM ,

which is clearly a finite L–vector space and inherits an action of ϕq from M .
Observe that, as M /ZM ∼= M [Q−1]/ZM [Q−1], the L–linearization of ϕq is an
isomorphism ϕ∗q(D(M )) ∼= D(M ). We want to define a filtration on D(M ), but
for that we need a previous result.

Lemma 101. Consider M ∈ Ob
(
(ϕq, ΓL)–Modan

B+
rig,L,fr

)
. There exists a unique L–linear

ϕq–equivariant map ξ : D(M )→M [λ−1] whose reduction modulo Z induces idD(M )

and such that the elements of Im(ξ) are ΓL–invariant. Furthermore,
(1) the morphism ξ induces an isomorphism

1⊗ ξ : B+
rig,L[λ

−1]⊗L D(M )→M [λ−1]

and
(2) the image of 1 ⊗ ξ : B+

rig,L ⊗L D(M ) → M [λ−1] coincides with the image of
(1⊗ ϕq) : ϕ∗q(M )→M [λ−1] over an admissible open neighbourhood of the point
x′1 of B corresponding to Q(Z).

Proof. This is analogous to lemma 2.2.2 of Kisin–Ren’s article, which in turn adapts
lemma 1.2.6 of Kisin’s article. We reproduce the proof with the necessary changes
here.

Lemma 95 gives a connection∇ on M . Since D(M ) = M /ZM can be viewed
as the stalk of M at the origin, for r ∈ pQ small enough there exists a unique
parallel (with respect to ∇) section ξr : D(M ) → M |B[r]. Since N∇ commutes
with ϕq and with γ ∈ ΓL, we see that the sections ϕq ◦ ξr ◦ ϕ−1

q and γ ◦ ξr ◦ γ−1 are
also parallel. By uniqueness, ξr must be ϕq– and ΓL–invariant.

To extend ξr to the whole B, observe that we can define ξr1/q by requiring that
the diagram

ϕ∗q(D(M )) ϕ∗q
(
M |B[r]

)
[λ−1]

D(M )
(
M |B[r1/q]

)
[λ−1]

ϕ∗q (ξr)

∼= ∼=

ξ
r1/q

be commutative. Since r1/qn
approaches 1 as n→ ∞, we get ξ : D(M )→M [λ−1]

by repeating this argument inductively using r1/qn
in place of r.
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Now the other two claims follow from a variation of the same argument.
Namely, the fact that ξ modulo Z is an isomorphism implies that there is some
r ∈ pQ small enough for which 1⊗ ξr : B+

rig,L[λ
−1]⊗L D(M ) →

(
M |B[r]

)
[λ−1] is

an isomorphism. Next we use the commutativity of the diagram

ϕ∗q(B
+
rig,L[λ

−1]⊗L D(M )) ϕ∗q
((

M |B[r]
)
[λ−1]

)

B+
rig,L[λ

−1]⊗L D(M )
(
M |B[r1/q]

)
[λ−1]

ϕ∗q (1⊗ξr)

∼=

1⊗ξ
r1/q

and the fact that
ϕq(λ

−1) =
Q(Z)

πL
λ−1,

which implies that the two vertical arrows become isomorphisms if we invert
Q(Z) (or its multiple λ(Z)) above. Therefore, the lower horizontal arrow is an
isomorphism too and we can repeat the argument inductively with r1/qn

in place
of r to obtain claim (1).

For claim (2), choose r ∈ pQ such that p−1/e(q−1) < r < p−1/eq(q−1), so that
B[rq] contains no non-zero torsion points of Fφ but B[r] contains v1. Since the
morphism 1 ⊗ ξ : B+

rig,L ⊗L D(M ) → M [λ−1] becomes an isomorphism after
reduction modulo Z (i.e., over the origin), there exists some n ∈ Z≥0 for which
the restriction 1⊗ ξrqn : B+

rig,L ⊗L D(M )→
(
M |B[rqn

]

)
[λ−1] is an isomorphism. If

n > 1, then λ is invertible over B[rqn−1
] and we obtain a commutative diagram

ϕ∗q(B
+
rig,L ⊗L D(M )) ϕ∗q

(
M |B[rqn

]

)

B+
rig,L ⊗L D(M ) M |B[rqn−1

]

ϕ∗q (1⊗ξ
rqn )

∼=

∼= ∼=

1⊗ξ
rqn−1

showing that 1⊗ ξ
rqn−1 is also an isomorphism. Finally, for n = 1, the commutative

diagram

ϕ∗q(B
+
rig,L ⊗L D(M )) ϕ∗q

(
M |B[rq]

)

B+
rig,L ⊗L D(M )

(
M |B[r]

)
[λ−1]

ϕ∗q (1⊗ξrq )

∼=

∼=

1⊗ξr

gives the desired result.
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Given M ∈ Ob
(
(ϕq, ΓL)–Modan

B+
rig,L,fr

)
, we define a filtration on ϕ∗q(M ) by

Fili
(

ϕ∗q(M )
)
=
{

x ∈ ϕ∗q(M ) : (1⊗ ϕq)(x) ∈ QiM
}

for each i ∈ Z

(where 1⊗ ϕq : ϕ∗q(M ) → M [Q−1] is the B+
rig,L–linearization morphism). This

is a decreasing filtration by finite free B+
rig,L–modules. Lemma 101 gives, over

a neighbourhood of x′1, an isomorphism B+
rig,L ⊗L D(M ) ∼= ϕ∗q(M ), where we

identified ϕ∗q(M ) with its image inside M [Q−1]. In particular, over x′1 we obtain
an isomorphism

L1 ⊗L D(M ) ∼= ϕ∗q(M )/Qϕ∗q(M ).

The filtration on ϕ∗q(M ) now induces a filtration on L1 ⊗L D(M ) that is stable
under the action of ΓL and descends to a filtration on D(M ). It is clear by definition
that the filtration is separated and exhaustive. Thus, from now on we view D(M )

as an object of (Fil, ϕq)–ModL.

7.3.5 The equivalence of categories

Lemma 102. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B+
rig,L,fr

)
. Let S′1 be the complete local ring of B

at the point x′1 corresponding to Q(Z). The map ξ from lemma 101 induces isomorphisms

Fili
(
S′1 ⊗L D(M )

)
= ∑

j≥0
QjS′1 ⊗L Fili−j(D(M )

) ∼= S′1 ⊗B+
rig,L

Fili
(

ϕ∗q(M )
)

for all i ∈ Z.

Proof. This is analogous to lemma 2.2.5 of Kisin–Ren’s article [28] and to lemma
1.2.12.(4) of Kisin’s article [27]. We reproduce it here for the convenience of the
reader.

Lemma 101 gives an isomorphism S′1 ⊗L D(M ) ∼= S′1 ⊗B+
rig,L

(1⊗ ϕq)
(

ϕ∗q(M )
)

(over x′1). Take an index r ∈ Z such that (1⊗ ϕq)
(

ϕ∗q(M )
)
⊂ QrM or, equivalently,

Filr
(

ϕ∗q(M )
)
= ϕ∗q(M ). By the definition of the filtration on D(M ), we see that

Filr
(
S′1 ⊗L D(M )

)
= S′1 ⊗L D(M ). Therefore, it suffices to prove the lemma for

i ≥ r and we do so by induction. The base case is obvious.
Suppose that we have the result for i− 1 and we want it for i. The inductive

hypothesis shows that

Q · Fili−1(S′1 ⊗L D(M )
) ∼= QS′1 ⊗B+

rig,L
(1⊗ ϕq)

(
Fili−1 ϕ∗q(M )

)
.
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But

Fili
(
S′1 ⊗L D(M )

)
= Q · Fili−1(S′1 ⊗L D(M )

)
+ S′1 ⊗L Fili

(
D(M )

)
.

On the other hand, since the filtrations on ϕ∗q(M ) and on S′1 ⊗L D(M ) both
induce the same filtration on their common quotient L1⊗L D(M ), the preimage of
S′1⊗B+

rig,L
(1⊗ ϕq)

(
Fili ϕ∗q(M )

)
lies in Fili

(
S′1⊗L D(M )

)
. Thus, it suffices to prove

that the image of Fili
(

D(M )
)

lies in S′1 ⊗B+
rig,L

(1⊗ ϕq)
(
Fili ϕ∗q(M )

)
.

Let d be an element in the image of Fili
(

D(M )
)

and decompose it as d = d0 + d1

with d0 ∈ S′1 ⊗B+
rig,L

(1⊗ ϕq)
(
Fili ϕ∗q(M )

)
and d1 ∈ QS′1 ⊗B+

rig,L
(1⊗ ϕq)

(
ϕ∗q(M )

)
(cf. the definition of the filtration on D(M )). The operator

N∇ =
∂Fφ(X, Y)

∂Y

∣∣∣
(X,Y)=(Z,0)

· logφ(Z) · d
dZ

on B+
rig,L (cf. lemma 97) extends to S′1 and then to S′1 ⊗L D(M ) by acting trivially

on D(M ). Similarly, the operator N∇ on M extends to S′1 ⊗B+
rig,L

M . By the

construction of ξ, the isomorphism S′1 ⊗L D(M ) ∼= S′1 ⊗B+
rig,L

(1⊗ ϕq)
(

ϕ∗q(M )
)

is

compatible with N∇ and so N∇(d) = 0. Note also that N∇(Q) ⊂ QB+
rig,L because

logφ(Z) is a multiple of Q(Z) and that (1⊗ ϕq)
(

ϕ∗q(M )
)

is stable under N∇ by its
compatibility with ϕq. Therefore,

N∇(d1) = −N∇(d0) ∈ S′1 ⊗B+
rig,L

(
Q(1⊗ ϕq)

(
ϕ∗q(M )

)
∩ (1⊗ ϕq)

(
Fili ϕ∗q(M )

))
.

We claim that N∇ induces a bijection on

Mi = S′1 ⊗B+
rig,L

(
Q(1⊗ ϕq)(ϕ∗q(M )) ∩QiM

)
and this claim implies that d1 ∈ Mi ⊂ S′1 ⊗B+

rig,L
(1⊗ ϕq)

(
Fili ϕ∗q(M )

)
, as required.

We prove the last claim by induction on i ≥ r. The base case follows from
the compatibility of the isomorphism S′1 ⊗L D(M ) ∼= S′1 ⊗B+

rig,L
(1⊗ ϕq)

(
ϕ∗q(M )

)
with N∇ and the fact that N∇ induces a bijection on QS′1. For the inductive step,
we use the commutative diagram

0 Mi Mi−1 Mi−1/Mi 0

0 Mi Mi−1 Mi−1/Mi 0

N∇ N∇∼ =
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with exact rows and the snake lemma. More precisely, since Mi−1/Mi is a finite-
dimensional L–vector space, the surjective right vertical arrow must in fact be an
isomorphism. Then N∇ : Mi → Mi is an isomorphism too.

Lemma 103. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B+
rig,L,fr

)
. The map ξ from lemma 101 induces

an isomorphismM (D(M )) ∼= M .

Proof. This is analogous to proposition 1.2.13 of Kisin’s article [27]. We adapt it
here to our situation.

Write D0 = B+
rig,L ⊗L D(M ). By definition, M ′ =M (D(M )) is a submodule

of D0[λ
−1] = B+

rig,L[λ
−1]⊗L D(M ). On the other hand, by lemma 101 we have

an isomorphism 1⊗ ξ : D0[λ
−1] → M [λ−1] by means of which we identify M

with a submodule of D0[λ
−1] too. Interpreting D0[λ

−1] as (the global sections
of) a coherent sheaf on B, we have to prove that the two subsheaves M and M ′

coincide at all points.
At the points of B where λ is a unit, the inclusions M ⊂ D0[λ

−1] ⊃ M ′

become isomorphisms. Thus, we have to focus on the points x′n corresponding to
ϕn−1

q (Q(Z)) for n ∈ Z≥1 (cf. the proof of lemma 99).
Let n ≥ 1. At x′n+1, the map (1⊗ ϕq) : ϕ∗q(D0[λ

−1]) → D0[λ
−1] becomes an

isomorphism because Q(Z) is a unit there. Similarly, the inclusions ϕ∗q(M ) ↪→M

and ϕ∗q(M
′) ↪→ M ′ are isomorphisms at x′n+1. But, as ϕq(x′n+1) 6= x′m for any

m ≥ 1, the inclusions ϕ∗q(M ) ⊂ ϕ∗q(D0[λ
−1]) ⊃ ϕ∗q(M

′) are isomorphisms at x′n+1.
We conclude that M and M ′ coincide at x′n+1.

It remains to study M and M ′ at x′1. That is, we have to compare S′1 ⊗B+
rig,L

M

and S′1⊗B+
rig,L

M ′ inside S′1⊗B+
rig,L

D0[λ
−1] ∼= S′1[Q

−1]⊗L D(M ). On the one hand,
ξ induces an isomorphism

S′1 ⊗L D(M ) ∼= S′1 ⊗B+
rig,L

(1⊗ ϕq)
(

ϕ∗q(M )
)

by lemma 101. On the other hand, (1⊗ ϕq)
(

ϕ∗q(D0)
)
= D0 and at x′1 the submod-

ules ϕ∗q(D0) and ϕ∗q(M
′) become equal, so

S′1 ⊗B+
rig,L

D0 = S′1 ⊗B+
rig,L

(1⊗ ϕq)
(

ϕ∗q(D0)
)
= S′1 ⊗B+

rig,L
(1⊗ ϕq)

(
ϕ∗q(M

′)
)
.

Now we have to check that an element of S′1⊗L D(M ) lies in QiS′1⊗B+
rig,L

M if and

only if it lies in QiS′1 ⊗B+
rig,L

M ′ (for any i ∈ Z). But this is equivalent to showing
that the filtrations on the two sides of the isomorphism

S′1 ⊗B+
rig,L

(1⊗ ϕq)
(

ϕ∗q(M
′)
)
= S′1 ⊗L D(M ) ∼= S′1 ⊗B+

rig,L
(1⊗ ϕq)

(
ϕ∗q(M )

)
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(induced by ξ) coincide, which is the content of lemma 102.

Theorem 104 (Kisin–Ren). The functors

(ϕq, ΓL)–Modan
B+

rig,L,fr (Fil, ϕq)–ModL
D

M

are exact quasi-inverse equivalences of categories that are compatible with tensor products.

Proof. For the non-relative Lubin–Tate case, this is proposition 2.2.6 of Kisin–Ren’s
article [28], which in turn is analogous to theorem 1.2.15 of Kisin’s article [27].

Lemma 103 proves one direction of the fact that D andM are quasi-inverse.
For the other direction, let D ∈ Ob

(
(Fil, ϕq)–ModL

)
. By the definition ofM (D),

we have a natural ΓL–equivariant inclusion D ⊂ M (D)[Q−1]. This inclusion
induces an isomorphism between D and D(M (D)) =M (D)/ZM (D) and so D
must be the image of ξ : D(M (D)) →M (D)[λ−1] (cf. lemma 101). Tracing the
definitions and using lemma 102 (modulo Z), one sees that the filtrations on D
and on D(M (D)) coincide.

The exactness and the compatibility with tensor products can be proved exactly
as in theorem 1.2.15 of Kisin’s article [27], working on points of B and using some
of the arguments that appeared in the proof of lemma 99.

Kisin and Ren restricted this equivalence of categories to certain subcategories
that we define next.

7.3.6 An equivalence of subcategories

Definition 105. We say that M ∈ Ob
(

ϕq–ModB+
rig,L,fr

)
is pure of slope 0 (or étale) if

its base change MB†
rig,L

= B†
rig,L⊗B+

rig,L
M is pure of slope 0 (in the sense that 0 is the

only slope appearing in Kedlaya’s slope filtration or, equivalently, that MB†
rig,L

is

étale as in definition 83). We define (ϕq, ΓL)–Mod0,an
B+

rig,L,fr
to be the full subcategory

of (ϕq, ΓL)–Modan
B+

rig,L,fr of modules that are pure of slope 0 as ϕq–modules.

Remark. For M ∈ Ob
(

ϕq–ModB+
rig,L,fr

)
, the base change MB†

rig,L
is indeed an object

of ϕq–ModB†
rig,L,fr because Q is invertible in B†

rig,L.

Definition 106. Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
.

(1) If D is 1–dimensional over L, choose a basis element x ∈ D and consider
α ∈ L such that ϕq(x) = αx. The Newton number of D is

tN(D) = vπL(α)
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(where vπL denotes the normalized valuation of L). If D has dimension m
over L, the Newton number of D is

tN(D) = tN

( m∧
D
)

.

(2) The Hodge number of D is

tH(D) = ∑
i∈Z

i · dimL
(
Gri(D)

)
.

(3) We say that D is weakly admissible if tH(D) = tN(D) and tH(D′) ≤ tN(D′)
for all subobjects D′ of D in (Fil, ϕq)–ModL. We write (Fil, ϕq)–Modwa

L for
the full subcategory of weakly admissible objects in (Fil, ϕq)–ModL.

Proposition 107. An object D of (Fil, ϕq)–ModL is weakly admissible if and only if
M (D)B†

rig,L
is pure of slope 0. Therefore, the functors

(ϕq, ΓL)–Mod0,an
B+

rig,L,fr
(Fil, ϕq)–Modwa

L
D

M

are quasi-inverse equivalences of categories.

Proof. See proposition 2.3.3 of Kisin–Ren’s article [28], which works exactly in the
same way for the relative Lubin–Tate situation.

7.4 Filtered ϕq–modules and crystalline representations

We want to apply the theory introduced in the previous sections to study crystal-
line OK–linear representations of GL.

7.4.1 The functors Dcrys and Dcrys,K

Recall that the ring Bcrys comes equipped with a p–th power Frobenius endo-
morphism ϕp (and so with a q–th power Frobenius endomorphism ϕq too). Let
F (resp. F′) denote the maximal absolutely unramified subfield of K (resp. of
L). We define Bcrys,K = Bcrys ⊗F K and write again ϕq for the endomorphism
ϕq ⊗ 1 on Bcrys,K. (Note that, since L/K is unramified, we could equivalently use
Bcrys,L = Bcrys ⊗F′ L, which is the same as Bcrys,K.) In addition, Bcrys and Bcrys,K

inherit filtrations from BdR via the natural inclusions Bcrys ↪→ Bcrys,K ↪→ BdR.
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Definition 108. Let V be a K–linear representation of GL (i.e., a finite K–vector
space endowed with a continuous action of GL). We define the crystalline filtered
ϕq–modules

Dcrys(V) = (Bcrys ⊗Qp V)GL

and
Dcrys,K(V) = (Bcrys,K ⊗K V)GL = (Bcrys ⊗F V)GL .

We say that V is crystalline if dimF′
(
Dcrys(V)

)
= dimQp(V). We write Repcrys

K (GL)

for the category of K–linear continuous representations of GL that are crystal-
line and Repcrys

OK ,fr(GL) for the category of free OK–modules T endowed with a
continuous action of GL and such that K⊗OK T ∈ Ob

(
Repcrys

K (GL)
)
.

Remark. By definition, Dcrys,K(V) is a module over BGL
crys ⊗F K = F′ ⊗F K ∼= L and

so is an object of (Fil, ϕq)–ModL. Similarly, Dcrys(V) is a module over F′ ⊗Qp K.
We view Dcrys,K(V) as the identity component of Dcrys(V), in the sense that it
corresponds to the identity of Gal(F/Qp) = 〈ϕp〉 in the isomorphism

Bcrys ⊗Qp V ∼=
⊕

σ∈Gal(F/Qp)

(Bcrys ⊗σ,F V).

7.4.2 The functors Vcrys and Vcrys,K

Definition 109. A free filtered ϕp–module over F′⊗Qp K is a free (F′⊗Qp K)–module
D̃ of finite rank endowed with a (ϕp ⊗ idK)–semilinear bijective map ϕp : D̃ → D̃
and a decreasing, separated and exhaustive filtration on D̃L = L⊗F′ D̃, indexed
by Z, by (L⊗Qp K)–modules. We write (Fil, ϕp)–ModF′⊗Qp K,fr for the category of
such modules.

Definition 110.
(1) Let D̃ ∈ Ob

(
(Fil, ϕp)–ModF′⊗Qp K,fr

)
. We define its associated representation

Vcrys(D̃) = Fil0
(
Bcrys ⊗F′ D̃

)ϕp=1 ∈ Ob
(
RepK(GL)

)
.

(2) Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
. We define its associated representation

Vcrys,K(D) = Fil0
(
Bcrys,K ⊗L D

)ϕq=1 ∈ Ob
(
RepK(GL)

)
.

7.4.3 The equivalence for crystalline representations

One of the most important results of p–adic Hodge theory is that the functors
Dcrys and Vcrys are quasi-inverse if we restrict them to appropriate subcategories.
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Next we recall that result and later transport it to Dcrys,K and Vcrys,K.

Definition 111. Let D̃ ∈ Ob
(
(Fil, ϕp)–ModF′⊗Qp K,fr

)
.

(1) Regard D̃ as an F′–vector space. Let m = dimF′(D̃) and choose a basis
element

x ∈
m∧

D̃.

Consider α ∈ F′ such that ϕp(x) = αx. The Newton number of D̃ is

tN(D̃) = vπL(α)

(where vπL denotes the normalized valuation of L).
(2) The Hodge number of D̃ is

tH(D̃) = ∑
i∈Z

i · dimL
(
Gri(D̃)

)
.

(3) We say that D̃ is weakly admissible if tH(D̃) = tN(D̃) and tH(D̃′) ≤ tN(D̃′) for
all subobjects D̃′ of D̃ in (Fil, ϕp)–ModF′⊗Qp K,fr. Let (Fil, ϕp)–Modwa

F′⊗Qp K,fr

denote the full subcategory formed of weakly admissible objects inside
(Fil, ϕp)–ModF′⊗Qp K,fr.

Theorem 112 (Fontaine, Colmez–Fontaine). The functors

Repcrys
K (GL) (Fil, ϕp)–Modwa

F′⊗Qp K,fr

Dcrys

Vcrys

are exact quasi-inverse equivalences of categories that are compatible with tensor products
and duality.

Proof. See proposition 9.1.11 of Brinon–Conrad’s notes [11] and theorem 11.19 of
Colmez’s article [16], for instance.

7.4.4 Comparison of filtered ϕq– and ϕp–modules

In the remainder of this subsection we explain how one can view the category
(Fil, ϕq)–ModL inside (Fil, ϕp)–ModF′⊗Qp K,fr and describe the corresponding (full)
subcategory of crystalline representations.

Let r = [F : Qp], so that q = pr. We extend ϕi
p : F′ → F′ to

ϕi
p : L ∼= F′ ⊗F K F′ ⊗ϕi

p,F K
ϕi

p⊗idK
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for every i ≥ 0. Given D ∈ Ob
(
(Fil, ϕq)–ModL

)
, we define

D̃ =
r−1⊕
i=0

(ϕi
p)
∗(D) =

r−1⊕
i=0

(
(F′ ⊗ϕi

p,F K)⊗ϕi
p,L D

) ∼= F⊗Qp D

and regard it as an (F′ ⊗Qp K)–module using the decomposition

F′ ⊗Qp K ∼=
r−1⊕
i=0

(F′ ⊗ϕi
p,F K).

Then D̃ is finite free of the same rank as D.
Next we define ϕp : D̃ → D̃ as follows. For 0 ≤ i < r − 1, we consider the

morphism ϕp : (ϕi
p)
∗(D) → (ϕi+1

p )∗(D) naturally induced by ϕp : F′ → F′; for
i = r− 1, we have ϕp : (ϕr−1

p )∗(D)→ D given by

(F′ ⊗ϕr−1
p ,F K)⊗ϕr−1

p ,L D

(F′ ⊗F K)⊗L D

ϕp ϕq
idK

(recall that q = pr, so ϕp : F′ → F′ and ϕq : D → D are indeed compatible as
shown in the diagram).

Finally, since L⊗Qp K is artinian, we can decompose

D̃L =
⊕

m∈Spm(L⊗Qp K)

(D̃L)m,

where the direct sum runs over all maximal ideals of L⊗Qp K. In particular, there
is one maximal ideal m0 corresponding to the natural multiplication morphism
L⊗Qp K →→ L (equivalently, to idK : K ↪→ L via the decomposition of L⊗Qp K as
a direct sum of L⊗σ,K K for σ ∈ Gal(K/Qp)) and we call (D̃L)m0 = L⊗L⊗Qp K D̃L

the identity component of D̃L, which is naturally identified with D. We endow D̃L

with a filtration that is the direct sum of the filtration on D and the trivial filtration
on the other direct summands (D̃L)m for m 6= m0. Thus, we formed an object D̃ in
(Fil, ϕp)–ModF′⊗Qp K,fr.

Remark. We can recover the identity component directly from D̃, without passing
to D̃L. That is, we can consider an analogous direct sum decomposition of D̃
using the maximal ideals of F′ ⊗Qp K and, if m0 is the kernel of the multiplication
morphism F′ ⊗Qp K →→ L, then D̃m0 = L⊗F′⊗Qp K D̃ is naturally identified with D.
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Definition 113.
(1) We say that D̃ ∈ Ob

(
(Fil, ϕp)–ModF′⊗Qp K,fr

)
is K–analytic if the filtration on

D̃L =
⊕

m∈Spm(L⊗Qp K)

(D̃L)m

restricts to the trivial filtration on every direct summand other than the
identity component. Let (Fil, ϕp)–Modan

F′⊗Qp K,fr (resp. (Fil, ϕp)–Modwa,an
F′⊗Qp K,fr)

denote the full subcategory of K–analytic objects of (Fil, ϕp)–ModF′⊗Qp K,fr

(resp. of (Fil, ϕp)–Modwa
F′⊗Qp K,fr).

(2) We say that V ∈ Ob
(
Repcrys

K (GL)
)

is K–analytic if Dcrys(V) is K–analytic. We
write Repcrys,an

K (GL) for the full subcategory of such representations.
(3) We say that T ∈ Ob

(
Repcrys

OK ,fr(GL)
)

is OK–analytic if K ⊗OK T is K–analytic
(i.e., if Dcrys(T) = (Bcrys ⊗Zp T)GL is K–analytic). We write Repcrys,an

OK ,fr (GL)

for the full subcategory of such representations.

Remark. There is a more general notion of K–analytic representation: a K–linear
representation V of GL is called K–analytic if the Cp–semilinear representations
Cp ⊗σ,K V are trivial for all the embeddings σ : K ↪→ Cp other than the identity.
If V is crystalline (and so de Rham and Hodge–Tate), we recover the definition
above.

Lemma 114. The rule D 7→ D̃ described above defines a fully faithful functor

(Fil, ϕq)–ModL (Fil, ϕp)–ModF′⊗Qp K,fr
·̃

that is compatible with tensor products. Moreover, the essential image of this functor is
(Fil, ϕp)–Modan

F′⊗Qp K,fr.

Proof. This is analogous to lemma 3.3.1 of Kisin–Ren’s article [28]. We only sketch
the proof here.

It suffices to give a quasi-inverse functor

(Fil, ϕp)–Modan
F′⊗Qp K,fr → (Fil, ϕq)–ModL.

Given D̃ ∈ Ob
(
(Fil, ϕp)–Modan

F′⊗Qp K,fr
)
, we construct D′ = L⊗F′⊗Qp K D̃. We have

a ϕq–semilinear map

ϕq : D′ = L⊗F′⊗Qp K D̃ L⊗F′⊗Qp K D̃ = D′
ϕq⊗ϕr

p
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and a filtration on D′ coming from that on D̃. Then the decomposition

F′ ⊗Qp K ∼=
r−1⊕
i=0

(F′ ⊗ϕi
p,F K)

allows one to define a canonical isomorphism D̃′ ∼= D̃ from the equality on identity
components. Then one checks easily that the two functors are quasi-inverse to
each other and preserve tensor products.

7.4.5 The equivalence for crystalline K–analytic representations

Lemma 115. Let D ∈ Ob
(
(Fil, ϕq)–ModL

)
. Then

tN(D) = tN(D̃) and tH(D) = tH(D̃)

and D is weakly admissible if and only if D̃ is weakly admissible.

Proof. See lemma 3.3.2 of Kisin–Ren’s article [28], whose proof works verbatim in
the relative Lubin–Tate situation.

Corollary 116 (Kisin–Ren). The functors

Repcrys,an
K (GL) (Fil, ϕq)–Modwa

L

Dcrys,K

Vcrys,K

are exact quasi-inverse equivalences of categories that are compatible with tensor products
and duality.

Proof. Lemmata 114 and 115 show that we have a commutative diagram of func-
tors

Repcrys
K (GL) (Fil, ϕp)–Modwa

F′⊗Qp K,fr

Repcrys,an
K (GL) (Fil, ϕq)–Modwa

L

Dcrys

Vcrys

Dcrys,K

Vcrys,K

·̃

and so the result is a direct consequence of theorem 112. More precisely, lemma 114
implies that there are canonical functorial isomorphisms

Dcrys(V) ∼= Dcrys,K(V)∼ for all V ∈ Ob
(
Repcrys,an

K (GL)
)
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and proposition 3.3.4 of Kisin–Ren’s article [28] gives canonical functorial iso-
morphisms

Vcrys(D̃) ∼= Vcrys,K(D) for all D ∈ Ob
(
(Fil, ϕq)–Modwa

L
)

(or rather their duals).

7.5 Wach modules

In this subsection we combine the results relating (ϕq, ΓL)–modules with integral
(i.e., OK–linear) representations of GL with the results for crystalline K–analytic
representations. We do so by means of Wach modules.

Definition 117.
(1) A free ϕq–module over A+

L is a finite free A+
L –module N endowed with a

ϕq–semilinear morphism ϕq = ϕN : N → N[Q(ωφ)−1] with the property
that the A+

L –linearization 1 ⊗ ϕq : ϕ∗q(N)[Q(ωφ)−1] → N[Q(ωφ)−1] is an
isomorphism. We write ϕq–ModA+

L ,fr for the category of such modules.
(2) A free (ϕq, ΓL)–module over A+

L is a free ϕq–module N over A+
L equipped with

an A+
L –semilinear continuous action of ΓL commuting with ϕq and such that

the induced action on N/ωφN is trivial. We write (ϕq, ΓL)–ModA+
L ,fr for the

category of such modules.

Recall that we fixed an isomorphism A′,+L
∼= A+

L defined by Z 7→ ωφ. Com-
bining this isomorphism with the natural inclusion A′,+L ↪→ B+

rig,L, we obtain an
inclusion A+

L ↪→ B+
rig,L characterized by ωφ 7→ Z. Then definition 117 is com-

pletely analogous to definitions 92 and 93. In fact, base change gives a functor
B+

rig,L ⊗A+
L
· : (ϕq, ΓL)–ModA+

L ,fr → (ϕq, ΓL)–ModB+
rig,L,fr.

Definition 118. A module N ∈ Ob
(
(ϕq, ΓL)–ModA+

L ,fr
)

is called OK–analytic if its
base change B+

rig,L ⊗A+
L

N is in (ϕq, ΓL)–Modan
B+

rig,L,fr. We write (ϕq, ΓL)–Modan
A+

L ,fr

for the full subcategory of OK–analytic objects of (ϕq, ΓL)–ModA+
L ,fr.

Similarly, base change by the natural inclusion A+
L ↪→ AL induces a functor

AL ⊗A+
L
· : (ϕq, ΓL)–ModA+

L ,fr → (ϕq, ΓL)–Modét
AL,fr because Q is invertible in A′L.

Putting together the results of the previous subsections, we obtain a diagram of
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functors

(ϕq, ΓL)–Modét
AL,fr RepOK ,fr(GL)

(ϕq, ΓL)–Modan
A+

L ,fr Repcrys,an
OK ,fr (GL)

(ϕq, ΓL)–Modan
B+

rig,L,fr (Fil, ϕq)–ModL

(ϕq, ΓL)–Mod0,an
B+

rig,L,fr
(Fil, ϕq)–Modwa

L Repcrys,an
K (GL)

(Fil, ϕp)–Modwa
F′⊗Qp K,fr Repcrys

K (GL)

V
∼=
D

?

AL⊗A+
L
·

B+
rig,L⊗A+

L
·

K⊗OK ·
D
∼=
M

D
∼=
M

Vcrys,K

∼=

·̃
Dcrys,K

Vcrys

∼=
Dcrys

in which the horizontal pairs of arrows are quasi-inverse equivalences of categories
and the small squares are commutative. Our goal in this subsection is to fill in the
dashed arrow with an equivalence of categories that makes the whole diagram
commutative.

7.5.1 The functors V∗

As the upper half of the previous diagram shows, in order to define the functor
(ϕq, ΓL)–Modan

A+
L ,fr → Repcrys,an

OK ,fr we just need to check that the composition of
AL ⊗A+

L
· with V lands in the right subcategory. To study this composition,

however, it is be more convenient to work with the dual (or contravariant version)
of the functor V: for M ∈ Ob

(
ϕq–Modét

AL,fr
)
, we define

V∗(M) = HomAL,ϕq(M, A) ∼=
(
A⊗AL HomAL(M, AL)

)ϕq=1.

Analogously, and by an abuse of notation that will be justified by lemma 119, for
N ∈ Ob

(
ϕq–ModA+

L ,fr
)

we set

V∗(N) = HomA+
L ,ϕq

(N, A+[ω−1
φ ]).

Lemma 119. Let N ∈ Ob
(

ϕq–ModA+
L ,fr
)
.

(1) If the map ϕq on N induces a morphism ϕ∗q(N)→ N (without inverting Q(ωφ)),
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then
V∗(N) = HomA+

L ,ϕq
(N, A+).

(2) The natural map
V∗(N)→ V∗(AL ⊗A+

L
N)

is an isomorphism and both sides are free OK–modules of the same rank as N.

Proof. See lemma 3.2.1 of Kisin–Ren’s article [28], whose proof works exactly in
the same way for the relative Lubin–Tate situation.

In order to prove that, for every N ∈ Ob
(
(ϕq, ΓL)–Modan

A+
L ,fr

)
, the representa-

tion V∗(N) is crystalline and OK–analytic, we need to study more carefully the
lower half of the previous large diagram.

7.5.2 Isogeny categories

Observe that the functor K ⊗OK · : Repcrys,an
OK ,fr → Repcrys,an

K factors through the
isogeny category Repcrys,an

OK ,fr ⊗ZpQp (i.e., the category obtained by applying · ⊗Zp

Qp to the Hom modules of Repcrys,an
OK ,fr ). As a matter of fact, we have an equivalence

of categories K⊗OK · : Repcrys,an
OK ,fr ⊗ZpQp ∼= Repcrys,an

K . There is an analogous result
for (ϕq, ΓL)–modules:

Proposition 120. There is an equivalence of categories

ϕq–ModA+
L ,fr ⊗Zp Qp ∼= ϕq–Mod0

B+
rig,L,fr

given by N 7→ B+
rig,L ⊗A+

L
N that is exact and compatible with tensor products, where

• ϕq–ModA+
L ,fr ⊗Zp Qp is the isogeny category obtained by applying · ⊗Zp Qp to

the Hom modules of ϕq–ModA+
L ,fr and

• ϕq–Mod0
B+

rig,L,fr is the full subcategory of ϕq–ModB+
rig,L,fr of modules that are pure

of slope 0.
Consequently, we obtain an equivalence of categories

(ϕq, ΓL)–Modan
A+

L ,fr ⊗Zp Qp ∼= (ϕq, ΓL)–Mod0,an
B+

rig,L,fr

defined in the same way.

Proof. The characterization of M ∈ Ob
(

ϕq–ModB+
rig,L,fr

)
being pure of slope 0 in

terms of ϕq–stable lattices of MB†
rig,L

implies that the objects obtained by base

change from ϕq–ModA+
L ,fr are in ϕq–Mod0

B+
rig,L,fr.
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As for the equivalence of categories, the proof of lemma 1.3.13 of Kisin’s article
[27] works exactly in the same way (ignoring the monodromy).

Proposition 121. Let N ∈ Ob
(
(ϕq, ΓL)–Modan

A+
L ,fr

)
and let D = D

(
B+

rig,L ⊗A+
L

N
)
.

There is a canonical GL–equivariant bijection

K⊗OK V∗(N) −→ V∗crys,K(D) = HomK,Fil,ϕq(D, Bcrys,K)

that is compatible with tensor products. In particular, both sides have the same dimension
over K.

Proof. This is proposition 3.2.3 of Kisin–Ren’s article [28]. We reproduce it here for
the convenience of the reader.

Recall that ωφ and tφ are units in Bcrys,K and so λ(ωφ) = tφ/ωφ and Q(ωφ) are
invertible in Bcrys,K too.

Write M = B+
rig,L ⊗A+

L
N and consider the natural maps

HomA+
L ,ϕq

(N, A+[ω−1
φ ]) HomB+

rig,L,ϕq
(M , Bcrys,K)

HomB+
rig,L,ϕq

(ϕ∗q(M ), Bcrys,K)

(the vertical arrow is well-defined because Q(ωφ) is invertible in Bcrys,K). We
claim that the image of the composition consists of morphisms that respect the
filtrations.

An A+
L –linear map f : N → A+ induces f1 : M → Bcrys,K by composition with

A+ ↪→ B+
crys,K ↪→ Bcrys,K and base change by A+

L ↪→ B+
rig,L. Localization at Q yields

f2 : M [Q−1] → Bcrys,K and precomposition with (1⊗ ϕq) : ϕ∗(M ) → M [Q−1]

gives f3 : ϕ∗q(M ) → Bcrys,K. Consider x ∈ Fili
(

ϕ∗q(M )
)

for some i ∈ Z, which
means that (1⊗ ϕq)(x) ∈ QiM . Then f3(x) ∈ Q(ωφ)i ·B+

crys,K ⊂ Fili(BdR) because

Q(ωφ) ∈ Fil1(BdR) by proposition 2.1.19 of Schneider’s book [31]. Therefore,
f3 ∈ HomB+

rig,L,Fil,ϕq
(ϕ∗q(M ), Bcrys,K) as claimed.

Next, consider the inclusions

ϕ∗q(M )[Q−1] ⊆ ϕ∗q(M )[λ−1] ⊇ ϕ∗q
(
M [λ−1]

)
.

Since these modules differ by elements of B×crys,K, having f3 is equivalent to having
f4 : ϕ∗q

(
M [λ−1]

)
→ Bcrys,K. But lemma 101 gives a map ξ : D → M [λ−1] and

finally we can compose f4 with 1⊗ ξ to obtain the desired f5 : D → Bcrys,K. By
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the definition of the filtration on D = D(M ) in terms of ξ, we conclude that
f5 ∈ HomK,Fil,ϕq(D, Bcrys,K).

In this way, we have constructed a canonical GL–equivariant map

K⊗OK HomA+
L ,ϕq

(N, A+[ω−1
φ ])→ HomK,Fil,ϕq(D, Bcrys,K)

given by f 7→ f5. Tracing the steps of the construction, one checks that this map is
compatible with tensor products and injective (the only non-clear step is f4 7→ f5,
but that follows from lemma 101). Finally, comparing dimensions we obtain the
bijectivity.

7.5.3 The equivalence of categories

Theorem 122 (Kisin–Ren). The functor N 7→ V(AL ⊗A+
L

N) induces an exact equi-
valence of categories

V : (ϕq, ΓL)–Modan
A+

L ,fr Repcrys,an
OK ,fr (GL)

∼=

that is compatible with tensor products and duals.

Proof. This is corollary 3.3.8 of Kisin–Ren’s article [28]. We reproduce its proof
here for the convenience of the reader.

Combining lemma 119 and proposition 121, we see that N 7→ V(AL ⊗A+
L

N)

induces a fully faithful functor (ϕq, ΓL)–Modan
A+

L ,fr → Repcrys,an
OK ,fr that is exact and

compatible with tensor products and duals.
It remains to prove that the functor is essentially surjective. To that aim,

take T ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)

and consider M = D(T) ∈ Ob
(
(ϕq, ΓL)–Modét

AL,fr
)

and M =M (Dcrys,K(K⊗OK T)) ∈ Ob
(
(ϕq, ΓL)–Mod0,an

B+
rig,L,fr

)
. By proposition 120,

we find N′ ∈ Ob
(
(ϕq, ΓL)–Modan

A+
L ,fr

)
such that M = B+

rig,L ⊗A+
L

N′. Therefore,
lemma 119 and proposition 121 imply that the representation V(AL ⊗A+

L
N′) is

isomorphic to a GL–stable OK–lattice T′ of K⊗OK T.
Now we can use the equivalence of theorem 74, which provides isomorphisms

BL ⊗A+
L

N′ ∼= D(K⊗OK T′) ∼= D(K⊗OK T) ∼= BL ⊗AL M

that we regard as an identification. We define

N = M ∩ N′[p−1] ⊂ M[p−1] = BL ⊗AL M.
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Since AL ∩A+
L [p
−1] = A+

L (inside BL), we see that N is a finite (ϕq, ΓL)–module
over A+

L . Using the structure theorem of finite modules over A+
L (equivalently,

over A′,+L = OL[[Z]]), one can check that N is free over A+
L (cf. the argument at the

end of lemma 1.3.13 of Kisin’s article [27]). All in all, N ∈ Ob
(
(ϕq, ΓL)–Modan

A+
L ,fr

)
and AL ⊗A+

L
N ∼= M. We obtain isomorphisms V(AL ⊗A+

L
N) ∼= V(M) ∼= T.

The proof of theorem 122 shows that, for every T ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)
, there

exists an A+
L –submodule N of D(T) that inherits actions of ϕq and ΓL making it

an object of (ϕq, ΓL)–Modan
A+

L ,fr and with the property that AL ⊗A+
L

N = D(T). We
fix once and for all such an N for every T forming a quasi-inverse

N : Repcrys,an
OK ,fr (GL)→ (ϕq, ΓL)–Modan

A+
L ,fr

to the functor V of theorem 122. The results of this section can be summarized in
the commutative (up to natural isomorphisms) diagram of functors

(ϕq, ΓL)–Modét
AL,fr RepOK ,fr(GL)

(ϕq, ΓL)–Modan
A+

L ,fr Repcrys,an
OK ,fr (GL)

(ϕq, ΓL)–Modan
A+

L ,fr ⊗Zp Qp Repcrys,an
OK ,fr (GL)⊗Zp Qp

(ϕq, ΓL)–Mod0,an
B+

rig,L,fr
(Fil, ϕq)–Modwa

L Repcrys,an
K (GL)

V
∼= (1)

D

V
∼= (2)

AL⊗A+
L
·

N

B+
rig,L⊗A+

L
· ∼= (3) K⊗OK ·∼ =

D
∼= (4)
M

Vcrys,K

∼= (5)
Dcrys,K

where the equivalences of categories are:
(1) theorem 74 (section 7.1);
(2) theorem 122 (section 7.5);
(3) proposition 120 (section 7.5);
(4) theorem 104 and proposition 107 (section 7.3), and
(5) theorem 112 and corollary 116 (section 7.4).

7.5.4 Behaviour with respect to Hodge–Tate weights

Next we want to study, for T ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)
, the relations between the

Wach module N(T) and certain submodules defined in terms of the operators ϕq

and ψq depending on the Hodge–Tate weights of V = K⊗OK T.
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By the definition of K–analyticity, most of those Hodge–Tate weights must
be 0. More precisely, if m = dimK(V), then there are m · [K : Qp] weights, from
which only the m corresponding to the identity component of Cp ⊗Qp V might be
non-zero. We call the other m

(
[K : Qp]− 1

)
weights the trivial weights. We also

adopt the convention that the cyclotomic character χcyc has weight 1.
If the symbol ? is an interval [a, b] (with a, b ∈ Z) or ≤ 0 or ≥ 0 (for the

intervals (−∞, 0] or [0, ∞), respectively), we write Repcrys,an,?
K (GL) for the full

subcategory of representations in Repcrys,an
K (GL) whose Hodge–Tate weights lie

in the corresponding interval. Similarly, we write Repcrys,an,?
OK ,fr (GL) for the full

subcategory of T ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)

such that K⊗OK T ∈ Ob
(
Repcrys,an,?

K (GL)
)
.

Lemma 123. Let T ∈ Ob
(
Repcrys,an,[a,b]

OK ,fr (GL)
)

for some interval [a, b]. If we write
N = N(T), then

Q(ωφ)
−aN ⊆ A+

L · ϕq(N) ⊆ Q(ωφ)
−bN.

Proof. The analogous result for M = B+
rig,L ⊗A+

L
N is corollary 3.37.i of Berger–

Schneider–Xie’s article [8] (where they use the notation IZ0 for the ideal generated
by Q and normalize the weights in such a way that our interval [a, b] is their
[−b,−a]).

The statement of the lemma follows with the same argument as in remark 1.6
of Schneider–Venjakob’s preprint [35], checking that A′,+L [Q−1] ∩ B+

rig,L = A′,+L .

Lemma 124. Let T ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)
.

(1) The Wach module N(T) is the unique A+
L –submodule of D(T) which inherits

actions of ϕq and ΓL making it an object in (ϕq, ΓL)–Modan
A+

L ,fr and such that
AL ⊗A+

L
N(T) = D(T).

(2) For every r ∈ Z, N(T(χr
φ)) = ω−r

φ N(T)⊗ tr
0, where t0 is a generator of OK(χφ).

Proof. See proposition 1.10 and lemma 1.12 of Schneider–Venjakob’s preprint [35],
whose proofs work verbatim in the relative Lubin–Tate situation too.

Since the Lubin–Tate character χφ has (non-trivial) Hodge–Tate weight 1, up to
twisting we may always work with representations whose Hodge–Tate weights
are ≥ 0, which is convenient for some proofs.

7.5.5 Comparison between Wach modules and Dcrys,K

Lemma 125. Let T ∈ Ob
(
Repcrys,an,[−r,0]

OK ,fr (GL)
)

with r ∈ Z≥0 and set V = K⊗OK T,
D = Dcrys,K(V) and M = B+

rig,L ⊗A+
L

N(T). Identifying D with D(M ), the map ξ
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from lemma 101 induces inclusions

λrM ⊆ (1⊗ ξ)
(
B+

rig,L ⊗L D
)
⊆M .

Proof. The definition of the functorM (see section 7.3.3) gives inclusions

B+
rig,L ⊗L D ⊆M (D) ⊆ λ−rB+

rig,L ⊗L D.

Applying 1⊗ ξ and using lemma 103 we obtain

(1⊗ ξ)(B+
rig,L ⊗L D) ⊆M ⊆ (1⊗ ξ)(λ−rB+

rig,L ⊗L D),

whence the lemma follows.

Definition 126. Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and choose a GL–stable OK–lattice T
of V. We define

N(V) = N(T)[p−1] and N(ϕq)(V) = A+
L · ϕq(N(V)) ⊂ N(V)[Q(ωφ)

−1].

Remark. Since Q(ωφ) is already invertible in AL, we can view N(ϕq)(V) ⊂ D(V).
The operator ψq on D(V) restricts to

ψq : N(ϕq)(V)→ N(V).

Proposition 127. Let T ∈ Repcrys,an,≥0
OK ,fr (GL) and set V = K ⊗OK T. Consider also

M = B+
rig,L ⊗A+

L
N(T). Identifying D(M ) with Dcrys,K(V), the map ξ from lemma 101

induces inclusions
(1) N(V) ⊆ (1⊗ ξ)

(
B+

rig,L ⊗L Dcrys,K(V)
)
,

(2) N(ϕq)(V) ⊆ (1⊗ ξ)
(
B+

rig,L ⊗L Dcrys,K(V)
)

and

(3)
(
N(ϕq)(V)

)ψq=0 ⊆ (1⊗ ξ)
(
(B+

rig,L)
ψq=0 ⊗L Dcrys,K(V)

)
.

Proof. This is corollary 1.14 of Schneider–Venjakob’s preprint [35]. We reproduce
it here for the convenience of the reader.

Applying lemma 125 to T(χ−r
φ ) and using lemma 124, we get that

ZrλrB+
rig,L ⊗A+

L
N(T)⊗ t−r

0 ⊆ (1⊗ ξ)
(
B+

rig,L ⊗L Dcrys,K(K⊗OK T(χ−r
φ ))

)
= B+

rig,L ⊗L tr
φDcrys,K(V)⊗ t−r

0 .

Since Zλ(Z) = logφ(Z) and tφ = logφ(ωφ), we deduce the first inclusion. The
second inclusion follows from the first and the compatibility of 1⊗ ξ with ϕq.
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To prove the last inclusion, take

x =
n

∑
i=1

fi ϕq(xi) ∈ N(ϕq)(V)

such that

ψq(x) =
n

∑
i=1

ψq( fi)xi = 0.

Let e1, . . . , em be an L–basis of Dcrys,K(V) and express

xi =
m

∑
j=1

gij ⊗ ξ(ej) with gij ∈ B+
rig,L

(which is possible by the first inclusion that we already proved). By the linear
independence of the ej, the condition ψq(x) = 0 means that

0 =
n

∑
i=1

ψq( fi)gij = ψq

( n

∑
i=1

fi ϕq(gij)

)
for each j. Therefore,

x = (1⊗ ξ)

( n

∑
i=1

fi ϕq(xi)

)
=

m

∑
j=1

[ n

∑
i=1

fi ϕq(gij)

]
⊗ ξ(ϕq(ej))

lies in (1⊗ ξ)
(
(B+

rig,L)
ψq=0 ⊗Dcrys,K(V)

)
.

7.5.6 Comparison between N(T)ψq=1 and D(T)ψq=1

Lemma 128. For every m ∈ Z≥1,

ψq

( 1
ωm

φ

)
∈

ϕ−1
q (πL)

m−1

ωm
φ

+
1

ωm−1
φ

A+
L .

Proof. The proof is analogous to that of lemma 1.25 of Schneider–Venjakob’s pre-
print [35]. We adapt it to the relative Lubin–Tate situation here for the convenience
of the reader.

Let

h(Z) = ψq(Q(Z)m) = ψq

(φ(Z)m

Zm

)
∈ A′,+L .

We can write h(Z) = ψq(ϕq(Zm)Z−m) = Zmψq(Z−m), so we need to compute
h(Z)/Zm. As a matter of fact, since h(Z)− h(0) ∈ ZA′,+L , we just need to check
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that h(0) = ϕ−1
q (πL)

m−1. Indeed,

ϕq(h(0)) = ϕq(h)(0) = (ϕq ◦ ψq)
(φ(Z)m

Zm

)∣∣∣
Z=0

=
1

πL
∑

v1∈Fφ,1

φ(Fφ(v1, Z))m

Fφ(v1, Z)m

∣∣∣∣
Z=0

=
1

πL
∑

v1∈Fφ,1

φ(Z)m

Fφ(v1, Z)m

∣∣∣∣
Z=0

=
1

πL
Q(0)m = πm−1

L .

Lemma 129. Let T ∈ Ob
(
Repcrys,an,≥0

OK ,fr (GL)
)

and let k ∈ Z≥1.
(1) We have an inclusion

ψq
(
πLD(T) + ω−k

φ N(T)
)
⊆

πLD(T) + ω−1
φ N(T) if k = 1,

πLD(T) + ω−k+1
φ N(T) if k > 1.

(2) If x ∈ D(T) satisfies that (ψq − 1)(x) = ψq(x) − x ∈ πLD(T) + ω−k
φ N(T),

then x ∈ πLD(T) + ω−k
φ N(T).

Proof. The proof is completely analogous to those of lemmata 1.26 and 1.27 of
Schneider–Venjakob’s preprint [35], taking into account that πL and ϕ±1

q (πL)

differ (multiplicatively) by a unit and that, even if ψq is not OL–linear, it is still
ϕ−1

q –semilinear.

Proposition 130. For every T ∈ Ob
(
Repcrys,an,≥0

OK ,fr (GL)
)
,

D(T)ψq=1 ⊆ ω−1
φ N(T).

Proof. This is analogous to lemma 1.28 of Schneider–Venjakob’s preprint [35]. We
adapt it here to the relative Lubin–Tate situation for the convenience of the reader.

We prove by induction on k ∈ Z≥1 that D(T)ψq=1 ⊆ πk
LD(T)+ω−1

φ N(T). Then
taking k → ∞ gives, for each x ∈ D(T)ψq=1, a sequence in ω−1

φ N(T) converging
to x.

The base case k = 1 follows directly from the second part of lemma 129 applied
to x ∈ D(T)ψq=1. For the inductive step, write x = πk

Ly + n with y ∈ D(T) and
n ∈ ω−1

φ N(T). Since (ψq − 1)(x) = 0, we get that

ψq(n)− n = −πk
L

((ϕ−1
q (πL)

πL

)k
ψq(y)− y

)
.
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But the first part of lemma 129 shows that ψq(n)− n ∈ ω−1
φ N(T). We deduce that

(ϕ−1
q (πL)

πL

)k
ψq(y)− y ∈ ω−1

φ N(T)

because πk
LD(T) ∩ω−1

φ N(T) = πk
Lω−1

φ N(T).
We claim that y ∈ πLD(T) + ω−1

φ N(T). To prove it, take l ∈ Z≥0 such that
y ∈ πLD(T) + ω−l

φ N(T) but y 6∈ πLD(T) + ω−l+1
φ N(T). If l > 1, then we would

have ψq(y) ∈ πLD(T) + ω−l+1
φ N(T) by the first part of lemma 129 and so

y =
(ϕ−1

q (πL)

πL

)k
ψq(y)−

((ϕ−1
q (πL)

πL

)k
ψq(y)− y

)
∈ πLD(T) + ω−l+1

φ N(T),

thus contradicting the choice of l. Therefore, l ≤ 1.
The previous claim allows us to write y = πLy′ + n′ with y′ ∈ D(T) and

n′ ∈ ω−1
φ N(T). In conclusion, we can express x = πk+1

L y′ + (πk
Ln′ + n), which

completes the proof of the inductive step.

Lemma 131. Let V ∈ Ob
(
Repcrys,an,≥0

K (GL)
)
. If Dcrys,K(V)ϕq=1 6= 0, then V has the

trivial representation K as a quotient.

Proof. This is lemma 1.29 of Schneider–Venjakob’s preprint [35].

Proposition 132. Let T ∈ Ob
(
Repcrys,an,≥0

OK ,fr (GL)
)
. If V = K ⊗OK T has no quotient

isomorphic to the trivial representation K (and so Dcrys,K(V)ϕq=1 = 0), then

D(T)ψq=1 = N(T)ψq=1.

Proof. See lemma 1.30 of Schneider–Venjakob’s preprint [35], whose proof works
in the same way for the relative Lubin–Tate situation too. We reproduce it here for
the convenience of the reader.

By proposition 130, it suffices to prove that (ω−1
φ N(T))ψq=1 ⊆ N(T). Let

e1, . . . , em be an A+
L –basis of N(T). By lemma 123, we have N(T) ⊆ A+

L · ϕq(N(T))
and so we can express

ei =
m

∑
j=1

gij ϕq(ej) with gij ∈ A+
L .

Take

ω−1
φ n =

m

∑
i=1

fiei ∈ (ω−1
φ N(T))ψq=1 (with fi ∈ ω−1

φ A+
L ).
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Comparing the coefficients of each ej, the condition ψq(ω
−1
φ n) = ω−1

φ n implies
that

f j =
m

∑
i=1

ψq( figij) for every j.

Now, writing fi,−1 (resp. gij,0) for the coefficient of ω−1
φ (resp. the constant coeffi-

cient) in fi(ωφ) (resp. in gij(ωφ)),

ψq( figij) ∈ ψq( fi,−1 · gij,0 ·ω−1
φ + A+

L ) ⊆ ϕ−1
q ( fi,−1gij,0)ψq(ω

−1
φ ) + A+

L

⊆ ϕ−1
q ( fi,−1gij,0)ω

−1
φ + A+

L ,

whence

ϕq(ωφ f j) = ϕq

( m

∑
i=1

ωφψq( figij)

)
∈

m

∑
i=1

fi,−1gij,0 + ωφA+
L

Combining these congruences modulo ωφ with the definitions of the fi and the gij,
we conclude that

ϕq(n) =
m

∑
j=1

ϕq(ωφ f jej) ≡
m

∑
i=1

m

∑
j=1

fi,−1gij,0ϕq(ej)

≡
m

∑
i=1

fi,−1ei ≡ n mod ωφN(T).

That is, the operator ϕq on Dcrys,K(V) ∼=
(
N(T)/ωφN(T)

)
[p−1] acts as the identity

on n mod ωφN(T), which means that n ≡ 0 mod ωφN(T) by hypothesis.
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8 Rigid character varieties and distributions

Schneider–Teitelbaum’s article [33] constructed a character variety, whose points
parametrize characters on the ring of integers of a finite extension of Qp, and
related its rigid analytic functions to locally analytic distributions via what they
called p–adic Fourier theory. Furthermore, they used a Lubin–Tate formal group
(plus the theory of p–divisible groups) to show that such character variety is a
twisted version of the open unit disc.

In this section, we recall the constructions of Schneider and Teitelbaum and
adapt certain technical parts to obtain the analogous results using a relative Lubin–
Tate formal group to give the module structure on the open unit disc. After that,
we use the identification between distributions and functions on the character
variety to study spaces of distributions and even some larger spaces, following
the preprint [35] of Schneider and Venjakob.

8.1 The construction of the character variety

To begin with, we summarize the first two sections of Schneider–Teitelbaum’s
article [33], where they construct the character variety. This part does not use
Lubin–Tate theory and so there are no changes, but beware that we use the symbol
K where they use L (and their K has a different meaning).

8.1.1 Locally analytic characters

Let H denote the p–adic Lie group OK, regarded as a locally analytic manifold
over K, and let H0 be its restriction of scalars to Qp. We want to describe a rigid
variety X over K whose points parametrize locally K–analytic characters of OK.
Such X will be a closed subvariety of a larger X0 whose points parametrize locally
Qp–analytic characters of OK. (The symbols H and H0 are introduced to avoid
confusions between the two notions of analyticity, depending on the base field
one wants to consider.)

Let Can(H, Cp) (resp. Can(H0, Cp)) denote the locally convex Cp–vector space
of locally analytic functions on H (resp. on H0) with values in Cp. Consider
the subsets Ĥ(Cp) ⊂ Can(H, Cp) and Ĥ0(Cp) ⊂ Can(H0, Cp) of locally analytic
characters. We define the space of locally analytic distributions D(H, Cp) (resp.
D(H0, Cp)) to be the continuous dual of Can(H, Cp) (resp. Can(H0, Cp)), endowed
with the strong dual topology; it is in fact a Fréchet algebra over Cp (with the
convolution product).
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Lemma 133. Forgetting the K–analyticity identifies Can(H, Cp) with a closed subspace
of Can(H0, Cp), in the sense that Can(H, Cp) ↪→ Can(H0, Cp) is a topological embedding
with closed image.

Proof. See lemma 1.2 of Schneider–Teitelbaum’s article [33]. Lemma 1.1 of ibid.
even gives an explicit characterization of the image in terms of the action of the
Lie algebra h = Lie(H0) = Lie(H) = K (by means of an exponential map).

Remark. Thanks to lemma 133, we can apply Hahn–Banach’s theorem to obtain a
surjective continuous morphism of Fréchet algebras

D(H0, Cp)→→ D(H, Cp)

that has to be then a quotient map.

Using the action of the Lie algebra h = Lie(H0) = K on Can(H0, Cp), we can
define a group morphism

d : Ĥ0 → HomQp(K, Cp)

as follows: given χ ∈ Ĥ0,

dχ(x) =
[ d

dt
χ(tx)

]∣∣∣∣
t=0

for all x ∈ K.

Lemma 134. Via the embedding Can(H, Cp) ↪→ Can(H0, Cp), the set Ĥ(Cp) is identi-
fied with the subset of χ ∈ Ĥ0(Cp) such that dχ is K–linear (and not just Qp–linear).

Proof. See lemma 1.3 of Schneider–Teitelbaum’s article [33].

Remark. The diagram

Ĥ(Cp) HomK(K, Cp)

Ĥ0(Cp) HomQp(K, Cp)

d

p

d

is cartesian.

8.1.2 The rigid variety X0

Next, we recall Schneider–Teitelbaum’s construction of the rigid variety X0, which
is a polydisc of dimension [K : Qp] with X0(Cp) = Ĥ0(Cp). To that aim, let B1
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denote the rigid analytic open disc of radius 1 centred at 1 over K. Thus, its set of
points B1(Cp) = 1 +mCp has the structure of a Zp–module, where the addition is
multiplication in (1 +mCp)

× and the multiplication by scalars is raising elements
of (1 +mCp)

× to powers in Zp. (Note that this is precisely the module structure
given by the multiplicative formal group Ĝm. Later we will use the OK–module
structure given by a relative Lubin–Tate formal group as in section 5.)

Lemma 135. The set of locally Qp–analytic characters of OK with values in Cp can be
described as

Ĥ0(Cp) = Homcont
Z (OK, C×p ) = HomZp(OK,B1(Cp))

∼= B1(Cp)⊗Zp HomZp(OK, Zp).

In particular, z ⊗ β ∈ B1(Cp) ⊗Zp HomZp(OK, Zp) corresponds to the character
χz⊗β ∈ Ĥ0(Cp) defined by

χz⊗β(a) = zβ(a) for all a ∈ H0 = OK.

Proof. Observing that OK is a finite free Zp–module, this follows from standard
results:

• Continuity of characters forces the images to lie in 1 +mCp .
• A Zp–linear map f : Zp → B1(Cp) is of the form f (a) = za (for z = f (1))

and that is automatically locally Qp–analytic.
TODO: find references (maybe in Colmez’s article on one-variable p–adic analytic
functions, maybe in Amice’s transform original article?)

Since HomZp(OK, Zp) is a free Zp–module of finite rank [K : Qp], we can form
a rigid analytic variety X0 = B1 ⊗Zp HomZp(OK, Zp) (this “tensor product” is
just notation) over K whose Cp–points are B1(Cp)⊗Zp HomZp(OK, Zp): once we
choose a Zp–basis of HomZp(OK, Zp), X0 is (non-canonically) isomorphic to the

open polydisc B[K:Qp]
1 . Lemma 135 shows that X0(Cp) ∼= Ĥ0(Cp), as desired.

8.1.3 The rigid variety X

Finally, to define the character variety X as a closed subvariety of X0, we need
to identify “rigid analytic equations” characterizing Ĥ(Cp) inside Ĥ0(Cp). But
lemma 134 gives a condition for χ ∈ Ĥ0(Cp) to belong to Ĥ(Cp) in terms of dχ. A
simple computation shows that, for z ∈ B1(Cp) and β ∈ HomZp(OK, Zp),

dχz⊗β = log(z) · β
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(where we view β ∈ HomQp(K, Qp) in the obvious way). Now lemma 134 can
be reformulated as saying that X (Cp) should be defined inside X0(Cp) by the
equations (

β(t)− t · β(1)
)

log(z) = 0 for all t ∈ K.

In fact, it suffices to consider the [K : Qp] equations corresponding to a basis of K
over Qp.

Let O(X0/Cp) denote the Fréchet algebra of global analytic functions on the
base change ofX0 to Cp. Schneider and Teitelbaum extend previous work of Amice
and exhibit for each t ∈ K a rigid analytic function Ft ∈ O(X0/Cp) such that
Ft(χz⊗β) =

(
β(t) − t · β(1)

)
log(z) for all z ⊗ β ∈ B1(Cp) ⊗Zp HomZp(OK, Zp).

They explain that the ideal sheaf J in OX0 generated by these functions is a
coherent sheaf defining a reduced closed K–analytic subvariety X of X0 with the
desired property that the canonical isomorphism X0(Cp) ∼= Ĥ0(Cp) restricts to
X (Cp) ∼= Ĥ(Cp).

Definition 136. The Fourier transform of a distribution µ ∈ D(H, Cp) is the func-
tion Fµ : Ĥ(Cp)→ Cp defined by

Fµ(χ) = µ(χ) =
∫

H
χ(a) µ(a).

Theorem 137. The Fourier transform defines an isomorphism D(H, Cp) ∼= O(X/Cp)

of Fréchet algebras over Cp. More generally, for every subextension Cp/K′/K with K′

complete, we obtain an isomorphism D(H, K′) ∼= O(X/K′).

Proof. This is theorem 2.3 of Schneider–Teitelbaum’s article [33].

8.2 Twisted unit discs: the isomorphism at the level of points

The construction of the character variety X in section 8.1 relies on the open unit
disc with the Zp–module structure given by the formal multiplicative group Ĝm.
In section 3 of their article [33], Schneider and Teitelbaum study the open unit disc
endowed with the OK–module structure given by a Lubin–Tate formal group and
find that, after base change to Cp, it is isomorphic to X in a very explicit way. Here
we adapt the theory of loc. cit. to the case of the relative Lubin–Tate formal group
Fφ (keeping the notation from section 5).
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8.2.1 Formal modules and p–divisible groups

Let B denote the rigid analytic open unit disc centred at the origin over L, which
we regard as an OK–module object by means of the relative Lubin–Tate structure.
Namely, B(Cp) is an OK–module with the addition given by Fφ( · , · ) and the
multiplication by scalars given by [ · ]φ( · ). As explained in section 2.2 of Tate’s
article [39], the formal group Fφ corresponds to a connected p–divisible group
G = (Gn)n≥0 over OL of dimension 1 and height [K : Qp]. More precisely, we
can write Gn = Spec(An) for An = OL[[Z]]/([pn]φ(Z)) and the comultiplication
morphism An → An ⊗OL An is defined by Z 7→ Fφ.

Let G′ = (G′n)n≥0 be the Cartier dual of G. Thus, G′ is an étale p–divisible
group of dimension [K : Qp]− 1 and height [K : Qp]. By Cartier duality, there are
canonical isomorphisms G′n(OCp)

∼= Hom(Gn,OCp
, Gm,OCp

) for all n ≥ 0 (where the
symbol Hom means morphisms of finite flat group schemes over OCp). Let Tp G′

be the p–adic Tate module of G′. If µOCp
denotes the p–divisible group of roots of

unity over OCp , then Tp G′ ∼= Hom(GOCp
, µOCp

) (where the symbol Hom means
morphisms of p–divisible groups over OCp). But, by the equivalence between
connected p–divisible groups and divisible commutative formal Lie groups given
in proposition 1 of Tate’s article [39], Hom(GOCp

, µOCp
) ∼= HomOCp

(Fφ, Ĝm).

Thus, every t′ ∈ Tp G′ determines a morphism of formal groups Ft′ : Fφ → Ĝm

over OCp . Such Ft′ is a power series in ZOCp [[Z]] and we call its leading coefficient
Ωt′ = F′t′(0) the Lubin–Tate period associated with t′. Alternatively, using the
isomorphisms to the additive formal group Ĝa given by the formal logarithms of
Fφ and Ĝm, the power series Ft′(Z) is characterized by

1 + Ft′(Z) = exp
(
Ωt′ logφ(Z)

)
.

There is a canonical isomorphism Tp G′ ∼= HomZp(Tp G, Tp µ) as GL–modules
(see step 1 of the proof of proposition 11 in Tate’s article [39]) and so Tp G′ ∼= OK(τ),
where τ = χcyc · χ−1

φ . The structure of OK–module is given as follows:

Fat′(Z) = Ft′
(
[a]φ(Z)

)
for all t′ ∈ Tp G′ and all a ∈ OK.

From the isomorphism Tp G′ ∼= HomOCp
(Fφ, Ĝm) we obtain (on points) a

natural GL–equivariant, Zp–bilinear and OK–invariant pairing

〈 · , · 〉 : Tp G′ ⊗OK B(Cp)→ B1(Cp)
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given by

〈t′, z〉 = 1 + Ft′(z) for all t′ ∈ Tp G′ and all z ∈ B(Cp).

Lemma 138. The maps

α : B(Cp) −→ HomZp(Tp G′,B1(Cp)) and dα : Cp −→ HomZp(Tp G′, Cp)

z 7−→ 〈 · , z〉 x 7−→
(
t′ 7→ Ωt′x

)
are injective and

B(Cp) Cp

HomZp(Tp G′,B1(Cp)) HomZp(Tp G′, Cp)

logφ

α
p

dα

log ◦ ·

is a cartesian square.

Proof. The isomorphism Tp G′ ∼= HomOCp
(Fφ, Ĝm) induces α on points and dα on

tangent spaces. Thus the commutativity of the square is clear. The injectivity of α

and dα is part of proposition 11 of Tate’s article [39].
We consider a commutative diagram of Zp–modules

M

B(Cp) Cp

HomZp(Tp G′,B1(Cp)) HomZp(Tp G′, Cp)

f

∃! h

g

logφ

α

p
dα

log ◦ ·

and we have to check that there exists a unique h fitting in it. By the injectivity
of α and dα, it suffices to prove that Im( f ) ⊂ Im(α). But proposition 11 of
Tate’s article [39] implies that the lower horizontal arrow induces an isomorphism
Coker(α) ∼= Coker(dα). Therefore, the image of f inside Coker(α) corresponds to
the image of dα ◦ g inside Coker(dα), which is trivial.
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8.2.2 The isomorphism on points

Proposition 139. The map

B(Cp)⊗OK Tp G′ −→ Ĥ(Cp)

z⊗ t′ 7−→ κz⊗t′

defined by
κz⊗t′(a) = 〈t′, [a]φ(z)〉

is a well-defined isomorphism of Z-modules.

Proof. For a non-relative Lubin–Tate formal group, this is proposition 3.1 of
Schneider–Teitelbaum’s article [33]. The proof in loc. cit. uses the general results
of Tate’s article [39] and so works exactly the same for the relative Lubin–Tate
situation. We repeat it here for the convenience of the reader.

The map of the statement will be defined by commutativity of the “cube”

B(Cp)⊗OK Tp G′ Cp ⊗OK Tp G′

Ĥ(Cp) HomK(K, Cp)

HomZp(OK,B1(Cp)) HomZp(OK, Cp)

Ĥ0(Cp) HomQp(K, Cp)

logφ ⊗1

α

p

dα

∼=

d

p

log ◦ ·

∼=

d

that we explain next.
• The front face is the cartesian square from the remark after lemma 134.
• In the bottom face, the equality on the left is part of lemma 135 and the

isomorphism on the right is the obvious one. The commutativity of this
square comes from the computation

dχz⊗β( · ) = log(z) · β( · ) = log
(
zβ( · )) = log ◦ χz⊗β( · ).

• The rear face comes from the cartesian diagram of lemma 138 after tensoring
with Tp G′ over OK and using the isomorphisms

HomZp(Tp G′, · )⊗OK Tp G′ −→ HomZp(OK, · )
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f ⊗ t′ 7−→
(
a 7→ f (at′)

)
in the lower row.

• In the right face, the upper isomorphism is defined to make the square
commutative. This is possible because any map in the image of dα is clearly
OK–linear:

dα(x⊗ t′)(a) = Ωat′x = aΩt′x.

By definition, this morphism Cp ⊗OK Tp G′ → HomK(K, Cp) is obviously
injective. Counting dimensions over Cp, one sees that it is also surjective.

Now the universal property of the front face implies the existence of a unique
morphism B(Cp)⊗OK Tp G′ → Ĥ(Cp) making the whole diagram commutative.
This dashed arrow must be the map in the statement of the proposition by the
commutativity of the left face and the definition of α. Finally, the same argument
with the universal property of the rear face gives an inverse.

Fix once and for all a generator t′0 of the OK–module Tp G′. From now on we
write Ω = Ωt′0

and κz = κz⊗t′0
to simplify the notation. By proposition 139, we

have an isomorphism

κ(Cp) : B(Cp) −→ X (Cp)

z 7−→ κz

of Z–modules. The next goal is to prove that this isomorphism on points comes
from an isomorphism κ : BCp → XCp of rigid varieties over Cp. More precisely, we
are going to construct compatible admissible coverings by affinoid open subsets
giving both B and X the structure of a quasi-Stein space.

8.3 The isomorphism of rigid analytic varieties

8.3.1 Covering the disc B by affinoids

For each r ∈ pQ, let B[r] denote the closed disc of radius r over L. If r < 1, we
regard B[r] as an affinoid subdomain of B.

Lemma 140. Let e be the ramification index of K/Qp. Let πK be a uniformizer of OK

and take r ∈ pQ such that p−q/e(q−1) ≤ r < 1. Then

[πK]
−1
φ (B[r]) = B[r1/q] and [p]−1

φ (B[r]) = B[r1/qe
]

and the maps [pn]φ : B[r1/qen
]→ B[r] are finite étale for all n ∈ Z≥0.
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Proof. This is analogous to lemma 3.2 of Schneider–Teitelbaum’s article [33]. We
repeat the proof in the relative case for the convenience of the reader.

Since p and πe
K differ by a unit u ∈ O×K and |[u]φ(z)|p = |z|p, it suffices to

prove the statements for πK. But multiplication by πK is given by a power series

[πK]φ(Z) = ∑
n≥1

anZn ∈ OL[[Z]]

with a1 = πK and whose first unit coefficient is that of Zq, as Fφ is a formal group
of height [K : Qp]. Therefore,

|aizi| ≤
{
|πKz|p = p−1/e|z|p if 1 ≤ n < q,

|zq|p = |z|qp if n ≥ q.

We deduce that |[πK]φ(z)|p ≤ max{ p−1/e|z|p, |z|qp } and this maximum is |z|qp
precisely when |z|p ≥ p−1/e(q−1). This completes the proof of the first part because
r1/q ≥ p−1/e(q−1).

The finiteness and the étaleness of [πK]φ follows from the form of the power
series [πK]φ(Z) and Weierstrass’s preparation theorem, which allows us to reduce
it to a distinguished polynomial.

8.3.2 Covering X by affinoids

Similarly, for each r ∈ pQ with r < 1, let B1[r] denote the closed disc of radius r
centred at 1 over K, regarded as an affinoid subdomain of B1. Then we define the
affinoid subdomains X0[r] = B1[r]⊗Zp HomZp(OK ,Zp) of X0 and X [r] = X0[r]∩X
of X .

Lemma 141. Let r ∈ pQ such that p−p/(p−1) ≤ r < 1. Then

[p]−1(X [r]) = X [r1/p]

and the maps [pn] : X [r1/pn
]→ X [r] are finite étale for all n ∈ Z≥0.

Proof. This is a special case of lemma 140 using the multiplicative Lubin–Tate
formal group Ĝm over Qp (in place of Fφ relative to L/K).

8.3.3 The valuation of the period Ω

Lemma 142. If z ∈ B(Cp) is a zero of Ft′0
, then z must be a torsion point of Fφ.
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Proof. This is lemma 6.2 of de Shalit’s article [38] and a claim inside the proof of
lemma 3.4.c of Schneider–Teitelbaum’s article. We reproduce the proof here for
the convenience of the reader.

Since Ft′0
defines an element of HomOCp

(Fφ, Ĝm), the hypothesis that Ft′0
(z) = 0

implies that Ft′0
([a]φ(z)) =

(
1 + Ft′0

(z)
)a − 1 = 0 for all a ∈ Z×p . If z were not a

torsion point, then Ft′0
would have infinitely many zeros of p–adic absolute value

r = |z|p. But this is impossible because a non-zero function on the affinoid B[r]
can have at most finitely many zeros.

Lemma 143. Let f (Z) = bZ(1 + b1Z + b2Z2 + · · · ) ∈ Cp[[Z]] which converges for
|Z|p ≤ 1 and has no zeros in 0 < |Z|p < 1.

(1) The coefficients bn for n ∈ Z≥1 are all in OCp and tend to 0 as n→ ∞.
(2) The function f has only finitely many zeros on |Z|p ≤ 1.
(3) Let z0 ∈ O×

Cp
(i.e., |z0|p = 1). If f has a zero on the residue disc |Z− z0|p < 1, then

| f (Z)|p < |b|p throughout that disc; otherwise, | f (Z)|p = |b|p for |Z− z0|p < 1.

Proof. This is lemma 6.3 of de Shalit’s article [38]. TODO: find a better reference
(de Shalit only says it is “well-known” and cites a book where I couldn’t find the
result).

Proposition 144. The p–adic valuation of the Lubin–Tate period associated with t′0 is

vp(Ω) =
1

p− 1
− 1

e(q− 1)
.

Proof. This result is proved (for non-relative Lubin–Tate groups) in the appendix
of Schneider–Teitelbaum’s article [33] using complicated constructions in p–adic
Hodge theory from Fontaine’s article [20]. Here we adapt the more elementary
proof from proposition 6.1 of de Shalit’s article [38].

Fix ρ ∈ OCp with |ρ|p = p−1/e(q−1) and consider

f (Z) = Ft′0
(ρZ) = ρΩZ(1 + b1Z + b2Z2 + · · · ) ∈ Cp[[Z]].

This power series converges for |Z|p ≤ 1 because Ft′0
(Z) does for |Z|p < 1. We

claim that f (Z) has no zeros in 0 < |Z|p < 1 and so we can apply lemma 143.
Indeed, if z0 ∈ B(Cp) satisfies that f (z0) = 0, then z = ρz0 is a zero of Ft′0

and
must be a torsion point of Fφ by lemma 142. But the non-zero torsion points of
Fφ have p–adic valuations of the form 1/eqn−1(q− 1) with n ≥ 1 and all these
numbers are strictly larger than vp(z). Therefore, z0 = 0.
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Consider the torsion points in Fφ,1. If πK is a uniformizer of OK, we can write
Fφ,1 = Ker([πK]φ). Since p differs (multiplicatively) from πe

K by a unit and Ft′0
is a

morphism of formal groups, we deduce that Ft′0
(Fφ,1) ⊂ { ζp − 1 : ζp ∈ µp }. We

can find z ∈ Fφ,1 such that Ft′0
(z) = ζp− 1 6= 0: otherwise, Ft′0

would factor through
[πK]φ, but this is impossible because t′0 is a generator of Tp G′ ∼= OK(τ). Write
z = ρz0. Comparing p–adic valuations, we see that |z0|p = 1. Now lemma 142
implies that f (Z) cannot have any zeros in |Z− z0|p < 1, as z is the only torsion
point of Fφ in the corresponding disc. The last part of lemma 143 says that

|ρΩ|p = | f (z0)|p = |ζp − 1|p = p−1/(p−1)

and this concludes the proof.

8.3.4 The isomorphism of varieties over Cp

Proposition 145. Let r ∈ pQ with r < p−1/e(q−1). The power series Ft′0
(Z) defines an

analytic isomorphism between B[r]Cp and B[r|Ω|p]Cp .

Proof. This is lemma 3.4.c of Schneider–Teitelbaum’s article [33].
Write Ft′0

(Z) = ΩZ(1 + b1Z + b2Z2 + · · · ) ∈ Cp[[Z]]. To prove that this power
series defines an isomorphism from B[r]Cp to B[r|Ω|p]Cp , it suffices to check that
|bn|p ≤ pn/e(q−1) for all n ∈ Z≥1, by the hypothesis on r. If there were some n ≥ 1
for which |bn|p > pn/e(q−1), then the Newton polygon of 1 + b1Z + b2Z2 + · · ·
would tell us that this series has a zero z with |z|p < p−1/e(q−1). But lemma 142
implies that the only zero of Ft′0

(Z) with absolute value < p−1/e(q−1) is 0, so such
z cannot exist.

We finally have all the ingredients to prove that the isomorphism on points
κ(Cp) : B(Cp)→ X (Cp) is induced by an isomorphism of rigid analytic varieties
κ : BCp → XCp compatible with certain quasi-Stein coverings. That is, we see κ as
an isomorphism of two families of affinoids exhausting BCp and XCp .

To define κ as a rigid analytic morphism (on affinoids), we choose a Zp–basis
e1, . . . , e[K:Qp] of OK and let e∗1 , . . . , e∗[K:Qp]

be the dual basis of HomZp(OK, Zp). This

allows us to identify X0 with the polydisc B[K:Qp]
1 and then κ : BCp → (X0)Cp is

given in coordinates by

κz =
[K:Qp]

∑
i=1

(
1 + Feit′0

(z)
)
⊗ e∗i .
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The expression in terms of power series shows that κ is rigid analytic over Cp

and we have seen (on points) that it factors through the closed subvariety XCp of
(X0)Cp (cf. proposition 139).

Theorem 146 (Schneider–Teitelbaum). Let r = p−q/e(q−1). For every n ∈ Z≥0,

κ : B
[
r1/qen]

Cp
→ X

[
(r|Ω|p)1/pn]

Cp

is an isomorphism of affinoids over Cp. Consequently, κ : BCp → XCp is an isomorphism
of rigid varieties over Cp.

Proof. For a non-relative Lubin–Tate formal group, this is theorem 3.6 of Schneider–
Teitelbaum’s article [33]. The proof in for the relative case is exactly the same
using the results that we have previously stated (especially proposition 144). We
reproduce it here for the convenience of the reader.

First we prove the case n = 0. By the expression of κ in terms of power series
just before the theorem and proposition 145, we have a well-defined rigid analytic
morphism κ : B[r]Cp → X [r|Ω|p]Cp . Since r < p−1/e(q−1), the formal logarithm
logφ defines a rigid isomorphism logφ : B[r]→ B[r]. The same argument applied
to the formal group Ĝm shows that log : B1[r|Ω|p] → B[r|Ω|p] is also a rigid
isomorphism, as r|Ω|p < p−1/(p−1). Therefore, we obtain a commutative diagram

B[r]Cp B[r]Cp

X [r|Ω|p]Cp B[r|Ω|p]Cp

logφ

∼=

κ

∼=

·Ω

log( · (1))

of rigid analytic morphisms. (Here, the notation · (1) means the following: if
the Zp–basis e1, . . . , e[K:Qp] of OK whose dual e∗1 , . . . , e∗[K:Qp]

gives the identification

X0
∼= B[K:Qp]

1 has e1 = 1, we restrict to the intersection of X and the copy of B1

corresponding to e∗1 .) At the level of points, this commutative diagram corresponds
to the top of the cube appearing in the proof of proposition 139 once we identify
HomK(K, Cp) ∼= Cp via evaluation at 1.

We claim that the lower horizontal arrow is injective on Cp–points. Indeed, if
log(κz(1)) = 0 or, equivalently, κz(1) = 1, then by local K–analyticity κz must be
locally constant and so of finite order. But B1[r|Ω|p](Cp) has no non-trivial torsion.
Thus κz must be the trivial character.

Looking at the diagram on points, we see that the top and right arrows are
isomorphisms and the left and bottom arrows are at least injective. Therefore, all
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arrows must be isomorphisms on Cp–points. This implies that all arrows are rigid
isomorphisms because all the affinoids in the diagram are reduced.

Next, we prove the theorem for n > 0. We use the commutative diagram

B[r1/qen
]Cp X

[
(r|Ω|p)1/pn]

Cp

B[r]Cp X [r|Ω|p]Cp

κ

[pn]φ [pn]

κ

and lemmata 140 and 141 to reduce to the previous case. (Observe that we can
apply lemma 141 because r|Ω| = p−1/(p−1)−1/e ≥ p−p/(p−1).)

First, we consider the diagram at the level of Cp–points. We know that
κ : B(Cp)→ X (Cp) is an isomorphism of groups by proposition 139. Thus, since
the lower arrow κ : B[r](Cp)→ X [r|Ω|p](Cp) is an isomorphism and lemmata 140
and 141 tell us that the upper arrow is obtained from the lower one by taking
preimages under [pn], we deduce that the upper arrow is an isomorphism on
Cp–points.

Again by lemmata 140 and 141, the two vertical arrows are finite étale affinoid
morphisms of degree qne = pn[K:Qp]. Thus the problem is reduced to a general
result on reduced affinoids (cf. the end of the proof of theorem 3.6 in Schneider–
Teitelbaum’s article [33]).

8.3.5 Global functions

The isomorphism of rigid varieties BCp
∼= XCp from theorem 146 induces an

isomorphism on rigid functions O(X/Cp) ∼= O(B/Cp) = B+
rig,Cp

. We can now
translate the natural action of GL on O(X/Cp) = O(X/K) ⊗̂K Cp to O(B/Cp)

as follows. For z ∈ B(Cp) and σ ∈ GL, we define σ ∗ z ∈ B(Cp) as the unique
element satisfying that κσ∗z = σ ◦ κz. More precisely,

σ ◦ κz(a) = σ
(
〈t′0, [a]φ(z)〉

)
= 〈σ(t′0), σ ◦ [a]φ(z)〉 = 〈τ(σ)t′0, [a]φ(σ(z))〉

= 〈t′0, [τ(σ)a]φ(σ(z))〉 =
〈
t′0, [a]φ

(
[τ(σ)]φ(σ(z))

)〉
= κ[τ(σ)]φ(σ(z))(a)

for all a ∈ OK and so σ ∗ z = [τ(σ)]φ(σ(z)). Then, for F ∈ O(B/Cp) and σ ∈ GL,
the action of σ “coefficientwise on O(X/Cp)” gives

(σ ∗ F)(z) = σ
(

F(σ−1 ∗ z)
)
= Fσ

(
σ(σ−1 ∗ z)

)
= Fσ ◦ [τ(σ−1)]φ(z)

for all z ∈ B(Cp). That is, σ ∗ F = Fσ ◦ [τ(σ−1)]φ.
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Corollary 147. There is an OK–equivariant isomorphism of Fréchet algebras over Cp

D(H, Cp) O(X/Cp) O(B/Cp)

µ Aµ

∼= ∼=

characterized by

Aµ(z) =
∫

OK

κz(a) µ(a) for all z ∈ B(Cp).

More generally, for every subextension Cp/L′/L with L′ complete, we obtain an iso-
morphism D(H, L′) ∼= O(B/Cp)GL′ (where the Galois action is the one described above).

Proof. This is an immediate consequence of theorem 137 and theorem 146.

8.4 Distributions on ΓL

(Relative) Lubin–Tate theory provides us with an isomorphism χξK : ΓL → O×K .
In particular, ΓL is a locally analytic manifold over K, isomorphic to q copies of
OK via χξK and the canonical decomposition O×K

∼= Fq × (1 +mK)
× given by the

Teichmüller character. Our objective in this subsection is to describe the algebra
D(ΓL, Cp) of Cp–valued locally analytic distributions on ΓL in terms of character
varieties. We follow section 2.1 of Schneider–Venjakob’s preprint [35].

Choosing a uniformizer πK of K (later we fix a particular one), we obtain an
isomorphism (1 + πKOK)

× ∼= OK mapping 1 + πK to 1. Now, identifying O×K with
Fq×OK, we can construct a character variety X× over K as the product of q copies
(indexed by Fq) of X . The Cp–points of X× are the locally K–analytic characters
of the p–adic Lie group O×K with values in Cp. The Fourier transform defines an
isomorphism D(O×K , Cp) ∼= O(X×/Cp) (cf. theorem 137).

It is more convenient to view D(O×K , Cp) inside D(OK, Cp) and describe these
distributions as a subset of O(B/Cp) by means of corollary 147. To that aim, we
first need to translate the extra structure on O(B/Cp) provided by Lubin–Tate
theory.

8.4.1 The action of OK on distributions

We have an “action” of the multiplicative monoid OK \ { 0 } on B given by [ · ]φ:
in terms of Cp–points,

a ∗ z = [a]φ(z) for all a ∈ OK and z ∈ B(Cp).
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A straight-forward computation shows how to define the analogous action on X
and later on D(OK, Cp). Namely, for z ∈ B(Cp) and a, b ∈ OK,

κa∗z(b) = 1 + Ft′0

(
[b]φ(a ∗ z)

)
= 1 + Ft′0

(
[ab]φ(z)

)
= κz(ab).

We define the action of OK \ { 0 } on Can(OK, Cp) and on D(OK, Cp) as follows:
for a ∈ OK, f ∈ Can(OK, Cp) and µ ∈ D(OK, Cp),

a∗( f ) = f (a · ) and a∗(µ) = µ ◦ a∗.

The restriction of this action to characters (i.e., to X (Cp)) comes in fact from the
analogous action on the rigid variety X0 = B1 ⊗Zp HomZp(OK, Zp) (or rather on
the second factor of this “tensor product”).

Using the notation of corollary 147, we see by construction that

Aa∗(µ)(Z) = Aµ([a]φ(Z)) for all a ∈ OK and µ ∈ D(OK, Cp).

8.4.2 The action of ϕq on distributions

Next we want to define an action of ϕq. Consider G(Z) ∈ O(B/Cp) corresponding
to F ∈ O(X/Cp) via the isomorphism BCp

∼= XCp . By definition,

ϕq(G)(z) = Gϕq(φ(z)) = ϕq
(
G(ϕ−1

q ◦ φ(z))
)

= ϕq
(

F
(
κϕ−1

q (φ(z))

))
= Fϕq

(
ϕq ◦ κϕ−1

q (φ(z))

)
.

We have to understand the argument of Fϕq above in terms of κz. Using the explicit
description of κ(Cp) in proposition 139, we can compute

ϕq ◦ κϕ−1
q (φ(z))(a) = ϕq

(
1 + Ft′0

(
[a]φ(ϕ−1

q ◦ φ(z))
))

= ϕq
(
exp

(
Ω logφ

(
[a]φ(ϕ−1

q ◦ φ(z))
)))

= exp
(

ϕq(Ω) log
ϕq
φ

(
[a]ϕq

φ (φ(z))
))

= exp
(

ϕq(Ω)πL logφ

(
[a]φ(z)

))
.

Since exp
(

ϕq(Ω)πL logφ( · )
)

defines an element of HomOCp
(Fφ, Ĝm), it must be

of the form 1 + Ft′( · ) for some t′ ∈ Tp G′. But Tp G′ is free of rank 1 over OK

and, comparing the valuations of Ω and ϕq(Ω)πL, we conclude that t′ = πK · t′0
for some uniformizer πK of K. From now on, πK always denotes this particular
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uniformizer (which depends on many choices). Then

ϕq ◦ κϕ−1
q (φ(z))(a) = 1 + Ft′([a]φ(z)) = 1 + Ft′0

([πKa]φ(z)) = κz(πKa)

and so
ϕq(G)(z) = Fϕq(π∗K(κz)).

Therefore, we define

ϕq(F) = Fϕq ◦ π∗K for all F ∈ O(X/Cp).

Let µ ∈ D(OK, Cp) and consider its Fourier transform Fµ ∈ O(X/Cp). For
every χ ∈ X (Cp), we can compute

ϕq(Fµ)(χ) = Fϕq
µ (π∗K(χ)) = ϕq

(
Fµ

(
ϕ−1

q (π∗K(χ))
))

= ϕq

(∫
OK

ϕ−1
q
(
π∗K(χ)(a)

)
µ(a)

)
= ϕq

(∫
OK

ϕ−1
q (χ(πKa)) µ(a)

)
.

We define ϕq(µ) ∈ D(OK, Cp) by ϕq(µ)( f ) = ϕq
(
µ(ϕ−1

q ◦π∗K( f ))
)

or, equivalently,

∫
OK

f ϕq(µ) = ϕq

(∫
OK

[
ϕ−1

q ◦ π∗K( f )
]

µ
)

for all f ∈ Can(OK, Cp).

Lemma 148. The endomorphism ϕq makes O(B/Cp) (resp. O(X/Cp), D(OK, Cp))
into a free module over itself of rank q.

Proof. Since the endomorphisms ϕq are defined to be compatible with the iso-
morphisms O(B/Cp) ∼= O(X/Cp) ∼= D(OK, Cp), it suffices to prove the claim
for D(OK, Cp). But µ 7→ (πK)∗(µ) defines an isomorphism between D(OK, Cp)

and D(πKOK, Cp), while µ 7→ ϕq ◦ µ(ϕ−1
q ◦ · ) is an automorphism that preserves

D(πKOK, Cp) inside D(OK, Cp). The lemma follows from these observations be-
cause the Dirac distributions δa, where a runs over a set of representatives of
OK/πKOK, form a basis of D(OK, Cp) over D(πKOK, Cp).

Lemma 149. For every G(Z) ∈ B+
rig,Cp

,

G([πK]φ(Z)) ∈ ϕq
(
B+

rig,Cp

)
.

Furthermore, the morphism B+
rig,Cp

→ ϕq
(
B+

rig,Cp

)
given by Z 7→ [πK]φ(Z) is bijective.
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Proof. By corollary 147, we can view G = Aµ for some µ ∈ D(OK, Cp). Consider
µ̃ ∈ D(OK, Cp) defined by

∫
OK

f (a) µ̃(a) = ϕ−1
q

(∫
OK

(ϕq ◦ f )(a) µ(a)
)

for all f ∈ Can(OK, Cp),

so that ϕq(µ̃) = (πK)∗(µ). Then

G([πK]φ(Z)) = A(πK)∗(µ)(Z) = Aϕq(µ̃)(Z) = ϕq(Aµ̃(Z)).

The assignation µ 7→ µ̃ is clearly bijective and we can reverse the construction.

8.4.3 The action of ψq on distributions

Definition 150. We define the operator ψq on D(OK, Cp) to be the unique additive
endomorphism of D(OK, Cp) satisfying that

ϕq ◦ ψq =
1

πL
TrD(OK ,Cp)/D(πKOK ,Cp) .

The operator ψq can be defined on O(B/Cp) and O(X/Cp) analogously.

Remark. In section 2.1.1 of their preprint [35], Schneider and Venjakob give a
more explicit definition of ψq (in fact, without the factor πL). Namely, they define
(πK)! : Can(OK, Cp)→ Can(OK, Cp) by

(
(πK)!( f )

)
(a) =

{
f (π−1

K a) if a ∈ πKOK,

0 otherwise,

and consider its dual (πK)
! : D(OK, Cp)→ D(OK, Cp). Then

ψq(µ) = ϕ−1
q ◦

1
πL

(
(πK)

!(µ)
)
(ϕq ◦ · ) for all µ ∈ D(OK, Cp).

8.4.4 The Mellin transform

By definition,
ψq ◦ ϕq =

q
ϕ−1

q (πL)
.

Therefore, we get a decomposition

D(OK, Cp) = ϕq
(

D(OK, Cp)
)
⊕ D(OK, Cp)

ψq=0
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µ =
πL

q
ϕq(ψq(µ)) +

(
µ− πL

q
ϕq(ψq(µ))

)
which allows us to identify D(O×K , Cp) with the second direct summand. Indeed,
the decomposition OK = πKOK tO×K induces a decomposition

D(OK, Cp) = D(πKOK, Cp)⊕ D(O×K , Cp)

and we have seen in the proof of lemma 148 that ϕq(D(OK, Cp)) = D(πKOK, Cp).

Definition 151. The Mellin transform is the isomorphism

M : D(ΓL, Cp)→
(
B+

rig,Cp

)ψq=0

obtained as the composition of the isomorphisms

D(ΓL, Cp) ∼= D(O×K , Cp) ∼= D(OK, Cp)
ψq=0 ∼= O(X/Cp)

ψq=0 ∼= O(B/Cp)
ψq=0

described above.

Lemma 152. If µ ∈ D(OK, Cp) corresponds to Aµ ∈ B+
rig,Cp

via the isomorphism of
corollary 147, then the distribution

f 7−→
(∫

OK

a f (a) µ(a)
)

corresponds to Ω−1∂φ(Aµ) ∈ B+
rig,Cp

.

Proof. First we claim that, given z ∈ B(Cp), the distribution µz given by

∫
OK

f (a) µz(a) =
∫

OK

κz(a) f (a) µ(a)

corresponds to Aµz = Aµ(Fφ(z, · )). Since the characters are dense in Can(OK, Cp)

and we have the isomorphism B(Cp) ∼= X (Cp) from proposition 139, it suffices to
check that Aµz(z

′) = Aµ(Fφ(z, z′)) for all z′ ∈ B(Cp). Indeed,

Aµz(z
′) =

∫
OK

κz(a)κz′(a) µ(a) =
∫

OK

κFφ(z,z′)(a) µ(a) = Aµ(Fφ(z, z′)).

Now, to prove the assertion of the lemma, we observe that

∂φ(Aµ)(Z) = lim
ε→0

Aµ

(
expφ(logφ(Z) + ε)

)
− Aµ(Z)

ε
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= lim
ε→0

Aµ(Z +Fφ expφ(ε))− Aµ(Z)

ε

and use the claim with z = expφ(ε). Thus, writing µ′ for the distribution corres-
ponding to ∂φ(Aµ)(Z),

∫
OK

f (a) µ′(a) = lim
ε→0

∫
OK

[
κexpφ(ε)

(a) f (a)− f (a)

ε

]
µ(a)

= lim
ε→0

∫
OK

Ft′0

(
[a]φ(expφ(ε))

)
ε

f (a) µ(a) =
∫

OK

Ωa f (a) µ(a),

where in the last equality we used that

expφ(Z) = Z + · · · , [a]φ(Z) = aZ + · · · and Ft′0
(Z) = ΩZ + · · · .

8.5 Robba rings over Cp

In the same way as we defined the rings B+
rig,L, B†

L and B†
rig,L using the rigid analytic

variety B over L, we define rings B+
rig,Cp

, B†
Cp

and B†
rig,Cp

using the base change
BCp . More precisely, all the definitions appearing in section 6.3 extend to Cp in
the obvious way. (Note however that the structure of the Robba ring is more
complicated over Cp than over a discretely valued field.) Similarly, definitions 78,
79 and 89 and proposition 80 work in the same way replacing B†

rig,L with B†
rig,Cp

.

8.5.1 Explicit bases over the image of ϕq

As in section 1.1.3 of Colmez’s article [17], we set

η(a, Z) = 1 + Fat′0
(Z) = exp

(
aΩ logφ(Z)

)
for every a ∈ OK.

Lemma 153. Let a, b ∈ OK.
(1) η(a + b, Z) = η(a, Z)η(b, Z).
(2) η(a,Fφ(X, Y)) = η(a, X)η(a, Y).
(3) γ(η(a, Z)) = η(χφ(γ)a, Z) for every γ ∈ ΓL.
(4) ϕq(η(a, Z)) = η(aπK, Z) = η(a, [πK]φ(Z)).

(5) ψq(η(a, Z)) =


q

ϕ−1
q (πL)

η
( a

πK
, Z
)

if a ∈ πKOK,

0 otherwise.
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Proof. The first three properties are clear from the definition of η and the properties
of logφ. The fourth property is just a rewriting of the definition of πK given in
section 8.4.2 and the last property follows from the relation ψq ◦ ϕq = q/ϕ−1

q (πL).

Proposition 154. Let f ∈ B†
rig,Cp

. For every n ∈ Z≥1,

f =
ϕn−1

q (πL) · · · ϕq(πL)πL

qn ∑
a∈OK/πn

KOK

(ϕn
q ◦ ψn

q )
(
η(−a, Z) f

)
η(a, Z),

where the sum runs over any system of representatives of OK/πn
KOK.

Proof. We prove the formula by induction on n using the expression of ϕq ◦ ψq in
terms of Trϕq .

For the base case n = 1, we write for each a ∈ OK

(ϕq ◦ ψq)
(
η(−a, Z) f (Z)

)
=

1
πL

∑
v1∈Fφ,1

η(−a,Fφ(v1, Z)) f (Fφ(v1, Z))

=
1

πL
∑

v1∈Fφ,1

η(−a, v1)η(−a, Z) f (Fφ(v1, Z)).

But, given v1 ∈ Fφ,1, η( · , v1) defines a finite character of Fq = OK/πKOK which is
trivial if and only if v1 = 0. In particular,

∑
a∈OK/πKOK

η(−a, v1) =

{
q if v1 = 0,

0 if v1 6= 0.

Therefore, using that η(−a, Z)η(a, Z) = 1 and summing first over a ∈ OK/πKOK

and then over v1 ∈ Fφ,1, we conclude that

∑
a∈OK/πKOK

(ϕq ◦ ψq)
(
η(−a, Z) f (Z)

)
η(a, Z) =

q
πL

f (Z)

as desired.
Now suppose that we have the formula for n and let us prove it for n + 1. We

can pick a system of representatives of OK/πn+1
K OK of the form c = a + πn

Kb with
a ∈ OK/πn

KOK and b ∈ OK/πKOK. Then

η(c, Z) = η(a + πn
Kb, Z) = η(a, Z)η(πn

Kb, Z) = η(a, Z)ϕn
q (η(b, Z))
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and by the projection formula

(ϕn+1
q ◦ ψn+1

q )
(
η(−c, Z) f (Z)

)
η(c, Z)

=
(

ϕn
q ◦ (ϕq ◦ ψq) ◦ ψn

q
)(

ϕn
q (η(−b, Z))η(−a, Z) f (Z)

)
ϕn

q (η(b, Z))η(a, Z)

= ϕn
q

(
(ϕq ◦ ψq)

(
η(−b, Z)ψn

q (η(−a, Z) f (Z))
)
η(b, Z)

)
η(a, Z).

Summing over b ∈ OK/πKOK and using the base case we obtain that

∑
b∈OK/πKOK

(ϕq ◦ ψq)
(
η(−b, Z)ψn

q (η(−a, Z) f (Z))
)
η(b, Z)

=
q

πL
ψn

q (η(−a, Z) f (Z)).

Therefore,

∑
c∈OK/πn+1

K OK

(ϕn
q ◦ ψn+1

q )
(
η(−c, Z) f (Z)

)
η(c, Z)

=
q

ϕn
q (πL)

∑
a∈OK/πn

KOK

(ϕn
q ◦ ψn

q )
(
η(−a, Z) f (Z)

)
η(a, Z)

=
qn+1

ϕn
q (πL) · · · ϕq(πL)πL

f (Z)

by the induction hypothesis.

Corollary 155. Let M ∈ Ob
(

ϕq–ModB†
rig,Cp ,fr

)
(resp. M ∈ Ob

(
ϕq–ModB+

rig,Cp ,fr
)
).

For every n ∈ Z≥1 and every system of representatives of OK/πn
KOK, we have a decom-

position of LF (resp. Fréchet) spaces

M =
⊕

a∈OK/πn
KOK

η(a, Z)ϕn
q (M )

and also decompositions of Banach spaces

M |BCp [r,s] =
⊕

a∈OK/πn
KOK

η(a, Z)ϕn
q
(
M |BCp [r

qn ,sqn
]

)
for all r, s ∈ pQ with 0� r ≤ s < 1 (resp. r ≤ s < 1).

Proof. These decompositions follow from the formula in proposition 154 and
(iterates of) the isomorphism (1⊗ ϕq) : B†

rig,Cp
⊗ϕq,B†

rig,Cp
M →M .
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Corollary 156. Let M ∈ Ob
(

ϕq–ModB†
rig,Cp ,fr

)
or M ∈ Ob

(
ϕq–ModB+

rig,Cp ,fr
)
. The

decomposition in corollary 155 (for n = 1) restricts to

M ψq=0 =
⊕

a∈(OK/πKOK)×
η(a, Z)ϕq(M ).

In particular, if we apply corollary 156 to B+
rig,Cp

and use the isomorphism
D(OK, Cp) ∼= B+

rig,Cp
from corollary 147, we recover the decomposition explained

in the beginning of section 8.4.4.

8.5.2 The Robba ring of ΓL

Next we recall the construction of the ring B†
rig,Cp

(ΓL) following section 2.2.2 of
Schneider–Venjakob’s preprint [35].

The isomorphism B+
rig,Cp

∼= D(OK, Cp) from corollary 147 sends Z to some
distribution µZ. Then, if the symbol ? means either a subinterval of (0, 1) as the
ones appearing in section 6.3 or nothing, we can define a ring B†,?

rig,Cp
(OK) by

formally replacing Z with µZ in B†,?
rig,Cp

. Our objective is to extend this construction

to define a ring B†,?
rig,Cp

(ΓL).
Recall that the Lubin–Tate character χφ defines isomorphisms ΓL

∼= O×K and
ΓLn = Gal(L∞/Ln) ∼= (1 + πn

KOK)
× for all n ∈ Z≥1. Fix n0 ∈ Z≥1 such that log

and exp define isomorphisms between (1 + πn0
K OK)

× and πn0
K OK. Consider the

isomorphisms `n : ΓLn → OK defined by

`n(γ) =
1

πn
K

log(χφ(γ))

for all n ≥ n0. We get isomorphisms `n,∗ : D(ΓLn , Cp) → D(OK, Cp) and set
µZ,n = `−1

n,∗(µZ). We define rings B†,?
rig,Cp

(ΓLn) by formally replacing Z with µZ,n in

B†,?
rig,Cp

.
Consider m, n ∈ Z with m ≥ n ≥ n0. The natural inclusion ΓLm ⊆ ΓLn induces

a morphism B†
rig,Cp

(ΓLm)→ B†
rig,Cp

(ΓLn) that we want to study. Observe that we
have a commutative diagram

ΓLm OK

ΓLn OK

`m

·πm−n
K

`n

and that the action of πK on distributions is “almost” ϕq. More precisely, the
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computations in section 8.4.2 show that ϕm−n
q acts on D(OK, Cp) as the composition

of the automorphism µ 7→ ϕm−n
q ◦ µ(ϕm−n

q ◦ · ) and (πm−n
K )∗. All in all, the

inclusion ΓLm ⊆ ΓLn induces a commutative diagram

B†
rig,Cp

(ΓLm) B†
rig,Cp

(OK) ∼= B†
rig,Cp

B†
rig,Cp

(ΓLn) B†
rig,Cp

(OK) ∼= B†
rig,Cp

`m,∗
∼=

Z 7→[πm−n
K ]φ(Z)

`n,∗
∼=

where the dashed arrow defines an isomorphism from B†
rig,Cp

to ϕm−n
q

(
B†

rig,Cp

)
by

lemma 149.
On the other hand, corollary 155 shows that

B†
rig,Cp

=
⊕

a∈OK/πm−n
K OK

η(a, Z)ϕm−n
q

(
B†

rig,Cp

)
.

Equivalently, we may view B†
rig,Cp

as a module over πm−n
K OK via η( · /πm−n

K , Z)
and then

B†
rig,Cp

oπm−n
K OK

OK B†
rig,Cp

f (Z)⊗ [a] f
(
[πm−n

K ]φ(Z)
)
η(a, Z)

is an isomorphism. Therefore, the natural map B†
rig,Cp

(ΓLm) ↪→ B†
rig,Cp

(ΓLn) in-
duces an isomorphism

B†
rig,Cp

(ΓLm)oΓLm
ΓLn B†

rig,Cp
(ΓLn)

f (µZ,m)⊗ [γ] f
(
[πm−n

K ]φ(µZ,n)
)
δγ

making the diagram

B†
rig,Cp

(ΓLm)oΓLm
ΓLn B†

rig,Cp
(ΓLn)

B†
rig,Cp

oπm−n
K OK

OK B†
rig,Cp

∼=

`m,∗

∼=

`n,∗∼ = `n,∗∼ =

∼=

commutative.

Definition 157. The Robba ring of ΓL is

B†
rig,Cp

(ΓL) = B†
rig,Cp

(ΓLn0
)oΓLn0

ΓL.
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Definition 158. We define ι : B†
rig,Cp

(ΓL) → B†
rig,Cp

(ΓL) to be the involution in-
duced by the automorphism γ 7→ γ−1 of ΓL. More precisely, ι acts on Z[ΓL] by
[γ] 7→ [γ−1] and on B†

rig,Cp
(ΓLn0

) by requiring that the diagram

B†
rig,Cp

(ΓLn0
) B†

rig,Cp

B†
rig,Cp

(ΓLn0
) B†

rig,Cp

`n0,∗
∼=

ι γ−1

`n0,∗
∼=

be commutative, where γ−1 ∈ ΓL is characterized by χφ(γ−1) = −1 ∈ O×K (i.e.,
the right vertical arrow is defined by Z 7→ [−1]φ(Z)).

8.5.3 The action of B†
rig,Cp

(ΓL) on Ker(ψq)

Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
. One might wonder if the action of ΓL on

M extends to a continuous action of B†
rig,Cp

(ΓL) (where we identify each γ ∈ ΓL

with the corresponding Dirac distribution δγ ∈ D(ΓL, Cp) ⊂ B†
rig,Cp

(ΓL)). In their

preprint [35], Schneider and Venjakob prove that this is true at least for M ψq=0.
By corollary 156, we obtain an isomorphism

η(1, Z)ϕq(M )oΓL1
ΓL

⊕
a∈(OK/πKOK)×

η(a, Z)ϕq(M ) = M ψq=0

η(1, Z)ϕq(m)⊗ [γ] γ
(
η(1, Z)ϕq(m)

)
= η(χφ(γ), Z)ϕq(γ(m))

(well-defined by the identity (4) of lemma 153) thanks to which it suffices to prove
that the action of ΓL1 induces a continuous action of B†

rig,Cp
(ΓL1) on η(1, Z)ϕq(M ).

This is done in sections 2.2.4 and 2.2.5 of Schneider–Venjakob’s preprint [35],
where they use proposition 80 to work over M |BCp [r,s] for certain closed intervals
[r, s] ⊂ (0, 1) and then reduce the problem to the analysis of an analogous action
of B†

rig,Cp
(ΓLn) for n� 0.

Theorem 159 (Schneider–Venjakob). Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
. The

action of ΓL on M induces a unique continuous action of B†
rig,Cp

(ΓL) on M ψq=0 which

makes M ψq=0 into a free B†
rig,Cp

(ΓL)–module of the same rank as M : if e1, . . . , er is
a B†

rig,Cp
–basis of M , then η(1, Z)ϕq(e1), . . . , η(1, Z)ϕq(er) is a B†

rig,Cp
(ΓL)–basis of

M ψq=0.
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Proof. See theorem 2.31 of Schneider–Venjakob’s preprint [35], whose proof works
exactly in the same way for the relative Lubin–Tate situation.

8.5.4 The Mellin transform

In section 8.4.4 we introduced an isomorphism M : D(ΓL, Cp)→
(
B+

rig,Cp

)ψq=0 that
we can now extend using the constructions of sections 8.5.2 and 8.5.3.

By corollary 147, for every µ ∈ D(OK, Cp) we have

Aµ(Z) =
∫

OK

η(a, Z) µ(a).

In particular, if δ1 is the Dirac distribution supported on 1, then Aδ1(Z) = η(1, Z).
But δ1 is the unit element of D(O×K , Cp) with respect to the convolution product,
which means that every λ ∈ D(O×K , Cp) can be expressed as λ · δ1. These observa-
tions combined with theorem 159 motivate the following definition.

Definition 160. The Mellin transform is the isomorphism

M : B†
rig,Cp

(ΓL) −→
(
B†

rig,Cp

)ψq=0

λ 7−→ λ
(
η(1, Z)

)
induced by the action of ΓL on

(
B†

rig,Cp

)ψq=0 (see theorem 159).

Remark. The fact that this definition does extend definition 151 follows from
lemmata 2.2 and 2.5 of Schneider–Venjakob’s preprint [35].

Since we always identify ΓL with O×K via χφ, lemma 152 motivates the next
definition.

Definition 161. We define the twist by χφ to be the unique isomorphism Twχφ that
makes the diagram

B†
rig,Cp

(ΓL) B†
rig,Cp

(ΓL)

(
B†

rig,Cp

)ψq=0 (
B†

rig,Cp

)ψq=0

Twχφ

M M

Ω−1∂φ

commutative. More generally, for i ∈ Z≥0 we define Twχi
φ

to be the composition

of Twχφ with itself i times and Tw
χ−i

φ
= Tw−1

χi
φ

.
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Remark. The fact that Ω−1∂φ defines an automorphism of
(
B†

rig,Cp

)ψq=0 follows
from proposition 2.12 of Fourquaux–Xie’s article [22].

8.5.5 The operators Θb and Ξb

By lemma 97, we have an operator N∇ on B+
rig,Cp

given by N∇ = logφ(Z)∂φ (cf.
the calculations in the proof of lemma 2.1.4 of Kisin–Ren’s article [28]). It turns out
that this operator corresponds to the action of a distribution in D(ΓL, Cp) that we
call again N∇. Indeed, we can compute

N∇(η(1, Z)) = logφ(Z) · d
dlogφ(Z)

[
exp

(
Ω logφ(Z)

)]
= Ω logφ(Z)η(1, Z),

which corresponds to N∇ · δ1 via the isomorphism B+
rig,Cp

∼= D(OK, Cp). Writing

Ω logφ(Z)η(1, Z) = ϕq

(
ϕ−1

q

( Ω
πL

)
logφ(Z)

)
η(1, Z),

we see that this power series belongs to
(
B+

rig,Cp

)ψq=0 by corollary 156. Therefore,

N∇ = M−1(Ω logφ(Z)η(1, Z)
)
∈ D(ΓL, Cp) ⊂ B†

rig,Cp
(ΓL).

Remark. The operator N∇ is often called ∇ in the literature. Moreover, in section
2.1.2 of their preprint [35], Schneider and Venjakob define ∇ directly as a distri-
bution given by the element of Lie(ΓL) corresponding to 1 via the isomorphism
Lie(ΓL) ∼= Lie(O×K ) = K induced by χφ and then one can check that it acts as our
N∇ (see lemma 2.14 and corollary 2.15 of Berger–Schneider–Xie’s article [8]). In
fact, since Lie(ΓL) = Lie(ΓLn) for any n ∈ Z≥1, one can view ∇ ∈ D(ΓLn , Cp) too.

Proposition 162. Consider n ∈ Z≥1 and let b = (b1, . . . , bm) be a Zp–basis of ΓLn . If
n is large enough,

Θb = q−n
m

∏
j=1

(
log(χφ(bj))

N∇
δbj − 1

)
(where δbj denotes the Dirac distribution supported on bj) is a well-defined element of
D(ΓLn , Cp) ⊂ B†

rig,Cp
(ΓLn) and we can write

M(Θb) = ϕn
q (ξb)η(1, Z)

with

ξb ≡ q−n
logφ(Z)

Z
= q−nλ(Z) mod logφ(Z)B+

rig,Cp
.
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In particular,

Ξb =
Θb
N∇

is a well-defined element of B†
rig,Cp

(ΓLn).

Proof. This is analogous to remark 2.34 of Schneider–Venjakob’s preprint [35] (but
observe that the definition of Θb in loc. cit. does not include the normalizing
factors that we used). We adapt it here to the relative Lubin–Tate case for the
convenience of the reader.

Consider the power series

F(Z) =
Z

exp(Z)− 1
= 1 + · · · ∈ Qp[[Z]],

which has a positive radius of convergence. Thus, we choose r ∈ pQ small enough
and work in B†,[0,r]

rig,Cp
. As operators, using lemma 97 for n� 0 we can write

log(χφ(bj))
N∇

δbj − 1
=

log(χφ(bj))N∇
exp(log(χφ(bj))N∇)− 1

= F(log(χφ(bj))N∇)

= 1 + log(χφ(bj))N∇ · gj(log(χφ(bj))N∇)

for some gj ∈ B†,[0,r]
rig,Cp

. Multiplying these equations for 1 ≤ j ≤ m, we can express

Θb = q−n + N∇ · g
(
log(χφ(b1))N∇, . . . , log(χφ(bm))N∇

)
for some power series g. Since

N∇(η(1, Z)) = Ω logφ(Z)η(1, Z) and N∇(Ω logφ(Z)) = Ω logφ(Z),

iterated uses of Leibniz rule show that

Nn
∇(η(1, Z)) =

[n−1

∏
i=0

(Ω logφ(Z) + i)
]
· η(1, Z).

All in all, we can express

M(Θb) =
[
q−n + Ω logφ(Z) f (Z)

]
· η(1, Z) with f (Z) ∈ B†,[0,r]

rig,Cp
.

On the other hand, the calculations of lemma 2.4.1 and the first part of lemma
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2.4.2 of Berger–Fourquaux’s article [7] show that we can express

Θb(η(1, Z)) =
logφ(Z)

ϕn
q (Z)

h(Z) = ϕn
q

( logφ(Z)

ϕ−n
q (πL) · · · ϕ−1

q (πL)Z

)
h(Z)

for some h(Z) ∈ B+
rig,Cp

. In fact, since ψq
(
Θb(η(1, Z))

)
= 0, we deduce from the

projection formula that h(Z) ∈
(
B+

rig,Cp

)ψq=0 and it must be of the form

h(Z) = ∑
a∈(OK/πKOK)×

ϕq(ha(Z))η(a, Z)

by corollary 156. But we may view Θb ∈ D(ΓLn , Cp) ⊂ D(ΓL, Cp), whence

M(Θb) ∈ ϕn
q
(
B+

rig,Cp

)
η(1, Z).

This is possible only if h(Z) = ϕq(h1(Z))η(1, Z) and

logφ(Z)

ϕn
q (Z)

ϕq(h1(Z)) = ϕn
q (h̃(Z)) for some h̃(Z) ∈ B+

rig,Cp
.

In particular,

ϕq(h1(Z)) = ϕn
q

(
ϕ−n

q (πL) · · · ϕ−1
q (πL)

Zh̃(Z)
logφ(Z)

)

and we can define c(Z) = Zh̃(Z)/ logφ(Z) ∈ B+
rig,Cp

. Then

M(Θb) = ϕn
q

( logφ(Z)

Z
c(Z)

)
η(1, Z) = ϕn

q
(
λ(Z)c(Z)

)
η(1, Z).

Comparing the two expressions of M(Θb), we see that

ϕn
q
(
λ(Z)c(Z)

)
= q−n + Ω logφ(Z) f (Z)

and, evaluating both sides at Z = 0, we see that c(Z) = q−n + · · ·, which concludes
the proof.

Proposition 163. Keeping the notation and assumptions of proposition 162, the image
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Ξ̃b of Ξb under `n,∗ : B†
rig,Cp

(ΓLn)→ B†
rig,Cp

is

Ξ̃b = q−n
( Ω

πn
K

logφ(Z)
)m−1 m

∏
j=1

log(χφ(bj))

η(`n(bj), Z)− 1
.

In particular,

Ξ̃b ≡
πn

K
qnΩZ

mod B+
rig,Cp

.

Proof. This is analogous to remark 2.13 in Schneider–Venjakob’s preprint [35] (but
note that the definition of Ξb in loc. cit. does not include the normalizing factors
that we used). We reproduce the proof here for the convenience of the reader.

By corollary 147, the isomorphism

D(ΓLn , Cp) D(OK, Cp) ∼= B+
rig,Cp

`n,∗

sends µ ∈ D(ΓLn , Cp) to

Ãµ(Z) =
∫

ΓL

η(`n(γ), Z) µ(γ)

Applying this to δbj for 1 ≤ j ≤ m, we obtain the denominators in the formula
for Ξ̃b. It remains to prove that ÃN∇(Z) = Ω logφ(Z)/πn

K. But indeed, using χφ

to identify ΓL and O×K , we can regard the distribution N∇ as the element 1 of
Lie(ΓL) ∼= L and then

N∇
(
η(π−n

K log( · ), Z)
)
=

d
dt

[
η
(
π−n

K log(exp(1 · t)), Z
)]∣∣∣

t=0

=
d
dt

[
exp

( Ω
πn

K
t logφ(Z)

)]∣∣∣
t=0

=
Ω
πn

K
logφ(Z).

The last formula follows easily by plugging the expansions

η(`n(bj), Z)− 1 =
Ω
πn

K
log(χφ(bj))Z + · · · and logφ(Z) = Z + · · ·

in the formula for Ξ̃b.
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9 Iwasawa cohomology and duality

In this section we adapt the results of Schneider–Venjakob’s article [34] to express
Iwasawa cohomology with respect to the relative Lubin–Tate tower L∞/L in terms
of (ϕq, ΓL)–modules. Conversely, we can construct cohomology classes from
(ϕq, ΓL)–modules using results of Berger–Fourquaux’s article [7] and Schneider–
Venjakob’s preprint [35].

Apart from that, we adapt other kinds of dualities defined in Schneider–
Venjakob’s preprint [35] in terms of the Robba rings introduced in the previous
sections.

9.1 Cohomology of representations

9.1.1 Iwasawa cohomology

Definition 164.
(1) Let T ∈ Ob

(
RepOK

(GL)
)
. We define the Iwasawa cohomology groups

Hi
Iw(L∞/L, T) = lim←−

n≥1
Hi(Ln, T),

where the projective limit is taken with respect to the corestriction maps.
(2) Let V ∈ Ob

(
RepK(GL)

)
and let T be a GL–stable OK–lattice of V. We define

the Iwasawa cohomology groups

Hi
Iw(L∞/L, V) = Hi

Iw(L∞/L, T)⊗OK K.

(This is independent of the choice of lattice T.)

Lemma 165 (Shapiro). Let T ∈ Ob
(
RepOK

(GL)
)
. There are canonical isomorphisms

Hi
Iw(L∞/L, T) ∼= Hi(L, ΛOK(ΓL)⊗OK T)

for all i ∈ Z, where ΛOK(ΓL) = OK[[ΓL]].

Proof. See lemma 5.8 of Schneider–Venjakob’s article [34].

Proposition 166. The Iwasawa cohomology H∗Iw(L∞/L, · ) is a cohomological δ–functor
on RepOK

(GL).

Proof. See lemma 5.9 of Schneider–Venjakob’s article [34].
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9.1.2 Local Tate duality

In this subsection we recall the duality between Galois cohomology groups of
a representation and of some kind of dual representation. The notion of dual
representation depends on the kind of representation that we consider; namely, we
have to distinguish between free and torsion (finite) OK–modules.

Definition 167. The Pontryagin dual of T ∈ Ob
(
RepOK ,tor(GL)

)
is the representa-

tion
T∨ = HomOK(T, K/OK).

Remark. Lemma 5.3 (and the paragraph preceding it) of Schneider–Venjakob’s
article [34] shows that one can define Pontryagin duals using either Qp/Zp or
K/OK. Note that, since T is of finite length, it is endowed with the discrete topology
and so our definition really coincides with that of Schneider and Venjakob.

Theorem 168 (local Tate duality for torsion representations). Let L′ be a finite ex-
tension of L and let T ∈ Ob

(
RepOK ,tor(GL)

)
. The cup product and the local invariant

map induce perfect pairings of OK–modules

Hi(L′, T)×H2−i(L′, HomZp

(
T, (Qp/Zp)(1)

))
→ H2(L′, (Qp/Zp)(1)

) ∼= Qp/Zp

and

Hi(L′, T)×H2−i(L′, HomOK

(
T, (K/OK)(1)

))
→ H2(L′, (K/OK)(1)

) ∼= K/OK

for all i ∈ Z. Therefore, there are canonical isomorphisms

Hi(L′, T) ∼= H2−i(L′, T∨(1))∨.

Proof. See proposition 5.7 of Schneider–Venjakob’s article [34].

Corollary 169. Let T ∈ Ob
(
RepOK ,tor(GL)

)
. Local Tate duality induces isomorphisms

Hi
Iw(L∞/L, T) ∼= H2−i(L∞, T∨(1))∨

for all i ∈ Z.

Proof. The corollary follows from theorem 168 by taking limits over the Ln for
n ≥ 1.
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Definition 170. The dual of T ∈ Ob
(
RepOK ,fr(GL)

)
is the representation

T∗ = HomOK(T, OK).

Remark. As in the torsion case, the paragraph before lemma 5.3 of Schneider–
Venjakob’s article [34] shows that one can define duals using Zp instead of OK.

Theorem 171 (local Tate duality for free representations). Let L′ be a finite exten-
sion of L and let T ∈ Ob

(
RepOK ,fr(GL)

)
. The cup product and the local invariant map

induce perfect pairings of OK–modules

Hi(L′, T)×H2−i(L′, HomZp

(
T, Zp(1)

))
→ H2(L′, Zp(1)

) ∼= Zp

and
Hi(L′, T)×H2−i(L′, HomOK

(
T, OK(1)

))
→ H2(L′, OK(1)

) ∼= OK

for all i ∈ Z. Therefore, there are canonical isomorphisms

Hi(L′, T) ∼= H2−i(L′, T∗(1))∗.

Proof. See proposition 3.12 of Schneider–Venjakob’s preprint [35], where this form
of local Tate duality is deduced from theorem 168 by taking projective limits of
quotients by πn

K for n ≥ 1.

9.2 The module of differential forms

Definition 172. Let R be any of the rings A′L, B′L or B†
rig,L.

(1) The module of differential forms over R is Ω1
R = R dZ; it is endowed with the

actions of ϕq and ΓL given by

ϕq( f (Z) dZ) = f ϕq(φ(Z))φ′(Z)π−1
L dZ and

γ( f (Z) dZ) = f
(
[χφ(γ)]φ(Z)

)
[χφ(γ)]

′
φ(Z) dZ

for all f (Z) dZ ∈ Ω1
R and all γ ∈ ΓL.

(2) We define (continuous) maps d : R→ Ω1
R and Res : Ω1

R → L by

d( f (Z)) = f ′(Z) dZ and Res
(

∑
k∈Z

akZk dZ
)
= a−1.

(3) The module of differential forms over AL is Ω1
AL

= AL dωφ; it is endowed with
the actions of ϕq and ΓL induced from those on Ω1

A′L
via the isomorphism
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Ω1
A′L
∼= Ω1

AL
defined by Z 7→ ωφ and dZ 7→ dωφ.

Remark. One can check from the definition that Ω1
AL
∈ Ob

(
(ϕq, ΓL)–ModAL,fr

)
.

Below we show that it is étale by comparing it with another (ϕq, ΓL)–module.

Recall that the Tate module Tφ Fφ is isomorphic to OK(χφ) as an OK–module
with an action of GL and that we fixed a generator t0 of Tφ Fφ. Next we define a
(ϕq, ΓL)–module A′L(χφ) as follows: as an A′L–module, A′L(χφ) = A′L ⊗OK Tφ Fφ

and we always express its elements as f (Z)⊗ t0 with f (Z) ∈ A′L. The action of ϕq

on A′L(χφ) is given by

ϕq
(

f (Z)⊗ t0
)
= ϕq

(
f (Z)

)
⊗ t0 for all f (Z) ∈ A′L

and the action of ΓL on A′L(χφ) is given by

γ
(

f (Z)⊗ t0
)
= χφ(γ)γ

(
f (Z)

)
⊗ t0 for all f (Z) ∈ A′L and all γ ∈ ΓL.

That is, A′L(χφ) is simply the module A′L with the ΓL–action twisted by χφ and, in
particular, it is an étale (ϕq, ΓL)–module over A′L. By base change, we also obtain
B†

rig,L(χφ) ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)
.

Lemma 173. The map

A′L(χφ) −→ Ω1
A′L

f (Z)⊗ t0 7−→ f (Z)dlogφ(Z)

is an isomorphism of (ϕq, ΓL)–modules over A′L. (Thus, Ω1
A′L

is an étale (ϕq, ΓL)–module
over A′L.)

Proof. Write dlogφ(Z) = gφ(Z) dZ. Since gφ(Z) = 1 + · · · is invertible in A′L, the
map in the statement of the lemma is well-defined and bijective. The fact that it is
compatible with ϕq and ΓL follows from the relations ϕq(gφ(Z))φ′(Z) = πLgφ(Z)
(see the proof of lemma 65) and gφ([a]φ(Z))[a]′φ(Z) = agφ(Z) for a ∈ OK.

Lemma 174. The map d : B†
rig,L → Ω1

B†
rig,L

satisfies the following properties:

(1) πL · ϕq ◦ d = d ◦ ϕq;
(2) γ ◦ d = d ◦ γ for all γ ∈ ΓL;
(3) d( · ) ◦ [a]φ = d( · ◦ [a]φ) for all a ∈ OK, and
(4) ψq ◦ d = ϕ−1

q (πL) · d ◦ ψq.
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Proof. This is analogous to lemma 3.16 of Schneider–Venjakob’s article [34] (the
only difference is the factor ϕ−1

q (πL) in identity (4)).
The first three assertions are straight-forward from the definitions. For the

last one, we observe that ϕq (on Ω1
B†

rig,L
) is injective and so it suffices to prove the

relation after composing with ϕq. Thus, using identity (1), we have to prove that

ϕq ◦ ψq ◦ d = d ◦ ϕq ◦ ψq.

But we can translate the computation to B†
rig,L(χφ) by means of lemma 173. Then,

for f (Z) ∈ B†
rig,L,

(ϕq ◦ ψq ◦ d)
(

f (Z)
)
= (ϕq ◦ ψq)

(
f ′(Z) dZ

)
= (ϕq ◦ ψq)

(
f ′(Z)
gφ(Z)

⊗ t0

)
= (ϕq ◦ ψq)

(
∂φ( f )(Z)⊗ t0

)
= (ϕq ◦ ψq)

(
∂φ( f )(Z)

)
⊗ t0

and now we can use lemma 65 and move back to Ω1
B†

rig,L
:

(ϕq ◦ ψq)
(
∂φ( f )(Z)

)
⊗ t0 = ∂φ

(
(ϕq ◦ ψq)( f (Z))

)
⊗ t0

= ∂φ

(
(ϕq ◦ ψq)( f (Z))

)
dlogφ(Z) = d

(
(ϕq ◦ ψq)( f (Z))

)
.

Putting everything together, we obtain identity (4).

Proposition 175. The residue map Res : Ω1
B†

rig,L
→ L satisfies the following properties:

(1) Res ◦ ϕq =
q

πL
· ϕq ◦ Res;

(2) Res ◦ γ = Res for all γ ∈ ΓL;
(3) Res( · ◦ [πK]φ) = q · Res, and
(4) Res ◦ ψq = ϕ−1

q ◦ Res.

Proof. The proof of proposition 3.17 of Schneider–Venjakob’s article [34] works
almost verbatim in the relative Lubin–Tate situation, now using lemma 174 and
taking into account that ϕq does not act trivially on L.

Corollary 176. For every f (Z) ∈ B†
rig,L,

Res
(

f ([πK]φ(Z))dlogφ(Z)
)
=

q
πK

Res( f (Z)dlogφ(Z)).
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9.3 Duality of (ϕq, ΓL)–modules

9.3.1 The internal Hom

In the category (ϕq, ΓL)–Modét
A′L

(and so in (ϕq, ΓL)–Modét
AL

too) there is an internal

Hom functor: given M, N ∈ Ob
(
(ϕq, ΓL)–Modét

A′L

)
, we define actions of ϕq and

of ΓL on HomA′L
(M, N) as follows: for every α ∈ HomA′L

(M, N) and γ ∈ ΓL, the
elements ϕq(α), γ(α) ∈ HomA′L

(M, N) are the unique maps making the diagrams

M N

A′L ⊗ϕq,A′L
M A′L ⊗ϕq,A′L

N

ϕq(α)

1⊗α

1⊗ϕq

∼= 1⊗ϕq∼ = and
M N

M N

γ(α)

α

γ

∼=

γ∼ =

commutative. The paragraphs after lemma 3.12 and until formula (17) of Schneider
and Venjakob’s article [34] justify that HomA′L

(M, N) ∈ Ob
(
(ϕq, ΓL)–Modét

A′L

)
.

Analogously, given M , N ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)
, the same constructions

make HomB†
rig,L

(M , N ) ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,L,fr
)
.

9.3.2 The residue pairing

Schneider and Venjakob introduced several pairings in their article [34] and their
preprint [35]. All their pairings are constructed from the following starting point:

Definition 177. Let R be any of the rings A′L or B†
rig,L. The residue pairing for R is

{ · , · } = { · , · }R : R×Ω1
R −→ L

( f , ω) 7−→ Res( f ω)

(where Res is the residue map from definition 172).

Corollary 178. Let R be any of the rings A′L or B†
rig,L. The residue pairing { · , · }R

satisfies the following properties: for every f ∈ R and every ω ∈ Ω1
R,

(1) {ϕq( f ), ϕq(ω)} = q
πL

ϕq
(
{ f , ω}

)
,

(2) {γ( f ), γ(ω)} = { f , ω} for all γ ∈ ΓL,
(3) {ψq( f ), ω} = ϕ−1

q
(
{ f , ϕq(ω)}

)
and

(4) { f , ψq(ω)} = ϕ−1
q
(
{ϕq( f ), ω}

)
.

Proof. These identities follow from proposition 175, the last two in combination
with the projection formulae ψq( f ϕq(ω)) = ψq( f )ω and ψq(ϕq( f )ω) = f ψq(ω).
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9.3.3 Duality for torsion modules over A′L

Our goal is to study the Iwasawa cohomology of representations in RepOK
(GL)

using their associated (étale) (ϕq, ΓL)–modules over AL (or equivalently over A′L).
Since corollary 169 provides a description of Iwasawa cohomology for torsion
representations in terms of Pontryagin duality, we focus on the full subcategory
(ϕq, ΓL)–Modét

A′L,tor of torsion modules in (ϕq, ΓL)–Modét
A′L

and mimic Pontryagin
duality by means of the residue pairing.

Let n ∈ Z≥1. Observe that the residue pairing induces a pairing

A′L/πn
LA′L ×Ω1

A′L
/πn

LΩ1
A′L

L/OL

( f , ω) π−n
K Res( f ω) mod OL

and so we obtain a continuous OL–linear map

Ω1
A′L

/πn
LΩ1

A′L
→ Homcont

OL
(A′L/πn

LA′L, L/OL),

where Homcont
OL

means the module of continuous OL–linear maps with the compact-
open topology. This last map is an isomorphism (see lemma 3.5 of Schneider–
Venjakob’s article [34]), which means that we should view Ω1

A′L
/πn

LΩ1
A′L

as “the
Pontryagin dual” of A′L/πn

LA′L. More generally:

Lemma 179. Let M ∈ Ob
(
(ϕq, ΓL)–Modét

A′L,tor
)
, so that M is killed by πn

L for some
n ≥ 1. The map

HomA′L
(M, Ω1

A′L
/πn

LΩ1
A′L
) Homcont

OL
(M, L/OL)

g π−n
K Res

(
g( · )

)
mod OL

is an isomorphism of topological OL–modules.

Proof. See lemma 3.6 of Schneider–Venjakob’s article [34].

Definition 180. For M ∈ Ob
(
(ϕq, ΓL)–Modét

A′L,tor
)

and n ∈ Z≥1 such that M is
killed by πn

L, we set

M∨n = HomA′L
(M, Ω1

A′L
/πn

LΩ1
A′L
) ∈ Ob

(
(ϕq, ΓL)–Modét

A′L,tor
)

and define the pairing

{ · , · } = { · , · }M,n : M×M∨n −→ L/OL
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by
{m, g} = π−n

K Res(g(m)) mod OL for all m ∈ M and g ∈ M∨n .

Remark. There is a slight abuse of notation here: the actual Pontryagin dual of
M is Homcont

OL
(M, L/OL), but we use lemma 179 to obtain “a Pontryagin dual”

(depending on n) that is again a (ϕq, ΓL)–module.

Proposition 181. Let M ∈ Ob
(
(ϕq, ΓL)–Modét

A′L,tor
)

and let n ∈ Z≥1 such that M is
killed by πn

L. The residue pairing { · , · }M,n satisfies the following properties: for every
m ∈ M and every g ∈ M∨n ,

(1) {ϕq(m), ϕq(g)} = q
πL

ϕq
(
{m, g}

)
;

(2) {γ(m), γ(g)} = {m, g} for all γ ∈ ΓL;
(3) {ψq(m), g} = ϕ−1

q
(
{m, ϕq(g)}

)
, and

(4) {m, ψq(g)} = ϕ−1
q
(
{ϕq(m), g}

)
.

Proof. These identities follow easily from proposition 175 and the definition of M∨n

as an étale (ϕq, ΓL)–module (see section 9.3.1). See proposition 3.19 of Schneider–
Venjakob’s article [34] for the full details of the proofs of identities (3) and (4).

9.3.4 Duality for torsion modules over AL

Next we translate the results of section 9.3.3 to the category (ϕq, ΓL)–Modét
AL,tor

of étale torsion (ϕq, ΓL)–modules over AL using the equivalence provided by
proposition 68.

Let M ∈ Ob
(
(ϕq, ΓL)–Modét

AL,tor
)

and assume that M is killed by πn
L with n ≥ 1.

Combining the isomorphism

AL(χφ) −→ Ω1
AL

f (ωφ)⊗ t0 7−→ f (ωφ)dlogφ(ωφ)

from lemma 173 with (the analogue of) the isomorphism in lemma 179, we obtain
an isomorphism of topological OL–modules

HomAL(M, AL/πn
LAL)(χφ) Homcont

OL
(M, L/OL)

∼=

defined by
g⊗ t0 7→ π−n

K Res
(

g( · )dlogφ(ωφ)
)

mod OL.

Thus, we define the Pontryagin dual

M∨ = Homcont
OL

(M, L/OL)
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and identify it with

M∨n = HomAL(M, AL/πn
LAL)(χφ)

by means of the pairing

{ · , · } = { · , · }M,n : M×M∨n −→ L/OL

(m, g⊗ t0) 7−→ π−n
K Res

(
g(m)dlogφ(ωφ)

)
mod OL

with the properties described in proposition 181. In particular, the operators ϕq

and ψq are essentially adjoint with respect to { · , · }.

Proposition 182. Let T ∈ Ob
(
RepOK ,tor(GL)

)
and let n ∈ Z≥1 such that πn

KT = 0.
There is a natural functorial isomorphism of topological OL–modules

D(T)∨ ∼= D
(
T∨(χφ)

)
which is independent of n and through which the operator ψq on D

(
T∨(χφ)

)
corresponds

to ϕ−1
q ◦ ϕ∨q ( · ), where ϕ∨q denotes the dual of ϕq on D(T)) and ϕ−1

q : L/OL → L/OL is
induced by the inverse of the Frobenius in Gal(L/K).

Proof. This is analogous to remark 5.6 of Schneider–Venjakob’s article [34]. We
adapt it here to the relative Lubin–Tate situation for the convenience of the reader.

First, observe that πL and πK differ (multiplicatively) by an element of O×L .
Therefore, an OL–module is killed by πn

L if and only if it is killed by πn
K. In

particular, one checks easily that D(OK/πn
KOK) = AL/πn

LAL.
Now, by the identifications described before the proposition and by the com-

patibility of the functor D with duals and tensor products, we can write

D(T)∨ ∼= D(T)∨n = HomAL

(
D(T), AL/πn

LAL
)
(χφ)

∼= HomAL

(
D(T), D(OK/πn

KOK)
)
(χφ)

∼= D
(
HomOL(T, OK/πn

KOK)
)
(χφ) ∼= D(T∨)(χφ) ∼= D

(
T∨(χφ)

)
.

Here, the first and the second-to-last isomorphisms depend on n, but these two
dependences “compensate each other”. The correspondence between ϕ−1

q ◦ ϕ∨q ( · )
and ψq is a consequence of the relation ϕ−1

q ◦ {ϕq( · ), · }D(T),n = { · , ψq( · )}D(T),n

(cf. part (4) of proposition 181) used in the first isomorphism.
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9.3.5 Duality for modules over B†
rig,Cp

The definitions and results given in this section over B†
rig,L have obvious analogues

over B†
rig,Cp

. As already seen in section 8.5, working over B†
rig,Cp

is more convenient
because it allows us to study distributions.

Lemma 183. The residue pairing { · , · }B†
rig,Cp

from definition 177 identifies B†
rig,Cp

with

the topological dual of Ω1
B†

rig,Cp
. That is to say, the residue pairing induces isomorphisms

B†
rig,Cp

∼= Homcont
Cp

(
Ω1

B†
rig,Cp

, Cp
)

and Ω1
B†

rig,Cp

∼= Homcont
Cp

(B†
rig,Cp

, Cp).

Proof. This is lemma 2.35 of Schneider–Venjakob’s preprint [35].

Definition 184. For M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,Cp ,fr
)
, we set

M ∨ = HomB†
rig,Cp

(
M , Ω1

B†
rig,Cp

)
and define the pairing

{ · , · } = { · , · }M : M ×M ∨ −→ Cp

by
{m, g} = Res(g(m)) for all m ∈M and g ∈M ∨.

Remark. By lemma 173 (or, rather, its base change from A′L to B†
rig,Cp

), we have a
canonical isomorphism M ∨ ∼= HomB†

rig,Cp
(M , B†

rig,Cp
)(χφ) = M ∗(χφ).

Proposition 185. Let M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,Cp ,fr
)
. The pairing

{ · , · } : M ×M ∨ → Cp

induces an isomorphism
M ∨ ∼= Homcont

Cp
(M , Cp).

Proof. This is a consequence of lemma 183, as M is free over B†
rig,Cp

.

Proposition 186. Let M ∈ Ob
(
(ϕq, ΓL)–ModB†

rig,Cp ,fr
)
. The residue pairing { · , · }M

satisfies the following properties: for every m ∈M and every g ∈M ∨,
(1) {ϕq(m), ϕq(g)} = q

πL
ϕq
(
{m, g}

)
;

(2) {γ(m), γ(g)} = {m, g} for all γ ∈ ΓL;
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(3) {ψq(m), g} = ϕ−1
q
(
{m, ϕq(g)}

)
, and

(4) {m, ψq(g)} = ϕ−1
q
(
{ϕq(m), g}

)
.

Proof. The proof is identical to that of proposition 181.

9.3.6 The pairing for B†
rig,Cp

(ΓL)

Using the isomorphism Ω1
B†

rig,Cp

∼= B†
rig,Cp

(χφ) from lemma 173, the residue pairing

{ · , · } : B†
rig,Cp

×Ω1
B†

rig,Cp
−→ Cp induces a pairing

B†
rig,Cp

× B†
rig,Cp

−→ Cp

( f , g) 7−→ Res( f g dlogφ)

(of B†
rig,Cp

–modules, ignoring the actions of ϕq and ΓL) that we can try to translate
to B†

rig,Cp
(ΓL) by means of the Mellin transform. We follow subsections 2.3.2 and

2.3.3 of Schneider–Venjakob’s preprint [35].

Definition 187.
(1) We define $ : B†

rig,Cp
(ΓL)→ Cp to be the composition of the maps

B†
rig,Cp

(ΓLn0
)oΓLn0

ΓL B†
rig,Cp

(ΓLn0
) B†

rig,Cp
(OK) ∼= B†

rig,Cp
Cp,

`n0,∗
∼=

where the last arrow is given by

g 7→
( q

πK

)n0
Res(g dlogφ).

(2) We define the pairing

〈 · , · 〉 : B†
rig,Cp

(ΓL)× B†
rig,Cp

(ΓL) −→ Cp

by
〈λ, µ〉 = $(λµ) for all λ, µ ∈ B†

rig,Cp
(ΓL).

Remark. Alternatively, we could define $ as the composition

B†
rig,Cp

(ΓLn0
)oΓLn0

ΓL B†
rig,Cp

(ΓLn0
) ϕn0

q (B†
rig,Cp

) Cp,
(log◦χφ)∗ Res( · dlogφ)

which justifies the appearance of the factor (q/πK)
n0 by corollary 176.
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Lemma 188. The definition of $ is independent of the choice of (large enough) n0.

Proof. We have to check that, for m ≥ n ≥ n0, the diagram

B†
rig,Cp

(ΓLm)oΓLm
ΓLn B†

rig,Cp
(ΓLm) B†

rig,Cp

B†
rig,Cp

(ΓLn) B†
rig,Cp

Cp

∼=

`m,∗
∼=

qm

πm
K

Res( · dlogφ)

`n,∗
∼=

qn

πn
K

Res( · dlogφ)

is commutative.
First consider f (µZ,m)⊗ [γ] ∈ B†

rig,Cp
(ΓLm)oΓLm

ΓLn with γ 6∈ ΓLm , which is
sent to 0 by the first horizontal arrow. Using the lower row, this element maps to

f ([πm−n
K ]φ(µZ,n))δγ 7→ f ([πm−n

K ]φ(Z))η(`n(γ), Z) ∈ B†
rig,Cp

.

By lemma 149, we can write f ([πm−n
K ]φ(Z)) = ϕm−n

q ( f̃ (Z)) with f̃ (Z) ∈ B†
rig,Cp

.
Now the projection formula and identity (5) of lemma 153 imply that

ψm−n
q

(
ϕm−n

q ( f̃ (Z))η(`n(γ), Z)
))

= 0

because `n(γ) 6∈ πm−n
K OK. We conclude that

Res
(

f ([πm−n
K ]φ(Z))η(`n(γ), Z)dlogφ(Z)

)
= 0

by the last identity of proposition 175.
Next consider f (µZ,m)⊗ [γ1] ∈ B†

rig,Cp
(ΓLm)oΓLm

ΓLn , where γ1 ∈ ΓLm is char-
acterized by χφ(γ1) = 1. This element is mapped to

f (µZ,m)δγ1 7→ f (Z)η(0, Z) = f (Z) 7→
( q

πK

)m
Res

(
f (Z)dlogφ(Z)

)
via the upper row of the initial diagram and to

f ([πm−n
K ]φ(µZ,n))δγ1 7→ f ([πm−n

K ]φ(Z)) 7→
( q

πK

)n
Res

(
f ([πm−n

K ]φ(Z))dlogφ(Z)
)

via the lower row. These two expressions coincide by corollary 176.

Proposition 189. The pairing 〈 · , · 〉 : B†
rig,Cp

(ΓL) × B†
rig,Cp

(ΓL) → Cp induces iso-
morphisms

B†
rig,Cp

(ΓL) ∼= Homcont
Cp

(
B†

rig,Cp
(ΓL), Cp

)
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and
D(ΓL, Cp) ∼= Homcont

Cp

(
B†

rig,Cp
(ΓL)/D(ΓL, Cp), Cp

)
.

Proof. This is proposition 2.44 of Schneider–Venjakob’s preprint [35].

Proposition 190. For every λ, µ ∈ B†
rig,Cp

(ΓL),

〈Twχφ(λ), Twχφ(µ)〉 = 〈λ, µ〉.

Proof. See lemmata 2.47, 2.48 and 2.49 and corollary 2.50 of Schneider–Venjakob’s
preprint [35]. Note that, in the relative Lubin–Tate situation, one must use πK in
place of the πL in loc. cit.

There is an alternative definition of the pairing 〈 · , · 〉 from which the relation
with the residue pairing { · , · } becomes clearer.

Definition 191.
(1) The twisted Mellin transform Mχφ : B†

rig,Cp
(ΓL)→

(
Ω1

B†
rig,Cp

)ψq=0 is given by

Mχφ(λ) = λ
(
η(1, Z)dlogφ(Z)

)
= Twχφ(λ)(η(1, Z))dlogφ(Z)

for all λ ∈ B†
rig,Cp

(ΓL).
(2) We define ς : B†

rig,Cp
(ΓL)→ Cp by

ς(λ) = Res
(
M(γ−1)Mχφ(λ)

)
for all λ ∈ B†

rig,Cp
(ΓL),

where γ−1 denotes the element of ΓL mapping to −1 under χφ (that we
identify with the corresponding Dirac distribution).

Theorem 192 (Schneider–Venjakob). The maps $ from definition 187 and ς from
definition 191 are equal.

Proof. This is theorem 2.51 of Schneider–Venjakob’s preprint [35]. We sketch the
proof here (in the relative Lubin–Tate situation) for the convenience of the reader.

Since Res
(
Ω1

B+
rig,Cp

)
= 0, we see that ς factors through B†

rig,Cp
(ΓL)/D(ΓL, Cp).

By proposition 189, there exists µ ∈ D(ΓL, Cp) such that ς(λ) = 〈λ, µ〉 for all
λ ∈ B†

rig,Cp
(ΓL). Using lemmata 2.53 and 2.54 of Schneider–Venjakob’s preprint

(whose proofs work verbatim in the relative Lubin–Tate situation), one checks
that µ must be constant. Therefore, ς(λ) = 〈λ, µ〉 = $(µλ) = µ$(λ) for all
λ ∈ B†

rig,Cp
(ΓL). It suffices to find one λ ∈ B†

rig,Cp
(ΓL) such that ς(λ) 6= 0 6= $(λ)

to compute µ.
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Next we choose a large n0 ∈ Z≥1 and a Zp–basis b = (b1, . . . , bm) of ΓLn0
and

evaluate $ and ς at the element Ξb introduced in proposition 162, following lemma
2.55 of Schneider–Venjakob’s preprint [35]. (Note that Ξb is called Ξ̂b in loc. cit.)

On the one hand, by proposition 163

`n0,∗(Ξb) ≡
(πK

q

)n0 1
ΩZ

mod B+
rig,Cp

and so

$(Ξb) =
( q

πK

)n0
Res

(
`n0,∗(Ξb)dlogφ(Z)

)
= Res

(dlogφ(Z)

ΩZ

)
=

1
Ω

.

On the other hand, by definition 161 and the fact that N∇ acts on B†
rig,Cp

as
logφ(Z)∂φ, we can express

ς(Ξb) = Res
(
M(γ−1)M(Twχφ(Ξb))dlogφ(Z)

)
= Res

(
η(−1, Z)

∂φ

Ω
M
( Θb

N∇

)
dlogφ(Z)

)
=

1
Ω

Res
(

η(−1, Z)
M(Θb)

logφ(Z)
dlogφ(Z)

)
.

Now by proposition 162, we conclude that

ς(Ξb) =
1
Ω

Res
(

ϕn0
q (ξb)

logφ(Z)
dlogφ(Z)

)

=
ϕn0−1

q (πL) · · · ϕq(πL)πL

Ω
Res

(
ϕn0

q

( ξb
logφ(Z)

)
dlogφ(Z)

)
=

qn0

Ω
ϕn0

q

(
Res

(
q−n0

1
Z

dlogφ(Z)
))

=
1
Ω

.

In conclusion, $(Ξb) = ς(Ξb) as claimed.

Corollary 193. The diagram

〈 · , · 〉 : B†
rig,Cp

(ΓL)× B†
rig,Cp

(ΓL) Cp

{ · , · } :
(
B†

rig,Cp

)ψq=0 ×
(
Ω1

B†
rig,Cp

)ψq=0
Cp

γ−1◦M◦ι Mχφ

is commutative.
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Proof. Let λ, µ ∈ B†
rig,Cp

(ΓL). We can express

〈λ, µ〉 = ς(λµ) = Res
(
M(γ−1)Mχφ(λµ)

)
= {M(γ−1),Mχφ(λµ)}.

But by the definition of Mχφ in terms of an action of B†
rig,Cp

(ΓL), we see that
Mχφ(λµ) = λ

(
Mχφ(µ)

)
.

Now identity (2) of corollary 178 implies that

{ · , γ( · )} = {γ−1( · ), · } = {ι(γ)( · ), · } for all γ ∈ ΓL

and this adjointness with respect to ι can be extended to the action of B†
rig,Cp

(ΓL)

by a continuity argument (see lemma 2.39 of Schneider–Venjakob’s preprint [35]).
Putting everything together, we conclude that

〈λ, µ〉 = {ι(λ)(M(γ−1)),Mχφ(µ)} = {M(ι(λ)γ−1),Mχφ(µ)}
= {M(γ−1ι(λ)),Mχφ(µ)} = {γ−1(M(ι(λ))),Mχφ(µ)},

where in the second and the last equalities we used again that M is defined in
terms of an action of B†

rig,Cp
(ΓL).

9.3.7 The Iwasawa pairing

Definition 194. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
. We define the pairing

{ · , · }′Iw = { · , · }′M ,Iw : M ψq=0 × (M ∨)ψq=0 → B†
rig,Cp

(ΓL)

by requiring that the diagram

M ψq=0 × (M ∨)ψq=0 × B†
rig,Cp

(ΓL) M ψq=0 × (M ∨)ψq=0

B†
rig,Cp

(ΓL)× B†
rig,Cp

(ΓL) Cp

(m,g,λ) 7→(m,λ(g))

{ · , · }′M ,Iw { · , · }M
〈 · , · 〉

be commutative.

Remark. Given m ∈M ψq=0 and g ∈ (M ∨)ψq=0, the condition

〈
{m, g}′Iw, λ

〉
= {m, λ(g)} for all λ ∈ B†

rig,Cp
(ΓL)

does uniquely determine {m, g}′Iw by proposition 189.
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Also, as we saw in the proof of corollary 193, {m, λ(g)} = {ι(λ)(m), g} and so
we could define {m, g}′Iw equivalently by the condition

〈
{m, g}′Iw, λ

〉
= {ι(λ)(m), g} for all λ ∈ B†

rig,Cp
(ΓL).

Proposition 195. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
. The pairing

{ · , · }′Iw : M ψq=0 × (M ∨)ψq=0 → B†
rig,Cp

(ΓL)

induces an isomorphism

(M ∨)ψq=0 ∼= HomB†
rig,Cp (ΓL)

(M ψq=0, B†
rig,Cp

(ΓL))
ι,

where the superscript ι means that the action of B†
rig,Cp

(ΓL) is twisted by ι.

Proof. The isomorphism of proposition 185 restricts to an isomorphism

(M ∨)ψq=0 ∼= Homcont
B†

rig,Cp
(M ψq=0, Cp)

ι

by the “adjointness” between ϕq and ψq with respect to { · , · } and the decompos-
itions M = ϕq(M )⊕M ψq=0 and M ∨ = ϕq(M ∨)⊕ (M ∨)ψq=0. Then the pairing
{ · , · }′Iw induces

M ψq=0 ∼= Homcont
B†

rig,Cp
(M , Cp)ι HomB†

rig,Cp (ΓL)
(M , B†

rig,Cp
(ΓL))

ι

$ ◦ g g

by definition. This morphism is in fact an isomorphism by proposition 2.45 of
Schneider–Venjakob’s preprint [35].

In our study of Iwasawa cohomology of a representation, we do not need to
consider the whole (ψq = 0)–part of (ϕq, ΓL)–modules, but only the image of the
(ψq = 1)–part under 1− πL

q ϕq. That is why we introduce the following pairing.

Definition 196. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
. The Iwasawa pairing for M is

the pairing

{ · , · }Iw = { · , · }M ,Iw : M ψq=1 × (M ∨)
ψq=

q

ϕ−1
q (πL) → B†

rig,Cp
(ΓL)
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that makes the diagram

M ψq=1 × (M ∨)
ψq=

q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

M ψq=0 × (M ∨)ψq=0 B†
rig,Cp

(ΓL)

{ · , · }Iw

1−πL
q ϕq 1−ϕq

{ · , · }′Iw

commutative.

Remark. Given m ∈ M ψq=1 and g ∈ (M ∨)ψq=q/ϕ−1
q (πL), {m, g}Iw ∈ B†

rig,Cp
(ΓL) is

characterized by

〈
{m, g}Iw, λ

〉
=

{(
1− πL

q
ϕq

)
(m), λ

(
(1− ϕq)(g)

)}
for all λ ∈ B†

rig,Cp
(ΓL).

We claim that

〈
{m, g}Iw, µ

〉
= (1− ϕq)

(
{m, µ(g)}

)
for all µ ∈ D(ΓL, Cp).

By a density argument, it suffices to prove it for Dirac distributions δγ ∈ D(ΓL, Cp)

(that act as γ ∈ ΓL and so commute with ϕq and ψq). Then, using proposition 186,

〈
{m, g}Iw, δγ

〉
=
{

m, γ
(
(1− ϕq)(g)

)}
− πL

q
{

ϕq(m), γ
(
(1− ϕq)(g)

)}
=
{

m, γ
(
(1− ϕq)(g)

)}
− πL

q
ϕq
({

m, γ
(
ψq ◦ (1− ϕq)(g)

)})
= {m, γ(g)} − {m, ϕq(γ(g))} = {m, γ(g)} − ϕq

(
{ψq(m), γ(g)}

)
= {m, γ(g)} − ϕq

(
{m, γ(g)}

)
.

In the non-relative Lubin–Tate situation, where ϕq is the identity on Cp, we see
that

〈
{m, g}Iw, ·

〉
factors through B†

rig,Cp
(ΓL)/D(ΓL, Cp) and, by proposition 189,

we deduce that {m, g}Iw ∈ D(ΓL, Cp). I do not know how to obtain an Iwasawa
pairing with values in D(ΓL, Cp) in general. . .

Proposition 197. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
and consider the B†

rig,Cp
–linear

map

Twχφ : M −→M (χφ)

m 7−→ m⊗ t0
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(which is not B†
rig,Cp

(ΓL)–linear). More generally, for i ∈ Z≥0, define Twχi
φ
=
(
Twχφ

)i

and Tw
χ−i

φ
=
(
Twχi

φ

)−1. For every i ∈ Z, the diagram

M ψq=1 × (M ∨)
ψq=

q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

M (χi
φ)

ψq=1 × (M ∨(χ−i
φ ))

ψq=
q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

{ · , · }Iw

Tw
χi

φ
Tw

χ−i
φ

Tw
χi

φ

{ · , · }Iw

is commutative.

Proof. See lemma 2.62 of Schneider–Venjakob’s preprint [35], whose proof works
verbatim in the relative Lubin–Tate situation.

Proposition 198. Let D be a ϕq–module over L (e.g., D ∈ Ob
(
(Fil, ϕq)–ModL

)
). Con-

sider M = B†
rig,Cp

⊗L D ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,Cp ,fr

)
, so that

M ∨ = HomB†
rig,Cp

(
M , Ω1

B†
rig,Cp

) ∼= B†
rig,Cp

⊗L D∗, where D∗ = HomL(D, L).

The natural (evaluation) pairing between D and D∗ makes the diagram

(
B†

rig,Cp
(ΓL)⊗L D

)
×
(
B†

rig,Cp
(ΓL)⊗L D∗

)
B†

rig,Cp
(ΓL)

((
B†

rig,Cp

)ψq=0 ⊗L D
)
×
((

Ω1
B†

rig,Cp

)ψq=0 ⊗L D∗
)

(
B†

rig,Cp
⊗L D

)ψq=0 ×
(
Ω1

B†
rig,Cp
⊗L D∗

)ψq=0 B†
rig,Cp

(ΓL)

γ−1◦M◦ι⊗idD Mχφ⊗idD∗

⊆ ⊆

{ · , · }′Iw

commutative.

Proof. A direct calculation using corollary 193 yields this result; see lemma 2.66 of
Schneider–Venjakob’s preprint [35] for the details.

9.4 Cohomology from (ϕq, ΓL)–modules

Finally, we can put together the results of the previous subsections to compute
different kinds of cohomology groups of a representation in terms of its associated
(ϕq, ΓL)–modules.
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9.4.1 Iwasawa cohomology groups as duals

In this subsection we explain the main technical result of Schneider–Venjakob’s
article [34] adapted to the relative Lubin–Tate situation.

Lemma 199. Let T ∈ Ob
(
RepOK ,tor(GL)

)
. The long exact sequence of cohomology of

HL associated with the short exact sequence

0 T A⊗OK T A⊗OK T 0
ϕq−1

is

0 H0(L∞, T) D(T) D(T) H1(L∞, T) 0.
ϕq−1

Proof. The short exact sequence in the statement arises from lemma 69 after apply-
ing · ⊗OK T (and is again exact because A is flat over OK). Then, as in lemma 5.2
of Schneider–Venjakob’s article [34], by taking generators of T it suffices to prove
that Hi(L∞, A/πn

LA) = 0 for all i, n ≥ 1. An induction argument on n reduces the
claim to the case n = 1; that is, to Hi(HL, E) = 0 for all i ≥ 1, which is clear thanks
to the isomorphism HL

∼= Gal(E/EL).

Theorem 200 (Schneider–Venjakob). Let T ∈ Ob
(
RepOK

(GL)
)

and consider the
character τ = χcyc · χ−1

φ . There is an exact sequence

0 H1
Iw(L∞/L, T) D(T(τ−1)) D(T(τ−1)) H2

Iw(L∞/L, T) 0
ψq−1

that is functorial in T. Furthermore, Hi
Iw(L∞/L, T) = 0 for all i ∈ Z \ { 1, 2 }.

Proof. The proof for the relative Lubin–Tate situation is very similar to the proofs
of lemma 5.12 and theorem 5.13 of Schneider and Venjakob’s article [34]. Here we
just summarize the general strategy.

For every n ∈ Z≥1, set Tn = T/πn
KT. Applying lemma 199 to T∨n (1) and taking

Pontryagin duals (see the next paragraphs for some subtleties) yields an exact
sequence

0 H1(L∞, T∨n (1)
)∨ D

(
T∨n (1)

)∨ D
(
T∨n (1)

)∨ H0(L∞, T∨n (1)
)∨ 0.

ϕ−1
q ◦ϕ∨q (·)−1

Technically, we should take Pontryagin duals over OK everywhere and get
ϕ∨q − 1 in the middle arrow. However, lemma 5.3 of Schneider–Venjakob’s article
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[34] gives an isomorphism Homcont
OK

( · , K/OK) ∼= Homcont
OL

( · , L/OL) and then we
have to add the composition with ϕ−1

q to preserve OL–linearity. Tracing through
the isomorphisms in the paragraph immediately preceding loc. cit., we check next
that ϕ−1

q ◦ ϕ∨q ( · )− 1 is the correct dual of ϕq − 1 over OL:
• Let D be an OL–module whose two Pontryagin duals we want to compare.
• Since L/K is separable (characteristic 0),

trL/K : L× L K

(x, y) trL/K(xy)

is a perfect pairing. If

d−1
L/K = { x ∈ L : trL/K(xOL) ⊆ OK } = π−s

K OL,

then we get a perfect pairing

trL/K(π
−s
K ·) : OL ×OL OK

(x, y) trL/K(π
−s
K xy)

which induces an isomorphism of OL–modules OL
∼= HomOK(OL, OK).

• Taking ⊗OK (K/OK) we obtain

L/OL HomOK(OL, K/OK)

x trL/K(π
−s
K x ·)

∼= HomOK(OL, OK)⊗OK (K/OK) ∼=

(all isomorphims of OL–modules).
• But HomOK(OL, · ) is right adjoint to restriction of scalars from OL to OK via

the following isomorphisms:

HomOK(D, K/OK) HomOL

(
D, HomOK(OL, K/OK)

)
f

[
d 7→ f (d · )

]
g( · )(1) g

∼=

• Combining everything, we obtain the isomorphism

HomOL(D, L/OL) HomOK(D, K/OK)

f trL/K(π
−s
K f ( · ))

∼= HomOL

(
D, HomOK(OL, K/OK)

)∼=

151



of OK–modules. If, moreover, D is a (ϕq, ΓL)–module over AL, then ϕ∨q
makes sense on HomOK(D, K/OK) but not on HomOL(D, L/OL), where we

have to use
(

ϕ∨q
)ϕ−1

q instead.
Via the identifications provided by corollary 169 and by proposition 182 applied

to T∨n (1), the previous exact sequence can be rewritten as

0 H1
Iw(L∞/L, Tn) D(Tn(τ−1)) D(Tn(τ−1)) H2

Iw(L∞/L, Tn) 0
ψq−1

and so one only needs to prove using general results that the projective limit of
these sequences for n ∈ Z≥1 is exact.

9.4.2 Analytic cohomology

Consider a finite extension L′ of L contained in L∞ (e.g., L′ = L or L′ = Ln for some
n ≥ 1) and set ΓL′ = Gal(L∞/L′). Let V ∈ Repan

K (GL). We can identify H1(L′, V)

with Ext1
RepK(GL′ )

(K, V). Then we define the analytic and the overconvergent (first)
cohomology subgroups to be the subgroups of the usual (continuous) cohomology
that classify analytic and overconvergent extensions, respectively. That is to say,
we define H1

an(L′, V) and H1
†(L′, V) to make the diagram

H1(L′, V) Ext1
RepK(GL′ )

(K, V)

H1
†(L′, V) Ext1

Rep†
K(GL′ )

(K, V)

H1
an(L′, V) Ext1

Repan
K (GL′ )

(K, V)

∼=

∼=

⊆ ⊆

∼=

⊆ ⊆

commutative.
By theorem 91, one should be able to compute H1

an(L′, V) by means of the
(ϕq, ΓL′)–module D†

rig(V). To do that, we use the theory of analytic cohomology as
in sections 2.1 and 2.2 of Berger–Fourquaux’s article [7] (cf. section 5 of Colmez’s
article [17] and section 4 of Fourquaux–Xie’s article [22]).

Definition 201. Let G be a locally K–analytic semigroup and let

M = lim−→
r∈R

Mr = lim−→
r∈R

lim←−
s∈Sr

Mr,s

be an LF space with a K–proanalytic action of G. We write C•(G, M) for the
inhomogeneous continuous cochain complex of G with coefficients in M and
C•an(G, M) for the subcomplex of locally K–analytic cochains. More precisely,
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Ci
an(G, M) is the subspace of Ci(G, M) of locally analytic functions in the sense

that they locally have values in some Mr and then the compositions with the
projection to Mr,s are analytic for all s ∈ Sr. We define

H∗(G, M) = H∗
(
C•(G, M)

)
and H∗an(G, M) = H∗

(
C•an(G, M)

)
.

Remark. We want to work with M = M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,L,fr

)
and G = ΓL′ ,

Φ× ΓL′ or Ψ× ΓL′ , where

Φ = 〈ϕq〉 = { ϕn
q : n ∈ Z≥0 }

and

Ψ =
〈ϕ−1

q (πL)

q
ψq

〉
=

{(ϕ−1
q (πL)

q
ψq

)n
: n ∈ Z≥0

}
are discrete semigroups and the K–analytic structure comes from ΓL. In particular,
we want to study H1

an(G, M) = Z1
an(G, M)/B1

an(G, M), where
• Z1

an(G, M) is the subset of f ∈ C1
an(G, M) such that f (gh) = f (g) + g( f (h))

for all g, h ∈ G and
• B1

an(G, M) is the subset of f ∈ C1
an(G, M) of the form g 7→ (g− 1)(m) for

some m ∈ M.

Theorem 202 (Berger–Fourquaux). Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,L,fr

)
. For i = 0

or 1,
Hi

an(Φ× ΓL′ , M ) ∼= Hi
an(Ψ× ΓL′ , M ).

Proof. See theorem 2.2.2 and corollary 2.2.3 of Berger–Fourquaux’s article [7],
whose proofs work in the same way in the relative Lubin–Tate situation (taking
into account that ψq is normalized in a different way and so the (ψq = 1)–parts of
modules in loc. cit. correspond to

(
ψq = q/ϕ−1

q (πL)
)
–parts in our notation).

Proposition 203. Let V ∈ Ob
(
Repan

K (GL)
)
. There are natural isomorphisms

H1
an(L′, V) ∼= H1

an(Φ× ΓL′ , D†
rig(V)) ∼= H1

an(Ψ× ΓL′ , D†
rig(V)).

Proof. See proposition 2.2.1 of Berger–Fourquaux’s article [7].

9.4.3 The operator Θb and construction of cocycles

Choose n ∈ Z≥1 large enough so that `n = π−n
K log ◦χφ defines an isomorph-

ism ΓLn
∼= OK (cf. section 8.5.2). Let b = (b1, . . . , br) be a Zp–basis of ΓLn . In
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section 8.5.5 we defined an operator

Θb = q−n
r

∏
j=1

(
log(χφ(bj))

N∇
bj − 1

)
on OK–analytic (ϕq, ΓL)–modules using the operator N∇ from lemma 90. Our goal
in this subsection is to use the operator Θb to construct cocycles in Z1

an(ΓLn , M) for
certain spaces M.

For each i ∈ Z, write N∇,i = N∇ − i.

Lemma 204. Let f (Z) ∈
(
B+

rig,L
)ψq=0. For every h ∈ Z≥1,

(N∇,h−1 ◦ · · ·N∇,1 ◦Θb)( f )(Z) ∈
( logφ(Z)

ϕn
q (Z)

)h

B+
rig,L.

Proof. This result is analogous to lemma 2.4.2 of Berger–Fourquaux’s article [7].
We explain its proof here for the relative Lubin–Tate situation for the convenience
of the reader.

We can prove the lemma by induction on h. For the base case h = 1, pick
a sequence of vm ∈ Fφ,m \ Fφ,m−1 for m ∈ Z≥1 with the compatibility condition
vm = ϕ−1(φ(vm+1)) (e.g., by picking a generator (zm)m≥1 ∈ Tφ Fφ and setting
vm = ϕm

q (zm)).
We claim that Θb( f )(vm) = 0 for all m > n. Indeed, lemma 2.4.1 of Berger–

Fourquaux’s article [7] implies that

Θb( f )(vm) =
1

qm TrLm/Ln( f (vm))

and it suffices to prove that the last trace is 0. But the Gal(Lm/Lm−1)–conjugates
of vm are the elements of Fφ,m \ Fφ,m−1, which can be expressed as Fφ(vm, w1) with
w1 ∈ Fφ,1. Thus,

TrLm/Lm−1( f (vm)) = ∑
w1∈Fφ,1

f (Fφ(vm, w1)) = πL(ϕq ◦ ψq)( f )(vm) = 0

because ψq( f ) = 0 by hypothesis.
The previous claim implies that Θb( f )(Z) vanishes at all the torsion points in

Fφ,m for m > n and so it must be divisible by logφ(Z)/(ϕn
q (Z)) in B+

rig,L.
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Now suppose that the result has been proved for h and write

(N∇,h−1 ◦ · · · ◦ N∇,1 ◦Θb)( f ) = logφ(Z)h fh(Z)
(ϕn

q (Z))h for some fh ∈ B+
rig,L.

We can compute

(N∇,h ◦ · · · ◦ N∇,1 ◦Θb)( f ) = (logφ(Z)∂φ − h)
(

logφ(Z)h fh(Z)
(ϕn

q (Z))h

)

= logφ(Z)h+1 ∂φ( fh(Z))(ϕn
q (Z))h − fh(Z)∂φ((ϕn

q (Z))h)

(ϕn
q (Z))2h

=

( logφ(Z)

ϕn
q (Z)

)h+1

fh+1,

where
fh+1 = ∂φ( fh(Z))ϕn

q (Z)− h fh(Z)∂φ(ϕn
q (Z)) ∈ B+

rig,L.

Proposition 205. Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,L,fr

)
and let b = (b1, . . . , br) be a

Zp–basis of ΓLn as above. For every y ∈ M ψq=q/ϕ−1
q (πL), there exists a unique cocycle

cb(y) ∈ Z1
an
(
ΓLn , M ψq=q/ϕ−1

q (πL)
)

such that

cb(y)(bk
j ) = q−n

( log(χφ(bj))(bk
j − 1)

bj − 1

r

∏
i=1
i 6=j

log(χφ(bi))N∇
bi − 1

)
(y)

for all j ∈ { 1, . . . , r } and all k ∈ Z≥0. Moreover,

cb(y)′(1) = lim
k→∞

cb(y)(bk
j )− cb(y)(1)

log(χφ(bk
j ))

= Θb(y).

Proof. See proposition 2.5.1 of Berger–Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin–Tate situation.

Lemma 206. In the situation of proposition 205, if b′ = (b′1, . . . , b′r) is another Zp–basis
of ΓLn , then the cocycles cb(y) and cb′(y) are cohomologous.

Proof. See lemma 2.5.3 of Berger–Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin–Tate situation.
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Lemma 207. In the situation of proposition 205, take m ≥ n and let a = (a1, . . . , ar) be
a Zp–basis of ΓLm . Then

cor([ca(y)]) = [cb(y)] in H1
an
(
ΓLn , M ψq=q/ϕ−1

q (πL)
)
,

where cor denotes the corestriction from ΓLm to ΓLn .

Proof. See lemma 2.5.4 of Berger–Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin–Tate situation.

9.4.4 Construction of analytic cohomology classes

Definition 208. Let V ∈ Ob
(
Repan

K (GL)
)

and consider an integer n � 0 and a
Zp–basis b = (b1, . . . , br) of ΓLn as in section 9.4.3. We define the map

h1
Ln,V : D†

rig(V)
ψq=

q

ϕ−1
q (πL) → H1

an(Ln, V)

to be the composition of the map

D†
rig(V)ψq=q/ϕ−1

q (πL) −→ H1
an
(
ΓLn , D†

rig(V)ψq=q/ϕ−1
q (πL)

)
y 7−→ [cb(y)]

from proposition 205 with the maps

H1
an
(
ΓLn , D†

rig(V)ψq=q/ϕ−1
q (πL)

)
↪→ H1

an
(
Ψ× ΓLn , D†

rig(V)
) ∼= H1

an(Ln, V)

(see proposition 203 for the last isomorphism).

Remark. Given m ≥ n, lemma 207 implies that cor ◦ h1
Lm,V = h1

Ln,V . Therefore, we
may extend the definition of h1

Ln,V to all n ∈ Z≥1 and even to h1
L,V by requiring

that these maps be compatible with corestriction.

9.5 (Generalized) Herr complexes

Following section 3.2 of Schneider–Venjakob’s preprint [35], we can reinterpret
the constructions of the previous subsection by means of (a generalized version
of) Herr complexes.
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9.5.1 Some constructions in homological algebra

We use the notation introduced in section 9.4.2. In the following, we use the
symbol ? for either an (analytic) or nothing. Let G be either Φ or Ψ and let g be
the generator of the semigroup G. Consider a finite extension L′ of L contained in
L∞ and set ΓL′ = Gal(L∞/L′). Let M be an LF space with a K–proanalytic action
of ΓL′ that commutes with g (e.g., if M = M is an OK–analytic (ϕq, ΓL)–module
over B†

rig,L). We define T •? (G× ΓL′ , M) to be the total (cohomological) complex of
the double complex

...
...

C2
? (ΓL′ , M) C2

? (ΓL′ , M)

C1
? (ΓL′ , M) C1

? (ΓL′ , M)

C0
? (ΓL′ , M) C0

? (ΓL′ , M)

0 0

g−1

g−1

g−1

concentrated horizontally in degrees 0 and 1. That is, if we write (C•, d•) for the
complex C•? (ΓL′ , M), the complex T •? (G× ΓL′ , M) is given by

T i
? (G× ΓL′ , M) = Ci ⊕ Ci−1

with differentials (
di 0

g− 1 −di−1

)
: Ci ⊕ Ci−1 −→ Ci+1 ⊕ Ci

for all i ∈ Z.
The first filtration (i.e., the one obtained by looking at pieces with horizontal

degree ≤ m for varying m ∈ Z) gives rise to a spectral sequence

IE
i,j
2 = Hi(G, Hj

?(ΓL′ , M)
)
=⇒ Hi+j(T •? (G× ΓL′ , M)

)
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that degenerates to the short exact sequences

0
Hi−1

? (ΓL′ , M)

(g− 1)
Hi(T •? (G× ΓL′ , M)

)
Hi

?(ΓL′ , M)g=1 0.

Remark. Like Schneider and Venjakob, we follow the sign conventions from
Nekovář’s book [29]. Namely, given two complexes (X•, d•X) and (Y•, d•Y) of
R–modules, we define

• the shifted complex X[n]• given by X[n]i = Xi+n and di
X[n] = (−1)ndXi+n

(for n ∈ Z),
• the complex Hom•R(X, Y) given by

Homi
R(X, Y) = ∏

n∈Z

HomR(Xn, Yn+i)

and
di

Hom
(

f : Xn → Yn+i) = ((−1)i−1 f ◦ dn−1
X , dn+i

Y ◦ f
)

(if Y is concentrated in degree 0, then Homi
R(X•, Y) = HomR(X−i, Y) and

di
Hom( f ) = (−1)i−1 f ◦ d−i−1

X ),
• the complex (X⊗R Y)• given by

(X⊗R Y)i =
⊕
n∈Z

(Xn ⊗R Yi−n)

and

di
X⊗Y(x⊗ y) = dn

X(x)⊗ y + (−1)nx⊗ di−n
Y (y) if x ∈ Xn and y ∈ Yi−n,

and
• for a morphism of complexes f • : X• → Y•, the mapping cone complex

Cone( f )• given by Cone( f )i = Xi+1 ⊕Yi and

di
Cone( f ) =

(
−di+1

X 0

− f i+1 di
Y

)
.

In particular, we can express

T •? (G× ΓL′ , M) = Cone
(

C•? (ΓL′ , M)
g−1−−→ C•? (ΓL′ , M)

)
[−1].
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9.5.2 Cohomology of Herr complexes

Keep the notation of section 9.5.1 (here and in the following subsections). Next we
give some examples of cohomology groups that appeared earlier and which can
be computed using complexes of the form T •? (G× ΓL′ , M).

Theorem 209 (Thomas). Let M ∈ Ob
(
(ϕq, ΓL)–Modan

B†
rig,L,fr

)
. For every i ∈ Z, there

are canonical isomorphisms

Hi
an(Φ× ΓL′ , M ) ∼= Hi(T •an(Φ× ΓL′ , M )

)
and

Hi
an(Ψ× ΓL′ , M ) ∼= Hi(T •an(Ψ× ΓL′ , M )

)
.

Proof. See theorem 11.6 of Thomas’s article [40].

Corollary 210. Let V ∈ Ob
(
Repan

K (GL)
)
. There is a canonical isomorphism

H1
an(L′, V) ∼= H1(T •an(Φ× ΓL′ , D†

rig(V))
)
.

Proof. This is a combination of proposition 203 and theorem 209.

Remark. Using these results, we can reinterpret definition 208 as follows. Let
V ∈ Ob

(
Repan

K (GL)
)

and take an integer n� 0 and a Zp–basis b = (b1, . . . , br) of
ΓLn . Write M = D†

rig(V). Then h1
Ln,V is the composition of

M
ψq=

q

ϕ−1
q (πL) H1(T •an(Ψ× ΓLn , M )

)
H1(T •an(Φ× ΓLn , M )

)
y [(cb(y), 0)] [(cb(y), mb,y)]

∼=

with the isomorphism in corollary 210, where

mb,y = Ξb(ϕq − 1)(y)

is the unique element in M ψq=0 such that

(ϕq − 1)cb(y)(γ) = (γ− 1)mb,y for all γ ∈ ΓLn

(cf. proposition 205).
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On the other hand, given T ∈ Ob
(
RepOK

(GL)
)
, V = K⊗OK T and an integer

n ≥ 0, theorem 200 induces a “projection” morphism

prLn,V : D(V(τ−1))ψq=1 ∼= H1
Iw(L∞/L, V) −→ H1(Ln, V),

where the last arrow is induced by the natural projection

H1
Iw(L∞/L, T) = lim←−

m≥1
H1(Lm, T)→→ H1(Ln, V).

One might hope to express prLn,V similarly in terms of, say, the cohomology of
the complex T •(Ψ× ΓLn , D†

rig(V(τ−1))) if V(τ−1) is K–analytic. But this is not so
easy because the isomorphism deduced from theorem 200 was defined by local
Tate duality. At least we have the following result:

Proposition 211. Let V ∈ Ob
(
Rep†

K(GL)
)
. There is a natural isomorphism

H1(T •(Φ× ΓL′ , D†
rig(V))

) ∼= H1
†(L′, V).

Proof. See theorem 3.6 and lemma 3.7 of Schneider–Venjakob’s preprint [35].

9.5.3 Duality in terms of Herr complexes

Let W ∈ Ob
(
Repan

K (GL)
)

and set M = D†
rig(W). Let T = T • = T •(Φ× ΓL′ , M )

and T ∗ = Homcont
K (T , K) (this is the dual complex, as introduced in the remark of

section 9.5.1). More generally, we use the notation · ∗ for the topological dual of
any topological K–vector space. For every i ∈ Z, there is a canonical morphism

H−i(T ∗) =
Ker(d−i

T ∗)

Im(d−i−1
T ∗ )

=
Ker

(
(di−1
T )∗

)
Im
(
(di
T )
∗) −→

(
Ker(di

T )

Im(di−1
T )

)∗
= Hi(T )∗

given by (
f : T i → K

)
7−→

(
Ker(di

T )

Im(di−1
T )

f−→ K
)

.

By lemma 3.10 and remark 3.11 of Schneider–Venjakob’s preprint [35], this map is
surjective in general and even an isomorphism if Hi+1(T ) is finite-dimensional
over K. In particular, we obtain a morphism

H1(T ∗[−2]) = H−1(T ∗)→→ H1(T )∗

that is an isomorphism whenever H2(T ) has finite dimension over K.
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By proposition 211, we know that H1(T ) ∼= H1
†(L′, W) ⊂ H1(L′, W). In addi-

tion, theorem 171 gives a perfect pairing

〈 · , · 〉Tate : H1(L′, W)×H1(L′, W∗(1))→ K

that we can use to identify the dual H1
†(L′, W)∗ with a quotient H1

/†(L′, W∗(1)) of
H1

†(L′, W∗(1)). Therefore, we obtain a canonical morphism

H1(T ∗[−2])→→ H1(T )∗ ∼= H1
/†(L′, W∗(1))

making the diagram

H1(T )×H1(T ∗[−2]) K

H1
†(L′, W)×H1

/†(L′, W∗(1)) K

∼ =

〈 · , · 〉Tate

commutative, where the upper pairing is induced by evaluation at the level of
cochains.

To understand the morphism H1(T ∗[−2])→ H1
/†(L′, W∗(1)), we will need to

study the complex T ∗[−2]. But there is a duality of complexes that is very explicit:
the “self-duality” of Koszul complexes.

9.5.4 Koszul complexes

Now assume that L′ = Ln for n � 0 and pick a Zp–basis b = (b1, . . . , br) of
ΓLn . Keep the rest of the notation as in section 9.5.3. Let R = Zp[[ΓLn ]] and
consider the free R–module N = Rr with standard basis e1, . . . , er. The elements
[b1]− 1, . . . , [br]− 1 ∈ R give rise to a (homological) Koszul complex

K•(b) : · · ·
m+1∧

N
m∧

N
m−1∧

N · · ·dm+1 dm

with differentials given by

dm(ei1 ∧ · · · ∧ eim) =
m

∑
k=1

(−1)k−1([bik ]− 1)ei1 ∧ · · · ∧ êik ∧ · · · ∧ eim

(where the hat over eik means that this element is omitted). Write K•(b) for the
(cohomological) Koszul complex defined by Km(b) = K−m(b) and dm = d−m and

161



consider the dual complex K∗,•(b) = Hom•R(K•(b), R) (i.e., the complex given
by K∗,m = HomR(Km(b), R) and d∗,m = (−1)m+1d∗m+1). There is a “self-duality”
isomorphism of complexes

K•(b) ∼= K∗,•(b)[r]

that can be described explicitly as follows: the basis e1, . . . , er of N induces an
identification

R ∼=
r∧

N

1 7→ e1 ∧ e2 ∧ · · · ∧ er

that we can use to define isomorphisms

m∧
N HomR

( r−m∧
N,

r∧
N
)
∼= HomR

( r−m∧
N, R

)
ei1 ∧ · · · ∧ eim

(
ej1 ∧ · · · ∧ ejd−m 7→ ei1 ∧ · · · ∧ eim ∧ ej1 ∧ · · · ∧ ejd−m

)
for all m ∈ Z.

Given an OK–analytic (ϕq, ΓL)–module M over B†
rig,L), we define

K•(b, M ) = K•(b)⊗R M ,

K•(b, M ) = K•(b)⊗R M ,

K∗,•(b, M ) = K∗,•(b)⊗R M .

Section 4.2 of Colmez and Nizioł’s article [18] explains that K•(b) is a projective
resolution of Zp in the category of topological R–modules, like the completed
standard complex X• given by Xm = R⊗(m+1) that can be used to compute con-
tinuous group cohomology via homogeneous cochains, and so there is a unique
(up to homotopy) quasi-isomorphism X• → K•(b). In this way, we obtain a
quasi-isomorphism

K∗,•(b, M ) ∼= HomR(K•(b), M )→ Homcont
R (X•, M )→ C•(ΓLn , M ).

Therefore, we can replace the Herr complex

T •(Φ× ΓLn , M ) = Cone
(

C•(ΓLn , M )
ϕq−1
−−−→ C•(ΓLn , M )

)
[−1]
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with the complex

K∗,•(Φ× ΓLn , M ) = Cone
(

K∗,•(b, M )
ϕq−1
−−−→ K∗,•(b, M )

)
[−1]

in our study of the cohomology of (K–analytic) representations because we have
an induced quasi-isomorphism

K∗,•(Φ× ΓLn , M )→ T •(Φ× ΓLn , M ).

Since we wanted to study the dual of the latter complex, we will need the following
result:

Proposition 212. In the situation above, the “self-duality” of Koszul complexes induces
a natural isomorphism

(
K∗,•(b, M )

)∗ ∼= K∗,•(b, M ∨)[r].

Proof. As mentioned in the proof of theorem 200, the paragraph before lemma
5.3 of Schneider–Venjakob’s article [34] shows that we can use the trace pairing
to identify L ∼= HomK(L, K) and then we can identify L–duals and K–duals of
L–vector spaces. Therefore,

(
K∗,•(b, M )

)∗ ∼= Homcont
L
(
K∗,•(b)⊗R M , L

)
∼= HomR

(
HomR(K•(b), R), Homcont

L (M , L)
)

∼= Hom•R
(
HomR(K•(b), R), R

)
⊗R Homcont

L (M , L).

Now, by paragraph 1.2.8 of Nekovář’s book [29], there is a biduality isomorphism

K•(b) ∼= Hom•R
(
HomR(K•(b), R), R

)
given by x 7→ (−1)deg(x)x∗∗. In addition, by proposition 185, the residue pairing
induces an isomorphism

Homcont
L (M , L) ∼= HomB†

rig,L

(
M , Ω1

B†
rig,L

)
= M ∨.

Combining these two isomorphisms with the previous ones, we deduce that

(
K∗,•(b, M )

)∗ ∼= K•(b) ∼= M ∨.
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Finally, we can use the “self-duality” K•(b) ∼= K∗,•(b)[r] to express(
K∗,•(b, M )

)∗ ∼= K∗,•(b)[r]⊗R M ∨ ∼= K∗,•(b, M ∨)[r].

9.5.5 Duality in terms of Herr complexes, revisited

In this subsection, take V ∈ Ob
(
RepK(GL)

)
such that W = V(τ−1) is K–analytic.

Continue with the notation from section 9.5.3. As mentioned above, we may
replace the Herr complex T with

K∗ = K∗,• = K∗,•(Φ× ΓLn , M ),

which computes the same cohomology, and our goal is to describe the map

H1((K∗,•)∗[−2]
)
→→ H1

/†(Ln, W∗(1))

induced by local Tate duality. But, by proposition 212, we have an isomorphism

(K∗,•)∗[−2] ∼= Cone
((

K∗,•(b, M )
)∗ ϕ−1

q ◦ϕ∗q (·)−1
−−−−−−−→

(
K∗,•(b, M )

)∗)
[−1]

∼= Cone
(

K∗,•(b, M ∨)[r]
ψq−1
−−−→ K∗,•(b, M ∨)[r]

)
[−1].

TODO: Apparently, Schneider and Venjakob can prove that the complex appear-
ing in the last line (or something very similar) computes exactly H1

/†(Ln, W∗(1))
and they use Tate duality again to obtain a factorization of prLn,V : M ψq=1 →
H1(Ln, V) through a very simple map to the cohomology of a complex of this kind.
This part is not written at all in the version that I have of their preprint [35], but
they told me that the final version will have it.

Proposition 213. Let V ∈ Ob
(
RepK(GL)

)
such that V(τ−1) is K–analytic. For every

i ∈ Z, the diagram

D(V(τ−1))ψq=1 ×D†
rig(V

∗(1))
ψq=

q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

H1(L, V(χ−i
φ ))×H1(L, V∗(1)(χi

φ)) L ⊆ Cp

pr
L,V(χ−i

φ )
◦Tw

χ−i
φ

h1
L,V∗(1)(χi

φ)
◦Tw

χi
φ

{ · , · }Iw

−1
Ω ev

χ−i
φ

〈 · , · 〉Tate

is commutative, where ev
χ−i

φ
is the map given by evaluation of distributions at χ−i

φ . (Here,

the maps Twχi
φ

and Tw
χ−i

φ
are defined as in proposition 197.)
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Proof. TODO: the proof depends on the part that is not written in the preprint [35].
The final version shouldn’t change much in any case.
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10 The regulator

This section contains the most important results of this part. The main result of
Schneider and Venjakob’s preprint [35] is the construction of a regulator map with
an interpolation formula analogous to those of Lei–Loeffler–Zerbes for cyclotomic
extensions. The regulator map will be essentially “dual” to the big logarithm map
introduced in Berger–Fourquaux’s article [7], and the interpolation formula for
the regulator is a consequence of the interpolation formula for the big logarithm
and that “duality”. All the constructions introduced so far are the necessary pieces
to prove such results, that we generalize here to the relative Lubin–Tate setting.

10.1 The definition of the regulator map

Recall that we defined τ = χcycχ−1
φ . The Lubin–Tate character χφ is OK–analytic

with (non-trivial) Hodge–Tate weight 1. In contrast, the base change OK(1) of the
cyclotomic character χcyc has all its Hodge–Tate weights equal to 1, so it cannot be
OK–analytic unless K = Qp.

Definition 214. Let T ∈ Ob
(
Repcrys

OK ,fr(GL)
)

and consider V = K⊗OK T. Suppose

that T(τ−1) ∈ Ob
(
Repcrys,an,≥0

OK ,fr (GL)
)

and that Dcrys,K(V(τ−1))ϕq=1 = 0. We define
the p–adic regulator

LT : H1
Iw(L∞/L, T) −→ D(ΓL, Cp)⊗L Dcrys,K(V(τ−1))

to be the composition of the following maps:
(1) the isomorphism H1

Iw(L∞/L, T) ∼= D(T(τ−1))ψq=1 from theorem 200;
(2) the equality D(T(τ−1))ψq=1 = N(T(τ−1))ψq=1 from proposition 132;
(3) the map

1− πL

q
ϕq : N(T(τ−1))ψq=1 −→ N(ϕq)(V(τ−1))ψq=0

(well-defined thanks to the relation

ψq ◦ ϕq =
q

ϕ−1
q (πL)

and because N(T(τ−1)) ⊆ N(ϕq)(V(τ−1)) by lemma 123);
(4) the inclusion N(ϕq)(V(τ−1))ψq=0 ↪→ (B+

rig,L)
ψq=0 ⊗L Dcrys,K(V(τ−1)) given

by the last part of proposition 127;
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(5) the inclusion

(B+
rig,L)

ψq=0 ⊗L Dcrys,K(V(τ−1)) ⊆ (B+
rig,Cp

)ψq=0 ⊗L Dcrys,K(V(τ−1))

induced by B+
rig,L ⊆ B+

rig,Cp
, and

(6) the isomorphism

(B+
rig,Cp

)ψq=0 ⊗L Dcrys,K(V(τ−1)) ∼= D(ΓL, Cp)⊗L Dcrys,K(V(τ−1))

induced by the Mellin transform M : D(ΓL, Cp) ∼= (B+
rig,Cp

)ψq=0 (see defini-
tion 151).

10.2 The big exponential map

Lemma 215. Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and take h ∈ Z≥1 such that the Hodge–Tate
weights of V are ≤ h or, equivalently, Fil−h Dcrys,K(V) = Dcrys,K(V). There is an exact
sequence

0
h⊕

k=0

tk
φDcrys,K(V)ϕq=π−k

L
(
B+

rig,L ⊗L Dcrys,K(V)
)ψq=

q

ϕ−1
q (πL)

(B+
rig,L)

ψq=0 ⊗L Dcrys,K(V)
h⊕

k=0

Dcrys,K(V)

1− πk
L ϕq

0,

1−ϕq

∆

where the morphism ∆ is given by

f (Z)⊗ δ 7−→
(

∂k
φ( f )(0) · δ mod (1− πk

L ϕq)(Dcrys,K(V))
)

0≤k≤h
.

Proof. See lemma 3.5.1 of Berger–Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin–Tate situation.

Remark. For every f ∈
(
(B+

rig,L)
ψq=0 ⊗L Dcrys,K(V)

)∆=0, lemma 215 shows that

there is y ∈
(
B+

rig,L ⊗L Dcrys,K(V)
)ψq=q/ϕ−1

q (πL) such that f = (1− ϕq)(y). Observe
that (N∇,h−1 ◦ · · · ◦ N∇,0)(y) is independent of the choice of such a preimage y if
Dcrys,K(V)ϕq=π−h

L = 0 because

N∇,h−1 ◦ · · · ◦ N∇,0 annihilates
h−1⊕
k=0

tk
φDcrys,K(V)ϕq=π−k

L .
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Moreover, (N∇,h−1 ◦ · · · ◦ N∇,0)(y) ∈ logh
φ B+

rig,L ⊗L Dcrys,K(V) (cf. the proof of
lemma 204).

Definition 216. Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and take h ∈ Z≥1 such that the
Hodge–Tate weights of V are ≤ h and Dcrys,K(V)ϕq=π−h

L = 0. By the diagram at
the end of section 7.5.3, we can identify D†

rig(V) with B†
rig,L ⊗B+

rig,L
M (Dcrys,K(V))

and then view logh
φ B†

rig,L ⊗L Dcrys,K(V) ⊆ D†
rig(V) (cf. the proof of lemma 125).

The big exponential map

ΩV,h :
(
(B+

rig,L)
ψq=0 ⊗L Dcrys,K(V)

)∆=0 → D†
rig(V)

ψq=
q

ϕ−1
q (πL)

is defined by
ΩV,h( f ) = (N∇,h−1 ◦ · · · ◦ N∇,1 ◦ N∇,0)(y),

where y is an element of
(
B+

rig,L ⊗L Dcrys,K(V)
)ψq=q/ϕ−1

q (πL) with the property that
f = (1− ϕq)(y) (see lemma 215 and the remark after it).

10.3 Interpolation of exponentials and duals

Definition 217. Let D be a ϕq–module over L (e.g., an object in (Fil, ϕq)–ModL).
(1) For each n ∈ Z≥1, we define the morphism

ϕ−n
q : B+

rig,L[log−1
φ ]⊗L D −→ Ln((tφ))⊗L D

f (Z)
logφ(Z)h ⊗ δ 7−→ 1

th
φ,n

f ϕ−n
q
(
F

ϕ−n
q

φ

(
zn, exp

ϕ−n
q

φ (tφ,n)
))
⊗ ϕ−n

q (δ)

where
tφ,n =

tφ

ϕ−n
q (πL) · · · ϕ−1

q (πL)
.

(2) We define ∂D : Ln((tφ))⊗L D → Ln⊗L D to be the map that takes the constant
coefficient of a formal series in tφ.

Lemma 218. Let D be a ϕq–module over L and let m, n ∈ Z≥0 with m ≥ n. For every

y ∈
(
B+

rig,L[log−1
φ ]⊗L D

)ψq=q/ϕ−1
q (πL),

q−m TrLm/Ln

(
∂D(ϕ−m

q (y))
)
=

q−n∂D(ϕ−n
q (y)) if n ≥ 1,

(1− q−1ϕ−1
q )∂D(y) if n = 0.
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Proof. This result is analogous to lemma 2.4.3 of Berger–Fourquaux’s article [7].
We adapt the proof to the relative Lubin–Tate situation for the convenience of the
reader.

Write

y =
1

logφ(Z)h

∞

∑
k=0

Zk ⊗ ak with ak ∈ D for all k ≥ 0,

so that

ϕ−m
q (y) = t−h

φ,m

∞

∑
k=0

(
F

ϕ−m
q

φ

(
zm, exp

ϕ−m
q

φ (tφ,m)
))k
⊗ ϕ−m

q (ak).

Write vm = ϕm
q (zm). Observe that

F
ϕ−m

q
φ

(
zm, exp

ϕ−m
q

φ (tφ,m)
)
= ϕ−m

q
(
Fφ(vm, expφ(tφ))

)
in Lm((tφ)).

If m ≥ 2, the Gal(Lm/Lm−1)–conjugates of vm are the Fφ(vm, w1) for w1 ∈ Fφ,1.
Therefore,

TrLm/Lm−1

(
∂D(ϕ−m

q (y))
)

= ∂D

(
∑

w1∈Fφ,1

t−h
φ,m

∞

∑
k=0

ϕ−m
q

(
Fφ

(
Fφ(vm, w1), expφ(tφ)

))k
⊗ ϕ−m

q (ak)

)

= ∂D

(
ϕ−m

q
(
πL(ϕq ◦ ψq)(y)

))
= ∂D

(
ϕ−m

q

(
πL ϕq

( q
ϕ−1

q (πL)
y
)))

= ∂D(qϕ−m+1
q (y)).

Similarly, if m = 1, the Gal(L1/L)–conjugates of v1 are the Fφ(v1, w1) for
w1 ∈ Fφ,1 \ { 0 }. An analogous calculation summing over all w1 ∈ Fφ,1 and
subtracting the summand for w1 = 0 shows that

TrL1/L
(
∂D(ϕ−1

q (y))
)
= ∂D(qy− ϕ−1

q (y)).

Lemma 219. Let V ∈ Ob
(
Repcrys,an

K (GL)
)
. By the diagram at the end of section 7.5.3,

we can identify D†
rig(V) with B†

rig,L ⊗B+
rig,L
M (Dcrys,K(V)) and we obtain an inclusion

D†
rig(V)ψq=q/ϕ−1

q (πL) ⊆ B+
rig,L[log−1

φ ]⊗L Dcrys,K(V).

Proof. See theorem 3.1.1 of Berger–Fourquaux’s article [7], whose proof works
almost verbatim in the relative Lubin–Tate situation.

Let V ∈ Ob
(
Repan

K (GL)
)

and let L′ be a finite extension of L contained in L∞.
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We write expL′,V : (BdR/B+
dR ⊗K V)GL′ → H1(L′, V) for Bloch–Kato’s exponential

map for V regarded as a representation of GL′ . By proposition A.1 in the appendix
of Schneider–Venjakob’s article [34], this map can also be constructed more directly
from the fundamental exact sequence

0 K Bϕq=1
crys,K BdR/B+

dR 0.

Let exp∗L′,V∗(1) : H1(L′, V)→ (BdR⊗K V)GL′ denote Bloch–Kato’s dual exponential
map for V regarded as a representation of GL′ (i.e., the dual of expL′,V∗(1) using
local Tate duality on cohomology and the natural duality on DdR,K).

Theorem 220 (Berger–Fourquaux). Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and let n ∈ Z≥0.

Write ∂V for the map ∂Dcrys,K(V) from definition 217. For every y ∈ D†
rig(V)ψq=q/ϕ−1

q (πL),

exp∗Ln,V∗(1)
(
h1

Ln,V(y)
)
=

q−n∂V(ϕ−n
q (y)) if n ≥ 1,

(1− q−1ϕ−1
q )∂V(y) if n = 0.

Proof. See theorem 3.3.1 of Berger–Fourquaux’s article [7], whose proof works
exactly in the same way for the relative Lubin–Tate situation (now using proposi-
tion 205 and lemma 218).

Theorem 221 (Berger–Fourquaux). Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and let n ∈ Z≥0.
Take h ∈ Z≥0 such that Fil−h Dcrys,K(V) = Dcrys,K(V) (i.e., the Hodge–Tate weights of
V are ≤ h) and write ∂V for the map ∂Dcrys,K(V) from definition 217. Identifying D†

rig(V)

with B†
rig,L ⊗B+

rig,L
M (Dcrys,K(V)) we view logh

φ B+
rig,L ⊗L Dcrys,K(V) ⊂ D†

rig(V) (cf.

the proof of lemma 125). Then, for every y ∈ (B+
rig,L ⊗L Dcrys,K(V))ψq=q/ϕ−1

q (πL),

yh = (N∇,h−1 ◦ · · · ◦ N∇,1 ◦ N∇,0)(y) ∈ D†
rig(V)ψq=q/ϕ−1

q (πL)

and

h1
Ln,V(yh) =

(−1)h−1(h− 1)! expLn,V
(
q−n∂V(ϕ−n

q (y))
)

if n ≥ 1,

(−1)h−1(h− 1)! expL,V
(
(1− q−1ϕ−1

q )∂V(y)
)

if n = 0.

Proof. See theorem 3.3.2 of Berger–Fourquaux’s article [7], whose proof works
exactly in the same way for the relative Lubin–Tate situation (now using proposi-
tion 205 and lemma 218).
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10.4 Interpolation formula for the big exponential

Let V ∈ Ob
(
Repcrys,an

K (GL)
)

and take h ∈ Z≥1 such that the Hodge–Tate weights
of V are ≤ h. For every i ∈ Z, the twist V(χi

φ) has Hodge–Tate weights ≤ h + i
and we can identify

Dcrys,K(V(χi
φ))
∼= Dcrys,K(V)⊗L Dcrys,K(K(χi

φ)) = Dcrys,K(V)⊗ (t−i
φ ⊗ ti

0)

and
D†

rig(V(χi
φ))
∼= D†

rig(V)⊗B†
rig,L

D†
rig(K(χ

i
φ)) = t−i

φ D†
rig(V)⊗ ti

0,

where t0 is a generator of K(χφ).

Theorem 222 (Berger–Fourquaux). With the notations and assumptions introduced

above, let y ∈
(
B+

rig,L ⊗L Dcrys,K(V)
)ψq=q/ϕ−1

q (πL) and f = (1− ϕq)(y). Let n ∈ Z≥0.
(1) If h + i ≥ 1, then

h1
Ln,V(χi

φ)

(
ΩV,h( f )⊗ ti

0
)
= (−1)h+i−1(h + i− 1)! ·

·


expLn,V(χi

φ)

(
q−n∂V(χi

φ)

(
ϕ−n

q (∂−i
φ y⊗ (t−i

φ ⊗ ti
0))
))

if n ≥ 1,

expL,V(χi
φ)

(
(1− q−1ϕ−1

q )∂V(χi
φ)
(∂−i

φ y⊗ (t−i
φ ⊗ ti

0))
)

if n = 0.

(2) If h + i ≤ 0, then

exp∗Ln,V(χi
φ)
∗(1)

(
h1

Ln,V(χi
φ)

(
ΩV,h( f )⊗ ti

0
))

=
1

(−h− i)!
·

·

q−n∂V(χi
φ)

(
ϕ−n

q (∂−i
φ y⊗ (t−i

φ ⊗ ti
0))
)

if n ≥ 1,

(1− q−1ϕ−1
q )∂V(χi

φ)
(∂−i

φ y⊗ (t−i
φ ⊗ ti

0)) if n = 0.

Proof. This result is an application of theorems 220 and 221. For the details, see
theorem 3.5.3 of Berger–Fourquaux’s article [7], whose proof works verbatim in
the relative Lubin–Tate situation.

10.5 The abstract reciprocity formula

Consider T ∈ Ob
(
Repcrys

OK ,fr(GL)
)

such that T(τ−1) ∈ Ob
(
Repcrys,an

OK ,fr (GL)
)
. Write

V = K⊗OK T. By the large diagram of functors in section 7.5.3, we obtain

M = D†
rig,Cp

(V(τ−1)) = B†
rig,Cp

⊗A+
L

N(T(τ−1)) ∈ Ob
(
(ϕq, ΓL)–Mod0,an

B†
rig,Cp ,fr

)
,
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which is a base change ofM
(
Dcrys,K(V(τ−1))

)
. The goal of this subsection is to

interpret the pairings of section 9.3.7 in terms of Dcrys,K, following section 2.3.5 of
Schneider–Venjakob’s preprint [35].

Write D = Dcrys,K(V(τ−1)) and identify it with D
(
B+

rig,L ⊗A+
L

N(T(τ−1))
)

as
in section 7.5.5. The map ξ : D →

(
B+

rig,L ⊗A+
L

N(T(τ−1))
)
[λ−1] from lemma 101

induces an isomorphism

1⊗ ξ : B†
rig,Cp

[log−1
φ ]⊗L D →M [log−1

φ ]

(observe that, over B†
rig,Cp

, inverting logφ is the same as inverting λ). Let

compM : M [log−1
φ ]→ B†

rig,Cp
[log−1

φ ]⊗L D

denote the inverse of 1⊗ ξ.
Observe that the actions of ΓL, ϕq and ψq on M extend to M [log−1

φ ]: for every
m ∈M and k ∈ Z≥0,

γ
( m

logk
φ

)
=

χ−k
φ (γ)γ(m)

logk
φ

for γ ∈ ΓL,

ϕq

( m
logk

φ

)
=

π−k
L ϕq(m)

logk
φ

, and

ψq

( m
logk

φ

)
=

ϕ−1
q (πk

L)ψq(m)

logk
φ

.

Also,
(
M [log−1

φ ]
)ψq=0

= M ψq=0[logφ] and the continuous action of B†
rig,Cp

(ΓL)

on M ψq=0 extends to a continuous action on
(
M [log−1

φ ]
)ψq=0 (see lemma 2.63 of

Schneider–Venjakob’s preprint [35]).
On the other hand, as Ω1

B†
rig,Cp

∼= B†
rig,Cp

(χφ), we can identify

M ∨ = HomB†
rig,Cp

(
M , Ω1

B†
rig,Cp

) ∼= D†
rig,Cp

(V(τ−1))∗(χφ)

∼= D†
rig,Cp

(V∗(τ))(χφ) ∼= D†
rig,Cp

(V∗(1)) = B†
rig,Cp

⊗A+
L

N(T∗(1)).

This suggests that we have to work with

Dcrys,K(V∗(1)) = Dcrys,K(V∗(χφτ)) ∼= Dcrys,K(K(χφ))⊗L Dcrys,K(V(τ−1)∗)

and we set D∗ = Dcrys,K(V(τ−1)∗) and D0 = Dcrys,K(K(χφ)) for convenience.
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Then we can express

compM ∨ : M ∨[log−1
φ ]→ B†

rig,Cp
[log−1

φ ]⊗L D0 ⊗L D∗

as the composition

M ∨[log−1
φ ] ∼= HomB†

rig,Cp [log−1
φ ]

(
M [log−1

φ ], Ω1
B†

rig,Cp
[log−1

φ ]
)

HomB†
rig,Cp [log−1

φ ]

(
B†

rig,Cp
[log−1

φ ]⊗L D, Ω1
B†

rig,Cp
[log−1

φ ]
)

Ω1
B†

rig,Cp
[log−1

φ ]⊗L D∗

B†
rig,Cp

[log−1
φ ]⊗L D0 ⊗L D∗,

· ◦ comp−1
M

∼=
compΩ1

B†
rig,Cp

⊗ idD∗

where

compΩ1
B†

rig,Cp

: Ω1
B†

rig,Cp
[log−1

φ ] −→ B†
rig,Cp

[log−1
φ ]⊗L D0

dlogφ

logφ

7−→ 1⊗ (t−1
φ ⊗ t0)

is obtained from the identification Ω1
B†

rig,Cp

∼= B†
rig,Cp

(χφ) (see lemma 173).

Let [ · , · ]crys = [ · , · ]D,crys : D × D∗ → Dcrys,K(K) = L denote the natural
(evaluation) pairing or, by abuse of notation, any base change of it.
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Lemma 223. The diagram

M ψq=0 × (M ∨)ψq=0 B†
rig,Cp

(ΓL)

M ψq=0[log−1
φ ]× (M ∨)ψq=0[log−1

φ ]

((
B†

rig,Cp

)ψq=0
[log−1

φ ]⊗L D
)
×
((

Ω1
B†

rig,Cp

)ψq=0
[log−1

φ ]⊗L D∗
)

((
B†

rig,Cp

)ψq=0 ⊗L D
)
×
((

Ω1
B†

rig,Cp

)ψq=0 ⊗L D∗
)

B†
rig,Cp

(ΓL)

(
B†

rig,Cp
(ΓL)⊗L D

)
×
(
B†

rig,Cp
(ΓL)⊗L D∗

)
B†

rig,Cp
(ΓL)

{ · , · }′Iw

compM

∼= · ◦ comp−1
M∼ =

{ · , · }′Iw

γ−1◦M◦ι⊗idD

∼=

∼ = Mχφ⊗idD∗

[ · , · ]crys

is commutative on the vertical intersections.

Proof. For the upper half of the diagram, see lemma 2.65 of Schneider–Venjakob’s
preprint [35] (whose proof works verbatim in the relative Lubin–Tate situation).
The lower half of the diagram is proposition 198.

Recall that

compM ∨ =
(
compΩ1

B†
rig,Cp

⊗ idD∗
)
◦
(
· ◦ comp−1

M

)
and lemma 223 uses · ◦ comp−1

M , which is why the term D0 does not appear. But
D0 = L(t−1

φ ⊗ t0), so we can use the fixed basis element t−1
φ ⊗ t0 to account for D0

if we use compM ∨ .

Lemma 224. The diagram

B†
rig,Cp

(ΓL)⊗L D∗ B†
rig,Cp

(ΓL)⊗L D0 ⊗L D∗

(
Ω1

B†
rig,Cp

)ψq=0
[log−1

φ ]⊗L D∗
(
B†

rig,Cp
)
)ψq=0

[log−1
φ ]⊗L D0 ⊗L D∗

∼=

λ⊗d∗ 7→λ⊗(t−1
φ ⊗t0)⊗d∗

Mχφ⊗idD∗
N∇
Ω M⊗idD0⊗D∗compΩ1

B†
rig,Cp

⊗ idD∗

∼=

is commutative.
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Proof. Knowing that Mχφ(λ) = M(Twχφ(λ))dlogφ and that the bottom arrow
maps dlogφ to logφ⊗(t

−1
φ ⊗ t0), a straight-forward computation shows that the

dashed arrow is defined by

λ⊗ (t−1
φ ⊗ t0)⊗ d∗ 7→ logφ(Z)M(Twχφ(λ))⊗ (t−1

φ ⊗ t0)⊗ d∗.

But, by definition 161,

M(Twχφ(λ)) =
∂φ

Ω
M(λ).

The lemma follows from this and from the fact that N∇ acts on B†
rig,Cp

as logφ(Z)∂φ

(cf. lemma 90).

Theorem 225 (Schneider–Venjakob). With the notation introduced in section 10.5,
the diagram

M ψq=0 × (M ∨)ψq=0 B†
rig,Cp

(ΓL)

((
B†

rig,Cp

)ψq=0
[log−1

φ ]⊗L D
)
×
((

B†
rig,Cp

)ψq=0
[log−1

φ ]⊗L D0 ⊗L D∗
)

(
B†

rig,Cp
(ΓL)⊗L D

)
×
(
B†

rig,Cp
(ΓL)⊗L D0 ⊗L D∗

)
B†

rig,Cp
(ΓL)⊗L D0

{ · , · }′Iw

compM compM∨

⊗(t−1
φ ⊗t0)∼ =

γ−1◦M◦ι⊗idD
N∇
Ω M⊗idD0⊗D∗

[ · , · ]crys

is commutative on the vertical intersections.

Proof. This theorem is a combination of lemmata 223 and 224.

10.6 Relation between the regulator and the big exponential

The regulator map introduced in definition 214 and the big exponential map
from definition 216 are essentially adjoint via the abstract reciprocity map. More
precisely:

Theorem 226 (Schneider–Venjakob). Let T ∈ Ob
(
Repcrys

OK ,fr(GL)
)

and consider the
crystalline representation V = K⊗OK T. Suppose that

(i) V(τ−1) is K–analytic with Hodge–Tate weights ≥ 0 and
(ii) Dcrys,K(V(τ−1))ϕq=1 = 0

and that
(i’) V∗(1) is K–analytic with Hodge–Tate weights ≤ 1,

(ii’) Dcrys,K(V∗(1))ϕq=π−1
L = 0 and
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(iii’) Dcrys,K(V∗(1))ϕq=0 = 0.
(Observe that conditions (i) and (ii) are equivalent to conditions (i’) and (ii’), respectively.)
We use the same notation as in section 10.5, namely:

• M = D†
rig,Cp

(V(τ−1)),
• M ∨ = D†

rig,Cp
(V∗(1)),

• D = Dcrys,K(V(τ−1)),
• D∗ = Dcrys,K(V∗(1)) and
• D0 = Dcrys,K(K(χφ)).

Then, the diagram

M ψq=1 (M ∨)
ψq=

q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

D(T(τ−1))ψq=1 D†
rig,Cp

(V∗(1))
ψq=

q

ϕ−1
q (πL) D(ΓL, Cp)

H1
Iw(L∞/L, T)

(
D(ΓL, Cp)⊗L D

) (
(B+

rig,Cp
)ψq=0 ⊗L D0 ⊗L D∗

)
(

D(ΓL, Cp)⊗L D
) (

D(ΓL, Cp)⊗L D0 ⊗L D∗
)

D(ΓL, Cp)⊗L D0

×
{ · , · }Iw

⊂

∼=

= ⊂

· ⊗(t−1
φ ⊗t0)∼ =

ΩLT

γ−1ι∼ =

ΩV∗(1),1

×

M⊗idD0⊗D∗∼ =

[ · , · ]crys

is commutative.

Proof. This is analogous to corollary 3.3 of Schneider–Venjakob’s preprint [35] (but
note that the normalizations of the lower pairing and some vertical maps are not
the same there!).

On the one hand, by definition 214, the diagram

D(T(τ−1))ψq=1 M ψq=1

H1
Iw(L∞/L, T)

M ψq=0

D(ΓL, Cp)⊗L D

(B+
rig,Cp

)ψq=0 ⊗L D (B†
rig,Cp

)ψq=0[log−1
φ ]⊗L D

∼=

1−πL
q ϕq

LT

compM∼=

⊂
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is commutative. On the other hand, by definition 216, the diagram

(M ∨)
ψq=

q

ϕ−1
q (πL)

(M ∨)ψq=0

(B†
rig,Cp

)ψq=0 ⊗L D0 ⊗L D∗ (B+
rig,Cp

)ψq=0 ⊗L D0 ⊗L D∗

D(ΓL, Cp)⊗L D0 ⊗L D∗

1−ϕq

compM∨

N∇

ΩV∗(1),1

M⊗idD0⊗D∗

is also commutative. But the abstract reciprocity formula (see theorem 225) and
the definition of the Iwasawa pairing (see definition 196) yield the commutative
diagram

M ψq=1 × (M ∨)
ψq=

q

ϕ−1
q (πL) B†

rig,Cp
(ΓL)

M ψq=0 × (M ∨)ψq=0 B†
rig,Cp

(ΓL)

((
B†

rig,Cp

)ψq=0
[log−1

φ ]⊗L D
)
×
((

B†
rig,Cp

)ψq=0
[log−1

φ ]⊗L D0 ⊗L D∗
)

(
B†

rig,Cp
(ΓL)⊗L D

)
×
(
B†

rig,Cp
(ΓL)⊗L D0 ⊗L D∗

)
B†

rig,Cp
(ΓL)⊗L D0(

D(ΓL, Cp)⊗L D
)
×
(

D(ΓL, Cp)⊗L D0 ⊗L D∗
)

D(ΓL, Cp)⊗L D0

{ · , · }Iw

1−πL
q ϕq 1−ϕq

{ · , · }′Iw

compM compM∨

⊗(t−1
φ ⊗t0)∼ =

γ−1◦M◦ι⊗idD
N∇
Ω M⊗idD0⊗D∗

[ · , · ]crys

⊂ ⊂ [ · , · ]crys ⊂

(commutative only on vertical intersections). The theorem follows by comparing
these three diagrams.

10.7 Interpolation formula for the regulator

We are are finally in a position to prove an interpolation formula for the regulator
map with the ingredients introduced in the previous sections. In analogy to the
regulator maps for cyclotomic extensions, the interpolation formula will be given
in terms of Bloch–Kato dual exponentials and logarithms. Since that duality is
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defined in terms of χcyc instead of χφ, we will need to introduce some notation.
Choose a compatible system ε of primitive pn–th roots of unity for n ∈ Z≥1

and consider the usual period

tε = t = log([ε]) ∈ Bcrys.

Let t1 be a basis of K(1) (i.e., K(1) = K ⊗ t1 and GL acts on t1 by χcyc). We can
identify Dcrys,K(K(1)) and Dcrys,K(K(χφ)) with L using the bases t−1

ε ⊗ t1 and
t−1
φ ⊗ t0, respectively. We define tτ−1 = tεt−1

φ ⊗ t−1
1 ⊗ t0 ∈ Dcrys,K(K(τ−1)), so that

the diagram

Dcrys,K(K(1)) L(t−1
ε ⊗ t1) L

Dcrys,K(K(χφ)) L(t−1
φ ⊗ t0) L

· t
τ−1

∼=

∼=

is commutative.
Given T ∈ Ob

(
RepOK ,fr(GL)

)
, x ∈ H1

Iw(L∞/L, T) and i ∈ Z, we set as usual
V = K ⊗OK T and define x

χ−i
φ
∈ H1(L, V(χ−i

φ )) to be the image of x under the
composition

H1
Iw(L∞/L, T) H1

Iw(L∞/L, T(χ−i
φ )) H1(L, T(χ−i

φ )) H1(L, V(χ−i
φ )).

⊗ti
0 cor

Theorem 227 (Schneider–Venjakob). Let T ∈ Ob
(
Repcrys

OK ,fr(GL)
)

and consider the
crystalline representation V = K⊗OK T. Suppose that

(i) V(τ−1) is K–analytic with Hodge–Tate weights ≥ 0 and
(ii) Dcrys,K(V(τ−1))ϕq=1 = 0

and that
(i’) V∗(1) is K–analytic with Hodge–Tate weights ≤ 1,

(ii’) Dcrys,K(V∗(1))ϕq=π−1
L = 0 and

(iii’) Dcrys,K(V∗(1))ϕq=0 = 0.
(Observe that conditions (i) and (ii) are equivalent to conditions (i’) and (ii’), respectively.)
Let x ∈ D(T(τ−1))ψq=1 and let i ∈ Z.

(1) If i ≥ 0, then

LT(x)(χi
φ) = −i! Ω−i ·

·
(
1− ϕ−1

q (πi+1
L )ϕ−1

q
)−1
(

1− πL

q
ϕq

)(
tτ−1 exp∗L,V∗(1)(χi

φ)
(x

χ−i
φ
)
)

(where we abuse notation and write exp∗
L,V∗(1)(χi

φ)
for the composition of this dual
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exponential with the projection to the identity component).
(2) If i ≤ −1, then

LT(x)(χi
φ) =

(−1)i+1Ω−i

(−i− 1)!
·

·
(
1− ϕ−1

q (πi+1
L )ϕ−1

q
)−1
(

1− πL

q
ϕq

)(
tτ−1 logL,V(χ−i

φ )(x
χ−i

φ
)
)

TODO: these formulas are *wrong* for the relative LT case because the period Ω does not
commute with operators like (1− ϕq). Moreover, I should really check what I wrote in
step 5 below.

Proof. The theorem will be a consequence of theorems 222 and 226. The idea to
prove it is to use that the pairing [ · , · ]crys is non-degenerate and check that both
sides of the equalities give the same result when paired with an arbitrary element.

• Step 1. Observe that

(
(γ−1ι ◦ΩLT)(x)

)
(χ−i

φ ) = Ω
(
δγ−1 · ι(LT(x))

)
(χ−i

φ )

= Ωχ−i
φ (γ−1)LT(x)(χi

φ) = (−1)iΩLT(x)(χi
φ),

as γ−1 ∈ ΓL is defined by χφ(γ−1) = −1.
• Step 2. Let y ∈ D(ΓL, Cp)⊗L Dcrys,K(V∗(1)). To prove the theorem, it suffices

to show that

[
(−1)iΩLT(x)(χi

φ), y(χ−i
φ )
]

crys = [TODO, y(χ−i
φ )]crys.

Indeed, since the distribution y ∈ D(ΓL, Cp)⊗L Dcrys,K(V∗(1)) is arbitrary,
so is its value y(χ−i

φ ) ∈ Cp ⊗L Dcrys,K(V∗(1)); the result will follow by the
non-degeneracy of [ · , · ]crys. Now, by step 1 and theorem 226, we can express

[
(−1)iΩLT(x)(χi

φ), y(χ−i
φ )
]

crys =
[
(γ−1ι ◦ΩLT)(x), y

]
crys(χ

−i
φ )

=
{

x, (ΩV∗(1),1 ◦ (M⊗ 1))(y)
}

Iw(χ
−i
φ )⊗ (t−1

φ ⊗ t0).

Then we can use proposition 213 to compute

−1
Ω
{

x, (ΩV∗(1),1 ◦ (M⊗ 1))(y)
}

Iw(χ
−i
φ ) =

=
〈
prL,V(χ−i

φ )(x⊗ t−i
0 ), h1

L,V∗(1)(χi
φ)

(
ΩV∗(1),1((M⊗ 1)(y))⊗ ti

0
)〉

Tate.

• Step 3. The interpolation formula for
(
ΩV∗(1),1 ◦ (M ⊗ 1)

)
(y) ⊗ ti

0 from
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theorem 222 (with n = 0) contains the term

C(y, i) = ∂V∗(1)(χi
φ)

(
∂−i

φ

(
(1− ϕq)

−1 ◦ (M⊗ 1)(y)
)
⊗ (t−i

φ ⊗ ti
0)
)

that can be computed as follows. By the definition of ∂V∗(1),

C(y, i) = ∂V∗(1)

(
∂−i

φ

(
(1− ϕq)

−1 ◦ (M⊗ 1)(y)
))

and this quantity is the term inside the large parentheses evaluated at Z = 0,
which under M corresponds to the trivial character χtriv. But

∂−i
φ = Ω−i

(
∂φ

Ω

)−i

and
∂φ

Ω
corresponds to Twχφ under M,

so we will be able to express C(y, i) in terms of y(χ−i
φ ) if we can “swap the

positions of ∂−i
φ and (1 − ϕq)−1”. We know that ∂φ ◦ ϕq = πL ϕq ◦ ∂φ by

lemma 65. Thus, working formally,

∂−i
φ ◦ (1− ϕq)

−1 ◦ (M⊗ 1)(y) = ∑
m≥0

∂−i
φ ◦ ϕm

q ◦ (M⊗ 1)(y)

= ∑
m≥0

(π−i
L ϕq)

m ◦ ∂−i
φ ◦ (M⊗ 1)(y)

= ∑
m≥0

(π−i
L ϕq)

m ◦Ω−i(M⊗ 1)
(
Tw

χ−i
φ

y
)

= (1− π−i
L ϕq)

−1
(

Ω−i(M⊗ 1)
(
Tw

χ−i
φ

y
))

.

All in all,
C(y, i) = (1− π−i

L ϕq)
−1(Ω−iy(χ−i

φ )
)
.

• Step 4. Recall that Bloch–Kato’s exponential and dual exponential maps are
related by means of local Tate duality and a crystalline pairing that uses the
cyclotomic character χcyc (instead of χφ as in [ · , · ]crys above). Observe that
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the diagram

Dcrys,K(V(χ−i
φ ))×Dcrys,K(V∗(1)(χi

φ)) Dcrys,K(K(1))

L(t−1
ε ⊗ t1)

L(t−1
φ ⊗ t0)

Dcrys,K(V(τ−1)(χ−i
φ ))×Dcrys,K(V∗(1)(χi

φ)) Dcrys,K(K(χφ))

· tεt−1
φ ⊗(t

−1
1 ⊗t0)

[ · , · ]′crys
∼=· (t−1

ε ⊗t1)
−1(t−1

φ ⊗t0)

[ · , · ]crys

is commutative. Here, we use the prime symbol in the first row just to
distinguish it from the map in the last row, as both are the usual duality
pairings.

(1) If i ≥ 0, take c ∈ H1(L, V(χ−i
φ )) and δ ∈ Dcrys,K(V∗(1)(χi

φ)). We can
express

〈
c, expL,V∗(1)(χi

φ)
(δ)
〉

Tate =
[
exp∗L,V∗(1)(χi

φ)
(c), δ

]′
crys · (t

−1
ε ⊗ t1)

−1

=
[
tεt−1

φ exp∗V∗(1)(χi
φ)
(c)⊗ t−1

1 ⊗ t0, δ
]

crys · (t
−1
φ ⊗ t0)

−1.

(2) If i ≤ −1, take c ∈ H1(L, V∗(1)(χi
φ)) and δ ∈ Dcrys,K(V(χ−i

φ )). We can
express

〈
expL,V(χ−i

φ )(δ), c
〉

Tate =
[
δ, exp∗

L,V(χ−i
φ )

(c)
]′

crys · (t
−1
ε ⊗ t1)

−1

=
[
tεt−1

φ δ⊗ t−1
1 ⊗ t0, exp∗

L,V(χ−i
φ )

(c)
]

crys · (t
−1
φ ⊗ t0)

−1.

From now on, write tτ−1 = tεt−1
φ ⊗ t−1

1 ⊗ t0 to simplify the notation.
• Step 5. If we compose the non-degenerate L–bilinear pairing [ · , · ]crys (resp.
〈 · , · 〉Tate) with the map TrL/K : L → K, we obtain again a non-degenerate
(K–bilinear) pairing because L/K is a finite separable extension. In what
follows, we work implicitly with the new pairings obtained after composing
with TrL/K. One checks easily that, under [ · , · ]crys,

– the adjoint of 1− π−i
L ϕq is 1− ϕ−1

q (π−i−1
L )ϕ−1

q and
– the adjoint of 1− q−1ϕ−1

q is 1− πLq−1ϕq.
TODO: I don’t think the adjointness part is so easy once we consider the
pairing tensored with Cp. I guess that the periods must become uglier (at
least in the relative case, when ϕq has non-trivial action!).
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• Step 6.1. Suppose that i ≥ 0. Combining step 2 with the (first) interpolation
formula from theorem 222 and steps 3, 4.1 and 5, we obtain that

[
(−1)iΩLT(x)(χi

φ), y(χ−i
φ )
]

crys =

= −Ω
〈

x
χ−i

φ
, (−1)ii! expL,V∗(1)(χi

φ)

(
(1− q−1ϕ−1

q )C(y, i)
)〉

Tate ⊗ (t−1
φ ⊗ t0)

= (−1)i+1i! Ω
[
tτ−1 exp∗L,V∗(1)(χi

φ)

(
x

χ−i
φ

)
, (1− q−1ϕ−1

q )C(y, i)
]

crys

= (−1)i+1i! Ω
[(

1− πL

q
ϕq

)(
tτ−1 exp∗L,V∗(1)(χi

φ)

(
x

χ−i
φ

))
,

(1− π−i
L ϕq)

−1(Ω−iy(χ−i
φ )
)]

crys

= (−1)i+1i! Ω1−i ·

·
[(

1− 1
ϕ−1

q (πi+1
L )

ϕ−1
q

)−1(
1− πL

q
ϕq

)(
tτ−1 exp∗L,V∗(1)(χi

φ)

(
x

χ−i
φ

))
,

y(χ−i
φ )

]
crys

and the first part of the theorem follows by the non-degeneracy of the pairing
[ · , · ]crys.

• Step 6.2. Now suppose that i ≤ −1. Combining step 2 with the (second)
interpolation formula from theorem 222 and steps 3, 4.2 and 5, we obtain
that

[
(−1)iΩLT(x)(χi

φ), y(χ−i
φ )
]

crys =

= −Ω
〈
expL,V(χ−i

φ )

(
logL,V(χ−i

φ )

(
x

χ−i
φ

))
,

h1
L,V∗(1)(χi

φ)

(
ΩV∗(1),1((M⊗ 1)(y))⊗ ti

0
)〉

Tate ⊗ (t−1
φ ⊗ t0)

=
−Ω

(−i− 1)!
[
tτ−1 logL,V(χ−i

φ )

(
x

χ−i
φ

)
, (1− q−1ϕ−1

q )C(y, i)
]

crys

=
−Ω

(−i− 1)!

[(
1− πL

q
ϕq

)(
tτ−1 logL,V(χ−i

φ )

(
x

χ−i
φ

))
,

(1− π−i
L ϕq)

−1(Ω−iy(χ−i
φ )
)]

crys

=
−Ω1−i

(−i− 1)!
·

·
[(

1− ϕ−1
q (π−i−1

L )ϕ−1
q
)−1
(

1− πL

q
ϕq

)(
tτ−1 logL,V(χ−i

φ )

(
x

χ−i
φ

))
,

y(χ−i
φ )
]

crys
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and the second part of the theorem follows by the non-degeneracy of the
pairing [ · , · ]crys.

TODO: what happens for characters of finite order?
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Part III

Application
TODO!!!

11 The representation associated with a Hida family

11.1 Berthelot’s functor

In this subsection we recall Berthelot’s functor from formal schemes (satisfying
some extra conditions) to rigid analytic spaces in a concrete setting. The construc-
tion of this functor is described in full generality in paragraph 0.2.6 of Berthelot’s
unpublished article [9].

Let R be a noetherian adic Zp–algebra with an ideal of definition I. Assume
that R/I is of finite type over Fp. Fix a set of generators f1, . . . , fr of the ideal I.

For every n ∈ Z≥1, we define

Rn = R
〈 f n

1
p

, . . . ,
f n
r
p

〉
= R〈Tn,1, . . . , Tn,r〉/( f n

1 − pTn,1, . . . , f n
r − pTn,r).

By the hypothesis on R/I,

Rn/pRn ∼=
(

R/(p, f n
1 , . . . , f n

r )
)
[Tn,1, . . . , Tn,r]

is of finite type over Fp and so Rn is topologically of finite type over Zp. Thus,
An = Rn ⊗Zp Qp is an affinoid Qp–algebra. Write Xn = Spm(An) for the corres-
ponding rigid space.

For m ≥ n ≥ 1, there is a canonical morphism of topological R–algebras
Rm → Rn given by

f m
i
p

= Tm,i 7→ f m−n
i Tn,i = f m−n

i
f n
i
p

.

All these morphisms are compatible and induce a projective system of affinoid
Qp–algebras (An)n≥1. We obtain in this way a rigid analytic space

X = lim−→
n≥1
Xn

with an admissible covering (Xn)n≥1 by affinoids.
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Remark. This construction can be globalized to a functor that attaches a rigid ana-
lytic space X to each locally noetherian formal scheme S over Spf(Zp) equipped
with an ideal sheaf of definition I with the property that the closed subscheme
S0 defined by I is locally of finite type over Spec(Fp).

Example 228. Let us apply this construction to the Iwasawa algebra R = Zp[[T]]
with the ideal of definition I = (p, T). For every n ≥ 1 we get

Rn = Zp[[T]]〈Tn〉/(Tn − pTn) ∼= Zp

〈
T,

Tn

p

〉
.

The affinoid Xn should be thought of as a p–adic closed disc of radius p−1/n (at
least when regarding its Cp–points). Then X can be interpreted as the open disc
of radius 1, as it is the union of the Xn for n ≥ 1.

Our main purpose is to use the p–adic Hodge theory on arithmetic families of
representations over a rigid analytic space to construct a Perrin-Riou logarithm
map as in Castellà’s article [12] but without using the results of Ochiai’s article
[30].

To this aim, we apply Berthelot’s construction to the ring R = I of coefficients
of the Hida family with its maximal ideal as ideal of definition. Consider also the
representation T (or a twist T of it), which is a free I–module of rank 2 with a
continuous action of the Galois group GK. For every n ∈ Z≥1, we define

Tn = T⊗R Rn and Vn = Tn ⊗Zp Qp.

The Vn for n ≥ 1 together form a locally free OX –module V = OX ⊗R[p−1] T[p−1]

of rank 2. The Tn for n ≥ 1 provide a formal model T of V . These sheaves come
equipped with a continuous action of GK and we will want to study H1

Iw(GK, V ).
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