Iwasawa theory and
p—adic Hodge theory

for relative Lubin—Tate extensions

Francesc Gispert

31st January 2022

Abstract

These are notes on some aspects of Iwasawa theory and p—adic Hodge
theory that I worked on in 2020. My goal back then was to compare (big)
Iwasawa cohomology classes attached to a Hida family with other p-adic
L—functions. But the tower of extensions that I had to deal with arised from
the p—power torsion of an elliptic curve with CM, which made it a relative
Lubin-Tate tower. As far as I know, there has been a lot of recent work trying
to adapt the more classical cyclotomic p—adic Hodge theory to Lubin-Tate ex-
tensions. However, nobody published results for the relative Lubin-Tate case
(which is only slightly more complex but sometimes appears more naturally
in applications). These notes contain slight generalizations of other authors’
works with proofs to convince oneself that the theory works essentially in the
same way. My main source of inspiration was the work in progress of Peter
Schneider and Otmar Venjakob.

WARNING: this document has never been revised by anyone else and I
will most likely leave it in this unfinished state. As I wrote it for personal use,
it is very different from an article meant for publication. I share it only so
that others can avoid redoing the tedious work of adapting proofs to relative

Lubin—Tate towers.
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1 Introduction
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Part 1

The classical (cyclotomic) theory

2 Some p-adic Hodge theory

Throughout this section, let K be a finite extension of Q, and let k denote its
residue field. Let F = W(k)[p~!] be the maximal unramified subextension of K.
Fix an algebraic closure K of K and let Gx = Gal(K/K). Let C,, be the completion
of K with the natural action of Gk obtained by requiring continuity.

For every n € Z>1, let ji,» denote the subgroup of p"—th roots of unity in K
and set K, = K(pn). Define also

Koo = | J K

n>1

and let Hx = Gg_, = Gal(K/Kw) and Tx = Gg/Hg = Gal(Ke/K). We will use
analogous notation for F and other field extensions of Q,. Write ex = [Keo : Foo]
and let F’ denote the maximal unramified extension of F inside Fe.

Fix once and for all a compatible system of primitive p"—th roots of unity
¢ in K for all n > 0. Thatis, € # 1 and (e("+1))p = ¢ forall n > 0.
Equivalently, we have fixed a Z,-basis of Z,(1) = @ ppr and the cyclotomic
character xcyc: Gx — Z;j is now defined by the condition

U(s(”)) = (s(”))XCYC(U) foralln > 0 and ¢ € Gy.

Observe that Xeye induces an isomorphism from I'x to an open subgroup of Z;.

Definition 1. A Q,—representation of G is a finite-dimensional Q,~vector space V
endowed with a continuous and linear action of the group Gg. Equivalently, the
Qp-representation is given by a continuous morphism p: Gk — Autq, (V). Let
Repq, (Gk) denote the category of such representations.

Definition 2. A Z,—representation of G is a finite free Z,-module T endowed
with a continuous and linear action of the group Gg. Let Repzp (Gk) denote the

category of such representations.

Remark. Sometimes the notation Repr(GK) is used to refer to a more general
notion of Z,-representations in which T is allowed to be any finitely generated



Z,~module (i.e., allowing the possibility of having torsion). I am only interested
in free Z ,-representations, that arise as Gg—stable lattices of Q,-representations.

Fontaine started a theory of rings of periods which allows us to study Galois
representations in terms of objects and structures resembling those of linear al-
gebra. In the remainder of this section, we recall the construction of all the rings
that might be useful and the corresponding Dieudonné modules. The reference
that I found the most useful is Rebecca Bellovin’s thesis [1] (the results of which
are also published in the form of an article [2]). Cherbonnier—-Colmez’s article [13]
has a very clear summary of the rings too and the last appendix of Berger’s article

[5] contains a helpful diagram outlining their relations.

2.1 Perfect rings of characteristic p

Consider the ring

Ef = lim O¢, = { x,xM, ) eT] Oc, : (DY = x) for all n > O}

x—>xP n>0

with the following operations: for x = (x(”))n>0 and y = (y(”))n>0 in ET, the
elements x 4 y and xy of E* are defined by

(x+y)™ = Lim (x("+m) +y(”+m))pm and  (xy)" = x(My (),

m—o0

These operations arise from the natural coordinate-wise addition and multiplica-

tion of the perfection of 0¢,/pOc, via the bijection

lim (6¢,/poc,) = lim ¢, = EF

x+—xP x> xP

m
% — (x = lim «” )
( n)n20 ( =300 n+m n>0

(also known as tilting). Recall that we have fixed ¢ = (8(0), e, . ) cET.
There is a valuation v on E* defined by

vig(x) = vy (x)
and in fact E* is a valuation ring with fraction field

E=lim C, = { (x@,xM,..) e [TC,: (x™1)" = x foralln > 0}.

x—xP n>0



One can prove that E is an algebraically closed field of characteristic p, perfect
and complete with respect to vi. We write ¢ for the Frobenius endomorphism
x — xP on E as well as for its restriction to E*.

2.2 Perfect rings of characteristic 0

Consider the rings of Witt vectors At = W(E") and A = W(E), which naturally
admit lifts of the Frobenius morphisms that we also call ¢. Define Bt = A*[p~]
and B = A[p~!]. Then A is a complete discrete valuation ring with field of
fractions B and residue field E.

Every element x € A can be expressed as

x=)Y p[x]  with x; € Eforall k
k>0

in a unique way. Similarly, every element x € B is of the form

x= Y p'x] withx, € Eforallk.
k>—o0

Set T = [¢] — 1 € A, where [ - | denotes the Teichmiiller lift.
We mostly work with the weak topology. On A one can define the weak
topology via the basis of open neighbourhoods of 0

p*A 4+ AT fork,n >0

(or alternatively as the product topology coming from the valuation vg on E).
Then the weak topologies on A*, B* and B are the induced ones from the weak
topology on A regarding

A*cA, B=|Jp"A, B'CB.
n>0

All these rings are equipped with continuous actions of ¢ and of Gk (even of

Gq,) given by

o(Lrnl) =Lrh)  and  o(Lpnd) = Dplots)

k k

(where the Galois action on E is naturally induced by that on Cp). The two actions

commute.



221 Overconvergent elements

We will also want to use overconvergent versions of these rings. Take s € R~(. We

define
Ats — { Z P[] € A : v (xg) + _psk. >0forallk >0
k>0 ¢ p—1- -

. sk
and lim vg(x) + PR }

k—o0 p—l_

and B"* = A"[p~1]. It turns out that these rings are complete with respect to the
topology given by the valuation

ws(x) = inf (v () + p”jkl)
and thus become Banach spaces. (On B* we consider the inductive limit after
expressing
]§+,s — U pfn;&'l',s
n=0
and using the topology given by w; on each piece.) In general, we are interested
in these kinds of rings only for s > 0. Therefore, we define

B = U B'"* and A'=B'nA
s>0

with the induced topologies as inductive limit and subspace. (Note that A" is
strictly larger than the uerion of the Ats)) Set Al® = (At®)Hx, Bf® = (Bt®)Hk,
AY = (A")Hx and B}, = (B")Hx (and similarly for other fields).

Remark. Letsy = (p—1)/pands, = p"so = p" }(p — 1) for every n > 1. Then
B consists of the elements x of B for which the series ¢ " (x) converges in the

ring of periods B that we will see in section 2.5.1. The appearance of the “strange’
factor is due to the fact that, for T = ¢ — 1,

VE(fC) = p—l

More generally, for 0 < s < s’ < co withs,s' € Z[p~!] U { o }, we could define

10



the convergence for the late algebra being with respect to the p—adic topology),
(th g for the T: lgebra being with resp he p-adic topology)
where by convention

_Loo = i_ and m =0,

[l (7] p
and E[S/S/] = :&[S/S/] [p~1], which is naturally a Banach algebra. From the structure
on AT, we have continuous actions of Gg on K[S,S/] and on ﬁ[s,s’] and continuous
] and ﬁ[s,s’] — ﬁ[

Frobenius morphisms 13;[5,5/] — K[ . In particular,

ps,ps ps,ps’]

B[s,oo] = ]§+’S, ;&[0/00] = K—’— and A[oo,oo} = :&+

(cf. section 2.1 of Berger’s article [4]).

2.3 Imperfect rings of characteristic p

There is an embedding of k((T)) into E given by T + 7 = ¢ — 1. One can prove
that its image is independent of the choice of e. Let Ep = Im(k((T)) — E) Let E
denote the separable closure of Er inside E and let E* be its ring of integers. One
can prove that E is a dense subfield of E and Fontaine-Wintenberger’s theory of
fields of norms yields an identification Gal(E/Er) = Hr. We define Ex = EFKk,
which is a finite field extension of Er of degree ex = [Ke : Foo] = |Hp/Hkg]. Set
E{ = (ET), which is the ring of integers of Ex.

2.4 Imperfect rings of characteristic 0

We want to define imperfect versions of all the rings with tildes and we start by
lifting the construction of the previous subsection to characteristic 0.

There is an embedding of &¢((T)) into A defined by T +— 7 = [¢] — 1. Let Af
denote the p-adic completion of Im (¢ ((T)) — ;‘;) (recall that A is complete with
the weak topology and so with the p—adic topology too). We can express

Ar = { Zaknk eZ&:ake Ofpforallk € Z and lim Vp(ak) :oo},
keZ k——o0

one can prove that Ar is a complete discrete valuation ring with residue field Er.
Let B = Ap[p~!] be its field of fractions. Since the actions of ¢ and G are given

by
(P(TL') = (1‘|‘7f)p—1 and (T(n) = (1+7T>chc(0) -1,

11



we see that both Ar and By are stable under ¢ and Gr.

Let B be the p—adic completion of the maximal unramified extension of Br
inside B and put A = BN A, so that B = A[p~!]. Then A is a complete discrete
valuation ring with field of fractions B and residue field E. Similarly, define
At =BNA" and Bt = BN B™. Since extensions of Ef correspond to unramified
extensions of Br, the rings AT, A, BT and B are all stable under ¢ and Gg.

Set Ax = AHk and Bx = BHk (if K = F, we indeed recover the rings Ar
and Br defined before). Then Ak is a complete discrete valuation ring with field
of fractions Bx = Ag[p~!] and residue field Ex. The theory of fields of norms
provides us with a uniformizer 77x of Ex and we can take its Teichmiiller lift

ik = [7ix| € Ak. Then we can identify

Bx = { ZakﬂIk(E]NS:akEF'forallkEZ,
kez

inf v, (ax) > — d i ay) = .
inf vp(ax) > —o0 and  lim vp(ar) = oo }
Remark. The rings with tilde are perfect and so ¢ is bijective. However, for the
rings without tilde introduced in this subsection, ¢ is no longer surjective. On the
other hand, one can prove that the ring Ag (resp. the field Bx) contains ¢~ (Ag)

as a dense subring (resp. ¢~ (Bg) as a dense subfield).

2.4.1 The operator ¢

The field B is a totally ramified extension of degree p of ¢(B). Therefore, the
Frobenius morphism ¢: B — B is injective but not surjective. We can at least
define a left inverse ¢ of ¢ as follows:

P(x) = %(P_l(TrB/(p(B)(x))'

By definition, it is clear that ¥(¢(x)) = x. The operator ¢ commutes with the
action of Gk because so does ¢.

More explicitly, one can check that 1, [e],..., [e]’~! is a basis of B over ¢(B).
Then every element x € B is of the form x + x1[e] + - - - 4+ x,_1[¢]/ ! for some
X0, X1,.-+,Xp—1 € ¢(B) and

P(x) = p(xo+x1fe] + -+ xp_1[e]P 1) = x.

In particular, (A) C A.

12



2.4.2 Overconvergent elements

We define overconvergent rings analogously. For s > 0, let B"* = BN B"* and
A"* = AN A"S, each endowed with the subspace topology of its version with tilde
(i.e., the topologies are given by the valuation wy). In general, we are interested in

these kinds of rings only for s > 0. Therefore, we define

B'=[JB"”=BNB'" and A"=B'NnA=BNA'
>0
with the induced topologies as inductive limit and subspace. (Note that, as is the
case with the versions with tildes, A is strictly larger than the union of the A'%.)
For s > 0, we set Bl = (B*)Fk = By N B and AY® = (AT9)Hk = Ag N A"

with the induced topologies as subspaces of B"*. Similarly, we set

Bl = (B")k = | JBl and A} = (A")x =B} nAx.
s>0

Since A is not perfect, for every n € Z> we define AIJQ'/Sn =" (A;p ns). Finally,
for s > 0, we can identify

BI+<’S: { Zakn]f(EB:akEF’forallkEZ,
kez

k
i vl > e andJim, o)+ 1 =0 |
(i.e., these are unbounded Laurent series with bounded coefficients in F/ and
convergent on the half-open annulus 0 < v,(T) < 1/ (exs) evaluated at T = 7rg; cf.
proposition 1.3 of Berger’s article [5] and corollary 1I.2.4 of Cherbonnier-Colmez’s
article [13]).

2.5 Rings of periods

The rings above can be used to define Fontaine’s rings of periods. There is a general
formalism that uses these rings of periods to study p—adic Galois representations
of Gk that are “nice” in some sense in terms of semilinear algebra structures. One
could say that this theory simplifies the structures at the expense of making the
coefficients much more complicated.

These rings of periods allow us to define different notions of admissibility on
the algebraic side that should correspond to geometric properties of the Galois

representations, at least conjecturally. For instance, what are known as de Rham (or

13



B4r—admissible) representations are those that come from geometry and crystalline
(or Berys—admissible) representations are those that have good reduction at p.

2,51 Thering Bgr

There is a Galois-equivariant morphism of rings 8: BT — C p defined by

9( Y Pk[xk]) = Y )

k>—o00 k>—c0

that is continuous with respect to the weak topology on B* and the p-adic topo-
logy on C;. One can show that 6 is surjective and that Ker(6) is a principal ideal

generated by

e T _ [e] — 1
() [T

Then we define BJ; to be the Ker(f)-adic completion of B*. There is an
induced action of Gx on B}, but there is no natural way to define ¢ because
Ker(6) is not stable under ¢. It turns out that B, is a discrete valuation ring
with field of fractions Bqr and residue field C, and any generator of Ker(f) is a

uniformizer. Since 6(7r) = 0, we can define a distinguished element

ﬂk
t=log([d) =log(1+ (1 - 1)) = T (-1 € By

(i.e., the series converges in BJ) which can be regarded as a p-adic analogue of
the complex period 27ti. One can prove that f is a uniformizer of BJ; and that Gk

acts on t through the cyclotomic character:
o(t) = log([o(e)])) = log([e]X><(?) = xeye(0)t  forall o € Gk.

In particular, Bgr = BgR[t_l] and the powers of t define a filtration on Bgg. One
can also prove that (B4g)®k = K.

As a matter of fact, the valuation topology on B is not good enough and the
action of Gg is not continuous. That is why we need to define a more complicated
(and finer) topology. To do so, we consider on A*/ (Ker(6)" N ;ﬁ) the quotient
topology induced by the weak topology on A*, which turns out to coincide with
the one obtained from the p-adic topology on A*. Then

B*/ Ker(0)" = U K*/(Ker(@)h N Zﬁ)
n>0

14



can be made into a p-adic Banach space and so BJ; becomes a Fréchet space.

Definition 3. Let V be a p-adic representation of Gx. We define the de Rham

Dieudonné module
Darx(V) = (Bar ®q, V)X,

which is a filtered K-vector space of dimension < dimg, V. We say that V' is a de
Rham representation if dimg Dgg (V) = dimg, V.

2.5.2 The rings Beys and Bpax

The ring Bgr has the defect that we cannot define a Frobenius action on it. To
remedy this one needs to focus on smaller subrings that are stable under ¢. Think-
ing in these terms leads to the construction of a ring of periods Beys and the
notion of crystalline representations. The problem is that the topology of Bcrys has
some undesirable properties (cf. the second paragraph of section III.2 of Colmez’s
article [15]). Therefore, we actually work with a slightly larger ring Bmax that has a
“nicer” topology. The two rings are interchangeable in the study of representations
because ¢(Bmax) C Berys € Bmax and the periods of crystalline representations

actually lie in

m ¢" (Berys) = m ¢" (Bmax)-

n>0 n>0

We can define B}, = E[o,so} (see the end of section 2.2 for the meaning of this

+
max

notation). By definition, B, is a Banach space and has continuous actions of both
¢ and Gy arising naturally from those on A*. Furthermore, one can prove that
there is a natural Galois-equivariant inclusion B/, — B:{R and that B, contains
the distinguished period t. In particular, ¢(t) = pt. As a subring of B, the ring
B

hax can be identified with

k ~
{ ) akw—k :ar € BT forallk > 0 and lim a; = 0 for the p-adic topology }
k>0 p k—o0

Define Bmax = B,y [t '] with the induced actions of ¢ and Gg. One can
prove that Bgﬁx = F and there is a Gx—equivariant embedding Bmax ®r K — Bgg,

whence Bmax @ K can be endowed with the subspace filtration.

Proposition 4. There is a short exact sequence

0 > Qp > Bmax — Bmax @ (BdR/B:{R) — 0

x — ((1—¢)x,x)

15



of topological Qp—vector spaces called the fundamental exact sequence of p-adic
Hodge theory.

Proof. See proposition II1.3.1 of Colmez’s article [15]. O

Definition 5. Let V be a p-adic representation of Gx. We define the crystalline
Dieudonné module

Dcrys,K(V) - (Bmax ®Qp V)GK/

which is a filtered p—module over K of dimension < dime V. We say that Vis a
crystalline representation if dimp Derys x (V) = dimg, V.

One key property of this theory is that, if V is a crystalline representation, we
can recover V from Derys x(V):

p=1
V= [FﬂO(Bcrys ®F DCWS’K(V))} .

This is a consequence of the fact that (Filo Bcrys)‘f’:1 =Qp.

Theorem 6. Every crystalline representation V is de Rham and

DdR,K(V) = Dcrys,K(V) ®r K.

2.6 The Robbaring

Let s > 0 as before. For every s’ > s, the Banach valuation w is well-defined

on BYS. We define EL’; to be the Fréchet completion of BY* with respect to the

valuations (wy )y~ ¢ (more precisely, we can choose a sequence (s;),>1 going to
infinity and use the family (ws, ),>1 to define the Fréchet topology). The actions of

t,s 5ts _ /pts\H
rig® As usual, we set Brig,K = (Brig) K.
Similarly, the Robba ring B;ri’; x is the Fréchet completion of B}’S with respect

to the family of valuations (wy )y~s. We obtain actions of ¢ and 'y on B;ri';K by

@ and Gk on B"* extend by continuity to B

continuity. If s > 0, we can identify

rig, K

Bl —{ ZakﬂI’QGB:akEF'forallkGZ
kez

k
d li — =
B e vplak) + s }

(i.e., these are unbounded Laurent series with possibly unbounded coefficients
in F" and convergent on the half-open annulus 0 < v,(T) < 1/(eks) evaluated at
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T = 7mig; thus, B;ri’;  corresponds to the ring R (7rk) of Kedlaya—Pottharst-Xiao’s
article [26] for ry = (p — 1)/ (exs) or something similar).

1,5 t,ps . . .
rigk — Biig k is NOt surjective but makes

—module of rank p. Therefore, we can define a left inverse

Remark. The Frobenius morphism ¢: B

t,ps . t,s
B rig K into a free Brig’K

t . :
P: Bri’gsK — BI{; x as in section 2.4.1.

Setsg = (p—1)/pands, = p"so = p" 1 (p—1) forevery n > 0. As mentioned
in a remark in section 2.2, there are injective morphisms ¢~ ": ]NS;Q’S” — B;R. Recall
that B = B N B and observe that there is a copy of K, [¢] inside B;. By
proposition II1.2.1 of Cherbonnier-Colmez’s article [14], for n >> 0 we obtain

~+/Si’l c (P_” ) JF
BK BdR

+rsﬂ
rig, K

morphisms extend by continuity to injective morphisms ¢ " : B;;"K — B forall

by restriction. On the other hand, we have inclusions BL’S” CB and these
n > 0 (cf. propositions 2.11 and 2.12 of Berger’s article [4]).

As usual, we are interested in these kinds of rings only for s > 0, so we define

Bl = U Bf* and B! U Bl

rig — rig rig, K = rig,K*
s>0 s>0

The ring B;rig’ x is also called the Robba ring of K.

2.7 Rings for families

The rings of p-adic Hodge theory introduced up to now are very powerful tools in
the study of p-adic representations of Gk (be it Z,— or Q,-representations of Gg).
But our main goal is to study arithmetic families of such representations: these
will be finite free modules over some “nice” topological ring R over Z, or A over
Q, (satisfying certain finiteness conditions at least) endowed with a continuous
linear action of Gk and from which we can obtain specializations that are p—adic
representations in the classical sense. (The adjective arithmetic here means that
there is no Frobenius morphism ¢ on the base R or A, in contrast to what are
known as geometric families.) Therefore, we will need to put the rings of p—adic
Hodge theory in families by base change to R or to A.
The base rings that we consider are of one of the two following kinds:

17



* either an affinoid Q,—algebra A with an integral model R (if A is reduced,
we take R = AY, the subring of power-bounded elements)

* or a coefficient ring R in the sense of Mazur.

Definition 7. A coefficient ring is a noetherian complete local ring (R, mg) whose
residue field xp is finite (of characteristic p). In particular, R is a topological
Z.,~algebra (with the topology defined by its maximal ideal mg).

2.7.1 Integral families

Definition 8. Let R be a coefficient ring. An R—representation of Gk (or a family of
representations of Gk over R) is a finite free R-module T endowed with a continuous

R-linear action of Gk. Let Repy (Gk) denote the category of such representations.

To study families of representations over R, we will need to replace the rings
A", A, Af and Ag with A™ @)Zp R, A @)Zp R, A¥ @Zp Rand Ag @Zp R, respectively.
Here, the symbol ® denotes the completed tensor product with respect to the
mg-adic topology on R and the p—adic topologies on A and the more decorated
subrings.

Remarks.

* Recall that A is a complete discrete valuation ring with residue field E of
characteristic p. Thus, the p-adic topology on A coincides with the valuation
topology.

* Completing A ®z, R with respect to pA ®z, R + A ®z, mp is the same as
completing it with respect to mg only, as p € mg.

* We can extend the operators ¢,9: A — A to A ®z, R by tensoring with
R (i.e., making them act trivially on R). Then both ¢ and 1 map the ideal
PA®z, R+A®z, mg to itself and we obtain in this way continuous R-linear
maps @, : A@ZP R — A®Zp R.

* As the action of G on A is not continuous for the p-adic topology (because
the action of Gk on E is not discrete), one might prefer to work with the weak
topology instead. Recall that a basis of neighbourhoods of 0 for the weak
topology on A is given by

p*A + "AT  fork,n > 0.

One can check that the completion of A ®z, R obtained using this topology
coincides with the completion defined above (cf. remark 2.2 of Bellovin—
Venjakob’s article [3]). Therefore, the induced action of Gx on A @)Zp R is
continuous.
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* Analogous considerations apply to the other rings under consideration.

2.7.2 Rigid families

Definition 9. Let A be an affinoid Q,-algebra. An A-representation of Gk (or a
family of representations of Gg over A) is a finite free A-module V endowed with
a continuous A-linear action of Gg. Let Rep ,(Gk) denote the category of such
representations.

Let X be a (quasi-separated) rigid analytic space over Q,. An X—representation
of Gk (or a rigid analytic family of representations of Gk over X) is a finite locally free
O y—module ¥ of constant rank d endowed with a continuous & y-linear action of
Gk, in the sense that there exists an admissible affinoid covering (U;);c of X such

that ¥ (U;) is an Oy (U;)-representation of Gk as above for every i € I.

To study this kind of rigid analytic families of representations, we will need
to consider again completed tensor products with the base ring. However, the
topologies in this situation are more complicated because most of the rings are
only Banach or even Fréchet spaces over Q,.

Consider two Fréchet spaces C and C’ over Q, whose topologies are given by
families of seminorms (p;)icr and (p})je;, respectively. For each pair (p;, p}) we

can define a seminorm p; ® p;- on C ®q, C' by

(0i ®p)(z) = inf{ max {p;(x;) - P;‘(yl)}}/

1<I<r

where the infimum runs over all possible representations

X QY withxlECandyleC’foralllglgr.

r
Zz =

I=1

Then we write C 8¢, C’ for the completion of C ®q, C’ with respect to the topology

given by the family of seminorms (p; ® p;)( c1xJ, Which is again a Fréchet space.

i,j)

In fact, the tensor products in our situation are simpler than this because at
least the affinoid algebra A is already a Banach space over Q. Thus, if B is a
Banach algebra over Q,, we can form the Banach algebra B ®Qp A with one single

tensor product norm. If B is a Fréchet algebra over Q, obtained as

B:@Bn

n>1
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where B, is a Q,—Banach algebra for every n > 1, then

B ®Qp A= @(Bn ®Qp A)
n>1
All in all, we can study A-representations of Gk using B ®Qp A, where B can
be any of the rings B'*, BI+<’S, B's, EL’S, ﬁj{é, EL’;  Of BL';  for s > 0 or also B:{R or
B, ... Furthermore, we set

B;rig,K ®Qp A={J (BI{;K ®Qp A)
s>0

(and analogously for the other rings which might have s in the notation). Similarly,
we write

Bar 0o, 4 = |J (£ "Bir g, 4) and  Bmax g, A = [ (* "Bmax G, 4)-
n>0 n>0

All these algebras over A inherit the additional structure (Galois action, Frobenius,
filtration. ..) from the original rings.

Definition 10. Let V be an A-representation of G of rank d.
(1) We define the de Rham Dieudonné module

~ G
Dar (V) = ((Bar ®q, A) ®a V)",

which is a filtered (K ®q, A)-module. If it is locally free of rank d, we say
that V is a de Rham representation.
(2) We define the crystalline Dieudonné module

~ G
Dcrys,K(W) = ((Bmax ®Qp A) XA W) K;

which is a filtered p-module over (K ®q, A). If it is locally free of rank d
over (F ®q, A), we say that V is a crystalline representation.

Finally, the previous constructions can be globalized as follows. Let X" be a
quasi-separated rigid analytic space and let B denote one of the previous rings of
p—adic Hodge theory. We can define a presheaf of topological rings % on X by
setting

BU) =B 3q, Ox(U)

for every affinoid open U = Spm(A) of X.
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Lemma 11. The presheaf 2 is actually a sheaf.
Proof. See lemma 3.3 of Kedlaya-Liu’s article [25]. O

Definition 12. Let " be an X-representation of Gg of rank 4.
(1) We define the de Rham Dieudonné sheaf Z4g x(7') by

Darx(V)U) = (BrU) @6, w) "V(u))GK

for every affinoid open U = Spm(A) of X. If Dar k() is a locally free
(K ®q, Ox)-module of rank d, we say that ¥ is a de Rham representation.
(2) We define the crystalline Dieudonné sheaf Zrys x(7') by

gcrys,K(ﬂf/)(Z/O = (%max(u) ®ﬁX(U) %(u))GK

for every affinoid open U = Spm(A) of X. If Zrys k(7) is a locally free
(F ®q, Ox)-module of rank d, we say that ¥ is a crystalline representation.
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3 (¢,T)-modules

We keep with the notation introduced in section 2. As a matter of fact, the theory
of (¢, I')-modules can be considered as part of p-adic Hodge theory. In the same
spirit, Fontaine introduced a category of (étale) (¢, I'x)-modules, that is a category
in the realm of semilinear algebra, and proved that it is equivalent to the category
of finitely generated Z,~modules with a continuous linear action of G (including
the possibility of torsion).

Therefore, all kinds of constructions with Z ,-representations of Gg should
have equivalent versions using (¢, I'x)-modules. In particular, Herr studied Galois
cohomology with this formalism in his thesis (see the related article [23]) and
Cherbonnier and Colmez applied it to Iwasawa theory in their article [14]. In what

follows, we explain these results and their versions for families of representations.

3.1 First definitions

Definition 13. A ¢-module over A is a finite free Ax—-module D endowed with a
p—semilinear map ¢ = ¢p: D — D. We say that the p-module (D, ¢p) is étale if
the Ax-linearization ¢*(D) = Ax ®¢,a, D — D of ¢ is an isomorphism.

We define (étale) p—modules over other rings such as Bx, A}, BL’S, Al,BY, B

rig,K
or B

rig K analogously.

Remark. Sometimes the name ¢—module is used to refer to a more general notion
in which D is allowed to be any finitely generated Ax—module (not necessarily

free). Since I am only interested in free Z ,-representations, this definition works.

Definition 14. A (¢, I'x)—-module over Ak is a p—module D endowed with a con-
tinuous Ax—semilinear action of I'x commuting with ¢. We say that D is an étale
(¢, Tx)-module if the underlying ¢p—module is étale.

We define (étale) (¢, T'x)-modules over other rings such as Bg, AIJQ'S, B}’S, AL, B};,

B+,S 1

rig,K or Brig,

x analogously.

Definition 15. Let T (resp. V) be a Z,~representation (resp. Q,—representation)
of Gg. We define the associated (¢, I'x)-modules

D(T) = (A®gz, T)Hc  (over Ax)

and
D(V) = (B®q, V)Hc  (over B).
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These modules inherit actions of the operators ¢ and i from those on A and B and
residual actions of I'x = Gk/ Hg from the diagonal Galois actions.

The main result which makes these (¢, I'x)-modules useful is the following
theorem of Fontaine.

Theorem 16 (Fontaine). The functor T — D(T) defines an equivalence between the
categories of Z.,~representations of Gg and of étale (¢, I'x)—modules over Ax.

Similarly, the functor V +— D(V) defines an equivalence between the categories of
Q—representations of Gk and of étale (¢, T'x)—modules over By.

Proof. See theorem 3.4.3 of Fontaine’s article [21]. ]

In particular, we can recover the representations from the (¢, I'x)-modules as
follows:
T~ (A®aD(T)?" and V= (Bes D(V))’"

(the Galois actions on the right-hand sides are the diagonal actions of Gx and

similarly ¢ means ¢ ® ¢p).

3.2 Overconvergent versions
Sometimes it is useful to work with smaller (¢, I'x)-modules.

Definition 17. Let V be a Q,—representation of Gx. We define the associated
overconvergent (¢, 'x)-modules

D'(V) = (B ®qQ, V)Hc and D™(V) = (B" ®q, V)Hx for all s > 0.

Then dimB;< (D*(V)) < dimq, (V) and we say that V' is overconvergent if these two
dimensions are equal.

Similarly, for a Z—representation T of G we define
D(T) = (A" ®z, T)Hc and D™(T) = (A"* ®z, T)Hk for all s > 0
and we say that T is overconvergent if the rank of the free Af-module D'(T)
coincides with rankz, (T).

Theorem 18 (Cherbonnier-Colmez). Every Z,— or Q,—representation of Gk is over-
convergent.

Proof. This is the main result of Cherbonnier-Colmez’s article [13] (in particular,
see their corollary III.5.2). O
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Therefore, for any Q,-representation V of Gg,

D(V) = Bx @y D'(V) = Bx @1 D™(V)  if s> 0.

3.3 Modules over the Robba ring

TODO!!!

3.4 Modules for integral families

Throughout this subsection, let R be a coefficient ring in the sense of definition 7.
We recall some results of Dee’s article [19] that extend the equivalence of categories
from theorem 16 to the case of Repy (Gk).

Definition 19. A ¢-module over Ax @z , Ris a finite (Ag ®ZP R)-module D en-
dowed with a ¢—semilinear map ¢ = ¢p: D — D. We say that the p—module
(D, ¢p) is étale if the (Ag ®Zp R)-linearization ¢* (D) — D of ¢p is an isomorph-

1sSm.

Remark. This definition only requires D to be finitely generated (instead of finite
free) for convenience because the proofs of the results for families are based on
reducing to the case of finite length by taking projective limits of quotients. This is
incoherent with the previous definitions (like definition 13), so I should rewrite
things better in the future.

Definition 20. A (¢, T'x)-module over Ax @7 , Ris a p-module D endowed with
a continuous (Ax ®z , R)-semilinear action of 'y commuting with ¢. We say that

D is an étale (¢, 'x)-module if the underlying p—module is étale.

Definition 21. Let T be an R-representation of Gx. We define the associated
(¢, T'x)-module over Ag ®ZP R

D(T) = (A &z, R) @ T)"™

with the actions of the operators ¢ and ¥ inherited from those on A and the

residual action of I'x = G/ Hk obtained from the diagonal action of G.
Remark. Asbefore, this definition makes sense even if T is not free as an R—-module.

Lemma 22. Let T be an R—representation of Gy such that miT = 0 for some n € Z>;.
Write T for T seen as a Z,—representation of Gx. Then D(T) = D(T).
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Remark. Since kg = R/mg is a finite extension of Iy, the hypothesis that miT = 0
implies that indeed T is a finite Zp—module. The content of the lemma is that the

two associated (¢, 'x)-modules, one over Ak ®Z,, R and the other over Ak, are
the same.

Proof. The completed tensor product with a finite module coincides with the
(algebraic) tensor product. Therefore,

(ARz, R)QrT = (A®z, R) Or T=Z ARz, T=ARz, T=A®z,T.

Taking Hg—-invariants on both sides we conclude that D(T) = D(T). O

Lemma 23. Let T be an R—representation of Gk.
(1) For every n > 1, define T, = T /m{T. Then

D(T) = lim D(T,,).
n>1

(2) The (Ax ®z , R)-module D(T) is complete with respect to the mg-adic topology:

D(T) = @(D(T)/mﬁD(T)).

n>1
Idea of the proof.
(1) Itis easy to see that taking Hg—invariants commutes with the projective limit.
Moreover,

lim((A®z, R) ®r Ty) = lim((A &z, R) ©r T) /m§ = (A ®z, R) @ T.
n>1 n>1
See proposition 2.1.8 of Dee’s article [19] for more details.

(2) It follows from the previous part and the fact that D(T,,) = D(T)/m}D(T);
see corollary 2.1.10 of Dee’s article [19]. O

Lemmata 22 and 23 allow us to reduce the study of D(T) to the case in
which T is a torsion R-representation and in that situation, regarding T as a

Z ,~representation, one can apply Fontaine’s results (cf. theorem 16). One of the
main consequences is the following result.

Theorem 24 (Dee). The functor T — D(T) defines an equivalence between the categor-
ies of R—representations of G and of étale (¢, T )—modules over Ax @z , R

Proof. See theorems 2.1.27 and 2.2.1 of Dee’s article [19]. ]
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In particular, we can recover the representation from the (¢, I'x)-module as
follows:
~ ~ =1
T = ((A®gz, R) DAz, R D(T))" .

3.5 Modules for rigid families

TODO !!!

3.6 Herr cohomology (for integral families)

Fontaine and Herr introduced a cohomology theory for (¢,I'x)-modules that
allows us to compute the cohomology of p—adic Galois representations (see Herr’s
article [23] based on his thesis). Here we recall a few of their constructions together
with results of Cherbonnier—-Colmez’s article [14] that we will need to study
Iwasawa cohomology.

Let R be a coefficient ring as in definition 7 (in particular, we allow the pos-
sibility that R = Z,). Throughout this subsection we assume that K contains
(or pg if p = 2), so that K is the cyclotomic Z,—extension of K. Fix a topological
generator y of I'x.

Definition 25. Let T be an R-representation of Gx and let u: D(T) — D(T) be
an R-linear map commuting with the action of I'x (e.g., u = ¢ or ¢). The Herr
complex C,, (K, T) is the complex of (¢, 'x)-modules

(u=17-1) (r-D@(1-u)
) —— ) —

Cu,(K,T): 0 —— D(T D(T) @ D(T D(T) —— 0,

where the first labelled arrow is the map

x o (=1, (v = 1) (x)

and the second labelled arrow is the map

(y,2) = (v =D(y) = (4 =1)(2).

We write Hj, . (K, T) = H'(Cy, (K, T)) and call it the i~th (u,~)-cohomology group
of D(T).

In particular, a 1-cocycle of C, (K, T) is a pair (x,y) € D(T) @ D(T) such
that (y —1)(x) = (1 — 1)(y). Similarly, a 1-coboundary of C, , (K, T) is a pair of
the form (x,y) = ((u —1)(b), (v —1)(b)) for some b € D(T).
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Remark. The complex Cy, (K, T) depends on the choice of -, but its cohomology
does not. Indeed, if ' is another generator of I'x, we can express 7' = * for some

ae Z; and so
/

v —1
v—1

E Zp[[rK]] ><,

as is easily checked identifying v with 1 + T € Z,[T]:

%:a#— (g)T—l- € Z,[T]*".

Then the commutative diagram

Cyy(K,T): 0 —— D(T) — D(T) @ D(T) — D(T) — 0

I_q /1
l@,l lLﬂ @1 l1

Cuy(K,T): 0 —— D(T) —— D(T)®»D(T) —— D(T) —— 0

induces isomorphisms HLJ,(K,T) = HL’,Y(K,T).

The following result explains why these Herr cohomology groups are inter-
esting. As one could suspect from the notation, Herr cohomology gives another
explicit description of the Galois cohomology of an R-representation.

Theorem 26 (Herr, Dee). There is an isomorphism of d—functors

(Hypy (K, T)) 0 = (H'(K,T))
Idea of the proof. This is proposition 3.1.1 of Dee’s article [19]. In loc. cit., Dee
reduces the general case to the case in which R = Z, by expressing D(T), H (K, T)
and Hi,w(K, T) as projective limits of the corresponding objects for T, = T/m}T.

The case of Z,~representations was proved by Herr. Theorem 2.1 of Herr’s
article [23] gives the desired isomorphism restricted to torsion Z,—representations.
In his proof, Herr uses that the usual Galois cohomology is a universal é—functor
and that a certain subcategory of (¢, I'x)-modules has enough injectives. Then one
can pass to general Z ,-representations by taking projective limits, as is explained
in the introduction of ibid. O

Remark. Later we will be interested only in the 1st cohomology groups and we will
use an explicit description of the isomorphism H}m(K, T) = HY(K, T) in terms of
cocycles due to Cherbonnier and Colmez.
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Def)inition 27. For exvery x € 1+ pZp, letr(x) = vp(log,(x)). We define a map
log,: 1+pZ, — Z; by
log (x
logg(x) = %()).
Proposition 28.
(1) For every (x,y) € Z(lm(K,T), there exists a solution b € (A ®z, R) @ T to the
equation (¢ — 1)(b) = x. Then

0= Cry(0) = —=(y) = (¢ =1)(b)

defines a 1-cocycle of Gx with values in T (i.e., an element in Z' (K, T)).

(2) The map (x,y) — logg (Xeye (7)) exy (for some choice of b as above) induces a
well-defined isomorphism H}M(K,T) =~ H(K, T).

(3) This isomorphism of cohomologies is independent of the generator 7y of I'x in the
following sense: if ' is another generator of T'x, these isomorphisms fit into a
commutative diagram

1
H, (K, T)

H'(K,T)

N\

Hy, (K, T)

(cf. the remark after definition 25).

Remark. Observe that, as 7y is a generator of 'y and Gk acts on y through Ik, the

expression
c—1 ()
y-1"

makes sense in D(T). More precisely, replacing o with its image in I'g, the quotient
defines an element of Z,[I'k].

Proof. This is a combination of proposition I.4.1 and lemma 1.4.2 of Cherbonnier—
Colmez’s article [14].

(1) Recall that A is a Cohen ring with residue field E that is separably closed.
Thus, any polynomial of the form X? — X — B has a root in E and these can
be lifted to A by Hensel’s lemma. Thatis, ¢ —1: A — A is surjective.

Let (x,y) € Zy, (K, T), so that (y —1)(x) = (¢ — 1)(y). The existence of
be (A ®Zp R) ®g T such that (¢ — 1)(b) = x is now clear. To show that
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(2)

(3)

Cxy(0) € T (regarded as a subset of (A ®Zp R) ®g T), we need to check that
it is invariant under ¢, as AP=1 = Zp. Indeed,

(p-1)(I2 ~ @ -1B) = T ((r - V(@) ~ (@~ V() =0.

71 -1

The fact that ¢,y is a 1-cocycle follows easily from its definition.
For this part, we may assume for simplicity that logg (Xeye(7)) = 1. Also, it
is clear that changing b does not modify the cohomology class of cy .
For the injectivity, suppose that cy,, is a 1-coboundary given by z € T. Then

o—1
v—1

(y) —(c—1)(b+2z)=0 forallo € Gkg.

Since Hy acts trivially on y, so does on b + z, which implies that b +z € D(T).
If we take o to be a lift of ¢, we get that y = (7 — 1)(b + z). On the other
hand, x = (¢ — 1)(b) = (¢ —1)(b+2). Allinall, (x,y) € By, (K, T).

For the surjectivity, consider ¢ € Z!(K, T) and let

0 > T > T/ > R

(@)

be the corresponding extension. That is, we have e € T’ lifting 1 € R such
that o(e) = e+ ¢(0) for all ¢ € Gk. Take alifte € D(T’) of 1 € R — D(R)
and define x = (¢ — 1)(¢) and y = (v — 1)(e). It is clear by definition that
(v —1)(x) = (¢ — 1)(y), which is to say that (x,y) € Z(}DW(K,T). Moreover,
we can choose b = ¢ — ¢ € (A ®z, R) ® T with (¢ —1)(b) = x and then
oc—1 ~
coy(0) = 7 W) = (0 =1)(0) = (¢ = 1)(¢) — (e —1)(e—e)
= (c—1)(e) = c(0).

Let (x,y) = Z%W(K,T) and (v,y) = Z}o,y’(K'T) be two cocycles related by
(7 = 1)(x) = (y = 1)(x). Take b, b’ € (A &z, R) @ T as above. We need to
see that ¢ — ¢y, — cxy is a 1-coboundary of Gk with values in T. But we

can express itas o — (0 —1)(z) for

- logg (chc (7/) ) logg (chc (’)’) )
Z_{ Y-1  y-1 k)_
~ (1085 (Xeye(7)) ¥’ — 1085 (xeye (7)) ]
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and the first term makes sense in D(T) because

[logg (chc(')’/)) B 108(,), (chc(’)’))

7, [T«].
71 r—1 }E 4

Indeed, writing 7" = 7" witha € Z and identifying v with 1+ T € Z,[T],
this factor can be expressed as the product of logg (Xeye(y)) and

a _1_1 1 9 _1[_01—1
(1+T) =1 T T[1+%]ATH- T 2
a—1

= > + - € Z,[T].

re]

Finally, we can check that z € (A @zp R) ®g T is invariant under ¢ (i.e.,
(¢ —1)(z) = 0)and soin factz € T. 0

Proposition 29 (Herr). Let T be an R—representation of Gk. The vertical maps

Cp(K,T): 0 —— D(T) D(T) & D(T) (W)D(T

)
! beo
)

Cpn (K, T): 0 — D(T) = p(T) & D(T) 20

(p—=1,9-1)
—_—

define a quasi-isomorphism from Cy (K, T) to Cy (K, T).
In particular, Hyy (K, T) = H;, . (K, T) = H(K, T) for all i > 0.

Idea of the proof. This is proposition 4.1 of Herr’s article [23]. The result follows
from the non-trivial fact that v — 1 acts invertibly on D(T)¥=? (see theorem 3.8 of
ibid.) and because ¢ is surjective.
Let us be more explicit for the isomorphism H}M(K, T) = H}M(K,T), as in
lemma 1.5.2 of Cherbonnier—-Colmez’s article [14].
* Surjectivity. Let (x,y) € Zy,, (K, T), so that (y —1)(x) = (¢ —1)(y). Then
y =9(y) — (v —1)(x) and applying ¢ we get 9(y) = ¢yp(y) — (v — 1) (¢(x)).
Therefore,

(p—1)() = op(y) —y— (v —1)(p(x))
= (=1 (=) + (v =) Hop(y) —v)),

which means that (—¢(x) + (v = 1) (¢¥(y) —y),y) € Zy,(K, T). A direct
computation shows that this is a preimage of (x,y) under —¢ & 1, as o = 1.
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o Injectivity. Let (x,y) € Z (K, T) and assume that

(=9(x),y) = ((y =1)(D), (y —1)(b)) forsomeb € D(T).

Now, we compute

p(x—(p-1)() =-(p-1)(b) - (1-9)(b) =0

and
(r=D(x— (9= 1)®) = (¢p~(y) ~ (9~ () = 0.

Since ¢ — 1 acts invertibly on D(T)¥=?, we conclude that x = (¢ — 1)(b).
This equality and y = (7 — 1)(b), mean that (x,y) € B}, (K, T). O

Thus, we can compute H!(K, T) using (¢, ['x)—cohomology. Our end goal,
however, is to compute Hi, (K, T) using the formalism of (¢, T'x)-modules. This
will be possible by replacing K above with K;, for n > 1 and taking limits. (In
particular, the assumption that I'x is isomorphic to Z,, is harmless.) We conclude
this subsection with the result that will allow us to study Hy,, (K, T).

Lemma 30. Let T be an R—representation of Gk. There is a short exact sequence

0 — (D(T)¥~1), —— H}, (K T) — (D(T)/(p—1))'* —— 0,

Y » (0,y)

(x,y) > X

where ( - )Tk denotes the T x—invariants and ( - ), denotes the T x—coinvariants. (Since
we fixed a topological generator <y of I'x, we could have written

(D(M¥™)p, = (DM /(v - 1)

I'k

and

alternatively.)

Proof. This is lemma 1.5.5 of Cherbonnier—Colmez’s article [14]. It follows formally
from the definition of H}/W(K, T). O
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Remark. Combining the first map of lemma 30 with proposition 28 and (the proof
of the surjectivity in) proposition 29, we get a morphism (D(T)¥=!) re HY(K, T)
that can be described as follows. To (the class of) y € D(T)¥=! we attach (the class
of) (x,y) € Z4, (K, T), where

x=(r-1)"(¢-1)(y)

(this makes sense because (¢ —1)(y) € D(T)¥=" and  — 1 acts invertibly there).
After choosing b € (A ®Zp R) ®g T such that (¢ —1)(b) = x, the class of (x,v)
corresponds to the element in H! (K, T) given by the 1—cocycle

c—1

0+ 108, (Xeye(7)) 1w = e=1)b)|.
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4 Some Iwasawa theory

Continuing with the notation from sections 2 and 3, we want to recall next the
results of Cherbonnier and Colmez to construct interesting maps of Iwasawa
theory using (¢, I'x)-modules, as well as the extensions of such results to families
by Dee, Kedlaya, Liu, Pottharst, Xiao... TODO!!!

This part follows mostly sections II and IV of Cherbonnier—-Colmez’s article
[14].

4.1 Iwasawa cohomology

Definition 31.
(1) Let T be an R-representation of Ggx. We define the Iwasawa cohomology groups

n>1

where the projective limit is taken with respect to the corestriction maps.
(2) Let V be a Q,-representation of Gk and let T be a stable Z,-lattice of V. We
define the Iwasawa cohomology groups

(K, V) = Hi,, (Keo/K, V) = Hy, (K, T) 9, Q.
(This is independent of the choice of lattice T'.)

Remark. We are only interested in Hj,, (K, T). The corestriction maps in the cyclo-
tomic tower can be described explicitly in terms of 1-cocycles as follows.

In general, consider a subgroup H of finite index of a profinite group G and
let M be a (continuous) G-module. Fix a system of representatives X of G/H
and write g for the representative in X of ¢ € G. Given a cohomology class
[c] € H'(H, M) represented by a 1-cocycle ¢, its corestriction cor([c]) € H!(G, M)

is represented by

g ) gx-c((30)7'gx).

xeX

Consider the Iwasawa algebra A(I'x) = Z,[I'k], which can be interpreted as
the Z ,—algebra of measures on I'x with values in Z;,. There is also an isomorphism
A(Tk) = Z,[T] (that we have already used in section 3) given by 7 — 1+ T. On
A(Tg) there is a natural action of Gk given by

o-v =07, Wwhere 7 is the image of o under Gx — T'k.
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More generally, let R be a coefficient ring in the sense of definition 7. We define
AR(Tk) = A(Tk) ®z, R,

where the completed tensor product is computed with respect to the maximal
ideals of A(T'x) and R.

If T is an R-representation of Gy and [u] € H! (K, Ar(Tx) ®g T), we regard
the 1—cocycle y as a family of measures: for every o € Gk, u(0) corresponds to a
measure on 'y with values in T. Thus, for any continuous map f: I'x — R, we
will write

f(x) u(x)
Ik
for the 1-cocycle

o [ £ (1) @)

Lemma 32 (Shapiro). Let T be an R-representation of Gk. There is a canonical iso-
morphism
H' (K, Ar(Tx) ®r T) = Hj,, (K, T)

that sends [u] € H' (K, Ar(Tx) ®g T) to the class in Hj}, (K, T) represented by the
compatible family of 1-cocycles

/ 1u(x) € ZY(K,, T) forn>1.
Tk,

Proof. This is a “limit” of the more usual version of Shapiro’s lemma (using that in

finite index the induced and coinduced modules coincide).Indeed, we can write

Ar(T) ©r T = A(Tg) Bz, T = @(Zp [Gk/Ck,] ®z, 11“)

n>1

and Shapiro’s lemma gives isomorphisms
H! (G, Z,[Gx/Gr,] @2, T) = H! (G, T)

for all n > 1. More precisely, Homz, (Z2,(Gk/Gk,),T) = Z,[Gk/Gk,] ®z, T as
Z,|Gk|]-modules (where G acts on the coinduced module by conjugation) via

(f: Zo[Gx/Gr,) = T) = Y a @ fla)
x€Gg / Gk,

and there is an isomorphism H! (GK, Homg, (Z,[Gk/Gk,], T)) ~ H1 (Gk,, T) that
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in terms of 1-cocycles is
<c: Gk — Homgz, (Zp[GK/GKn]/T>> — (‘7 = (C(U))(1)>

(i.e., restricting cocycles to Gk, and evaluating their images at 1).

From the description of corestrictions given in the previous remark, one can
check that the transition maps in both projective limits are compatible with these
isomorphisms.

Finally, one proves that

H' (K, Ar(Tx) ®& T) = lim H' (K, Z,[Gk/ G, | ©z, T)

n>1

checking a Mittag-Leffler condition for the H® groups. See proposition I1.1.1 of
Colmez’s article [15] for more details.

Interpreting the elements of Z,[Gk/Gk,| ®z, T = Z,[Tx/Tk,] ®z, T as
measures on 'y, we can trace the definitions of the isomorphisms and see that the
evaluation at 1 corresponds to taking the measure of I'x,, whence the last formula

follows. O

Remark. More generally, Shapiro’s lemma provides an isomorphism of s—functors.

Nevertheless, we will only use the version stated above.

Corollary 33. Let T be an R—representation of Gk and let k € Z. There is a canonical
isomorphism
H' (K, Ar(Tx) ®r T) = lim H' (K,,, T(k))

n>1

given in terms of 1—cocycles by

we ((f dbetonto)m)

n>1

where the notation (k) means the k—th Tate twist.
In particular, Hj,, (K, T(k)) = Hj,, (K, T).

Proof. This is proposition II.1.8 of Colmez’s article [15].
It follows from the isomorphism Ag(Tx) ®r T = Ag(T'x) ®r T (k) induced by

Ar(Tk) = Ar(Tk) (k)
Y ch(yc(')/)')’
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and lemma 32 applied to T (k). O

4.2 The regulator map

First of all, we introduce some notation for the rest of the section. Fix a topological
generator 71 of I'y, and set 7y, = ’ng”:Kl], which is a topological generator of I'k, .

Let T be an R—representation of Gk. For each n > 1, we regard T as a repres-
entation of G, by restriction. Then lemma 30 (and the remark after it) give a short

exact sequence

Dt (D@
0 — Gty — WD — (507) ’

constructed in terms of (¢, I'x, )-cohomology. Observe that the p—module D(T)
does not depend on n because Hx, = Hk. We will see that these sequences are
compatible for varying n > 1.

Lemma 34. Let T be an R—representation of Gk and let n > 1. The corestriction map

H' (K, 411, T) —— HY(K,,T)
12 12
Hy o, (Kyp1, T) ----- » Hj,. (Ky, T)

can be described on (,T')—cohomology in terms of 1—cocycles as
/ _ (Vn+1 — 1
(v, y) = (xy) = (—% — (X),y)-

Proof. This is lemma I1.2.1 of Cherbonnier—-Colmez’s article [14].

We can compute the corestriction using the remark after definition 31. More
concretely, set G = Gg,, H = Gk,,, and X = {1,7%,,.. .,”’fﬁ_l } for a fixed lift
Yn € Gy, of v, € Tk, For c € Z'(K,, 41, T), we can express cor(c) € Z'(K,, T) as

—

p—1 — : »
o= Y ovi- (@) o)
i=0

On the other hand, to every (x,y) € Z
be (ARz, R)®r T to

1}’/7n+1 (Ky+1, T) equipped with a solution

(9 =1)(b) = —¢(x) + (vur1 = D (op(y) — )
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weattach ¢, ) € Z1(K, 11, T) defined by

c—1

m(y) —(c—=1)(b)|.

Clx,y) (o) = logg (XCyc(')’nJrl))

Working in Frac(R[Gk,]) ®gc,, | (A &z, R) @k T, we can define

Yy

— I
xy) = m —b  where ¥,11 =Ty

a4

and then ¢, , is the 1-coboundary

x,y)
Clx,y) (o) = logg (chc(7n+l)) (c—1) (ﬂ(x,y)).

We can rearrange the sum defining cor (c(, ) as follows:

p—1___ — » p—1 . Pl
Z;,) oy (o) oy, — 1) (agyy) = Z;,] TV (8(xy)) — Z;,] oY (A(xy))

p—1 p—1 p—1
= T 0T (aay) ~ L Tolota) = (0= | L T (o)

But

P! ; Yni1—1 y y Tnt1—1
v (a = — — —b| == — = b
;)’)’n( (x,y)) Yn—1 {’Yn—l—l_l } Tn—1 Tn—1

and it is clear that

(0= D (ZZ70) = =0+ (1 = 1) (o) — ).

All in all, we have checked that

COI‘(C(x/y)) (o) = 10g2 (Xeye(Yng1)) (0 = 1) (a(x’,y))
= 1082 (Xeye(7n)) (@ = 1) (a(x’,y)) = C(xy)(0)

where logg (Xeye(Tnt1)) = logg (Xeyc(7n)) because 7,11 = Ah.
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Therefore, we obtain commutative diagrams

\ D("ﬂ")l[]zl o D(T) Yn+1=1 o
0 — fiy — M) — (F5) ’
L F
_ D(T)*=! o (T) \""~
0 Doty H ) —— (U)o

with exact rows for all n > 1. We can take projective limits.

Proposition 35. Let T be an R-representation of Gg.
(1) The natural map

1 . D(T)¥!
D(T)¥~" '%30%—1)

(where the transition maps are induced by the identity on D(T)) is an isomorphism.

(2) We have )
_( D(T) \™" _
%‘((w—l)) -0

where the transition maps are given by multiplication by (y,+1 — 1)/ (yn — 1).

Proof. If R = Z,, this is proposition I1.3.1 of Cherbonnier-Colmez’s article [14].
The general case follows from this by regarding T as a projective limit of the
Z ,—representations T, = T/miT for n > 1 and using the techniques of Dee’s
article [19]. O

Putting everything together, we obtain the following result.
Theorem 36 (Fontaine). Let T be an R—representation of Gx. The map
Logi (s D(T)#~! = Hi, (K, T)

that sends y € D(T)¥= to the system of cohomology classes in Hi, (K, T) represented
by the cocycles

c—1
Tn—1

0 = 10g) (Xeye(1n)) (y) = (0 =1)(ba) |,
where b, € (A @zp R) ®g T is a solution to

(p—=1)(bu) = (vu—1) o —1)(y),
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is an isomorphism.

Remark. This is theorem I1.1.3 of Cherbonnier-Colmez’s article [14] for R = Z,
and proposition I11.3.2 of Dee’s article [19] in the general case. Cherbonnier and
Colmez attribute it to Fontaine (even though he did not publish it).

Definition 37. Let T be an R-representation of Gx. We define
Expiy. 1) Hiy (K, T) = D(T)¥~!
to be the inverse of the isomorphism Log%‘r*(l) described in theorem 36.

As a matter of fact, the whole Iwasawa cohomology can be computed in this

way in terms of (¢, I'x)-modules.

Theorem 38. Let T be an R—representation of Gk. The Iwasawa cohomology groups
i (K, T) for i > 0 are computed by the complex

-1
LN

0 —— D(T) D(T) —— 0

concentrated in degrees 1 and 2.

Remark. This is theorem 3.3.4 of Dee’s article [19].

4.3 Bloch-Kato’s exponential maps

In their article [10], Bloch and Kato introduced certain maps relating the first
cohomology groups of representations and their Dieudonné modules.

Definition 39.
(1) Let V be a Qy—representation of Gx. We define the following subgroups of
HY(K,V):
o the exponential part Hy (K, V) = Ker(H' (K, V) — H'(K, Bf;o;Sl ®q, V));
o the finite part Hy (K, V) = Ker(H'(K, V) — H' (K, Barys ®q, V)), and
o the geometric part Hy(K, V) = Ker(H' (K, V) — H'(K, B4r ®q, V)).
(2) Let T be a Z—representation of Gg and consider V = T ®z ) Qyp, so that T
is a stable Z ,-lattice of V. Let i: HY(K,T) — HY(K, V) be the morphism
induced by the inclusion T < V. For % € { ¢, {, g}, define the subgroup

HLY(K, T) =i '(HL(K,V)) c H(K,T).
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Let V be a Qp-representation of Gg. The fundamental exact sequence from
proposition 4 can be rewritten as

=1
0 >y Qp > Biax — Bar/Bjz —— 0.

Tensoring it with V, we obtain a short exact sequence

0 y V > Bmax ®q, V —— (Bar/Bj) ®q, V —— 0
whose long exact sequence of cohomology is

. Dgr(V)
Fil’ Dgg (V)

00— Ve —  DISH(V)

— H'(K,V) —— HY(K,Bfix ®q, V) ——— -+~

Therefore, the connecting morphism induces an isomorphism

D4r(V)
Fil’ Dgg(V) 4 Déye (V)

~ H!(K, V)

Definition 40. Let V be a Q,-representation of Gx. We define Bloch—Kato’s expo-
nential map
Dgr(V)

— o= — He(K, V)
Fil DdR(V) + Dcrys (V)

expy :

to be the isomorphism induced by the connecting morphism of the fundamental
exact sequence as in the paragraph above. Its inverse is Bloch—Kato’s logarithm map
X Dgr(V)

Fil’ Dgg(V) + D&ye (V)

log,: HY(K, V)

Remark. By abuse of notation, we often write

Dgr(V)

R HY(K V)
Fil’ Dy (V)

expy :

or even exp,: Dgr(V) — H!(K, V) for the maps induced by the isomorphism

version of expy, in the obvious way.

Consider the Kummer dual V*(1) = Homg, (V,Qp) ®q, Qp(1) of V. The cup
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product gives a perfect pairing
—: HY(K, V) x HY(K, V*(1)) = H*(K,Q,(1)) 2 Q,

which allows us to identify H' (K, V*(1)) with the dual of H'(K, V). On the other
hand, our fixed choice of ¢ provides an isomorphism between Dgg(Q,(1)) = t 'K
and K. Since D4R preserves tensor products, we get a perfect pairing

TrK/Qp

Dar(V) @k Dar (V*(1)) = Dar(V ®q, V(1)) — Dar(Qp(1)) = K —— Q).

This in turn induces the perfect pairing

[+, Ipge(v): FI'Dar(V) X

Dgr (V*(1
dR( ( )i >Qp

Fil’ Dgg (V*(1))

by means of which we identify Dgg (V*(1))/ Fil® with the dual of Fil’ Dgg (V).
From the Bloch—Kato exponential map for V*(1)

Dggr (V*(1))

1 : Dgr(V*(1
EXPy+(1) ar(V*(1)) — Fil° Dgr (V*(1))

— Hy (K, V*(1)) = HY(K, V*(1))
we obtain by duality a morphism

expy.(qy: H' (K, V) = F°Dgg(V) < Dgr(V).

Explicitly,
P o > exp;*(l)(¢)
m " m
expy«

HY(K V) — Y Fl°Dyr(V)

» I
HL (K, V(1)) —— ( Dag (V*(1)) >

' Fil’ Dgg (V*(1))
W

\)
g pexpyy ()

and so the relation between expy,. ;) and expy,. (1) 1s given by
[expye(1) (@), - Ipgr(v) = @~ exPyagy (+)-
Remark. Suppose that V is de Rham. Letk € Z. If k >> 0, then Fil’ Dgg (V' (k)) = 0
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and Fil’ Dgr (V(—k)) = Dgr (V(—k)). In fact,
expy. (115 H (K, V(=k)) = Dar (V (=)
is an isomorphism for k > 0.

Let us explain how to compute with the dual exponential maps. But before
that, we need to introduce some operators.
For each m > 1, we define Tr,,: Koo — K,;, and prg, Ko — K, as follows:

given x € K, we can choose 1 > 0 such that x € K, and then

1 1
Trm(x) = ETrKn/Km(x) and  pry (x) = mTfKn/Km(x)

(these definitions are independent of the choice of 7). For m > 0, so that K, 1 /Ky,
is a cyclic extension of degree p, we have pry = p™ Try.

Recall that Bgg contains K and the distinguished element #, on which G acts
through xcye. In particular, Keo((t)) C Bfl’g. We extend the previous maps to
Trm, pry,  Keo((t)) — Kin((t)) by t — ¢.

Proposition 41. The subfield K ((t)) is dense in BdHI’{. Therefore, for each m > 1, we can
extend Try, and pry by continuity to Qp~linear maps Bfffi — K ((t)). Furthermore,

. . Hy
n%g)r;oerm(x) =x forall x € By.

Proof. This is proposition IV.1.1 of Cherbonnier-Colmez’s article [14]. O

Let V be a de Rham Qp-representation of Gk. For every m > 1, we extend the
maps Try, and pry by Dgr(V)-linearity and get

Tru, pry, : Bygk ®x Dar(V) = Ku((t)) @k Dar (V).
We also define a “projection”
Iv(—k)* Keo((t)) @k Dar(V) — Koo ®k Dar (V(—K))
for each k € Z as follows. Every x € Ko ((t)) @k Dgr(V) has a unique expansion

x=Y tx; withx; € Ko ®k Dgr(V) foralli € Z
i>—00

and we set dy(_y) = tFx € Koo @k Dar(V(—k)).
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TODO: I think that the last part is explained more systematically in something
called Sen-Tate theory. It might be worth learning what Dg; is (it links (¢, I'x)—
modules with Dgg).

Since V is de Rham, the natural map

Bar ®k Dar(V) — Bar ®q, V

(given by multiplication in BgR) is an isomorphism. Taking Hx—invariants on both
sides, we obtain BdHé( ®k Dar(V) = (Bar ®q, V) Pk

Proposition 42. Let V be a de Rham Qp—representation of Gk, and let k € Z. Let
n € Z-, and take a € H' (K, V(—k)). We have an inflation-restriction exact sequence

0 —— H'(Tx,, (Bag ®q, V(—K))") — H'(Gx, Bar ©q, V(—K)) -
—=— H'(Hg, Bar ®q, V(—k)) = 0.
Then, given [c] € H' (Tk,, (Bar ©q, V(—k))Hx), represented by a 1-cocycle
c: T, — (Bar ®q, V(—k)) ™ = BIX @k Dar (V(—K)),

such that the image of & under H' (G, V(—k)) — H'(Gk,, Bar ®q, V(—k)) coincides
with inf([c]),

expys (1) (@) = (O () ° Pry,) (logp a(;)c(a))>

forany o € Tk, withlog, (Xcyc(c)) # 0.

Proof. This is proposition IV.1.2 of Cherbonnier-Colmez’s article [14]. TODO: give
a better reference. I think this is (related to?) a result of Kato. O

4.4 Reciprocity laws

In this subsection, let V be a de Rham Q,-representation of Gx. We want to
describe Expy. 4y : H},, (K, V) — D(V)¥=! and relate its image to Dgr (V).

Lemma 43. Forevery n € Z>1, let s, = p"~1(p — 1) (as in the remark of section 2.2.1).
For n >> 0 we have D(V)¥=1 c D' (V).

Proof. See proposition II1.3.2 of Cherbonnier—Colmez’s article [14]. O
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In particular, given [u] € Hi, (K, V), we can view

_ . Hi ~ oH
) n(EXPV*(l)([V])) € (Bar ®q, V) = Byg @k Dar(V)
and so we can apply the operators Try, and pry to it.

Theorem 44 (Cherbonnier-Colmez). Let V be a de Rham Q,—representation of Gg
and let m € Z>. Let [u] € Hj,, (K, V) 2 H (K, A(Tk) ®z, V).
(1) The element

Expy- 1)k, ([#]) = Tr (@ " (Expy- 1) (1)) ) € Kn((#) @k Dar(V)

(which makes sense for n > 0 so that we can apply lemma 43 and n > m) is
independent of n.
(2) Forevery k € Z, consider

isd = | ([ 25 n() (-0 € B! (Ko, V()

Km

and

emk = expye(1 g ([Hmi]) € Dari, (V(—K)) =t “Darg,, (V)
C Ku((t) ®k Darx (V) C BLK @k Dar (V).
Then

EXpy- (1), ([1]) = ) em
kez

(3) If m > 0, then

Expy. )k, ([1]) = p~" 97" (Expy ) ([1]))

or, equivalently,

PT,, (G"*m(EXP*v*u)([M]))) = ¢ " (Expy gy ([1]))-

Proof. This is theorem IV.2.1 of Cherbonnier-Colmez'’s article [14]. TODO: explain

some of the ideas. O

This important theorem allows us to recover the dual exponential maps on
Tate twists of a de Rham Q,—representation V of Gk (and not only its restrictions
to Gk, for m > 0) using the following fact:
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Fact. Let L/E be finite extensions of K. The diagram

exp’(/*(l)

HY(L,V) —— Dgr (V) = L@k Dgr(V)

COI‘l lTI‘L/E ® idDdR(V)

HY(E,V) —— Dgr (V) = E @k Dgr(V)

Pyx)
is commutative.

Consider m € Z>; large enough (depending only on V) to apply part (3) of
theorem 44. We define

Trk,, /k @1dp g (v)
_—

SPeyey: D(V)=1 5 Ky((1) @k Dar(V) K((£)) ®k Dgr(V)

(which is independent of m by part (1) of theorem 44 and because of the equality
Try = Trg, /k,, © Try for n > m). Given [u] € H}, (K, V), the fact above and part (2)
of theorem 44 imply that

Spcyc,V (EXPT/*(Q([H])) = Z exp;*(1+k)([ﬂ0,k])tkr
keZ

where
[Hox] = [(/FK Xc_ylé(x) M(X)> (—k)} c H'(K,V) forallk € Z.

We can recover the coefficient of t* by composing with Iy (—p)-
TODO: Should I express this power series as a measure on I'x? Right now, I
have a Laurent series whose coefficients should correspond to [, x*v(x) and
P

from this I could recover the Amice transform |. z; (1) v(x).

4.5 Interpolation in an integral family

Throughout this subsection, let R be a finite flat A(T'x)-algebra that is a coefficient
ring in the sense of Mazur (cf. definition 7).

Definition 45. An arithmetic point of R is a continuous Z ,—~algebra homomorphism

v: R — @p with the property that the composition

'k >R > Q,
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is of the form ¢ — vy(y)7 2 for some integer k > 2 and some finite-order
character vp: I'x — pp~. In this situation, we say that v has weight (k, vg) and call

Ker(v) an arithmetic prime of R. Let F, denote the residue field of Ker(v) and let
O, be the ring of integers of F,.

We write X2t (R) for the set of arithmetic points of R.

Let T be an R-representation of Gg and let v € X¥ith(R). We define
T, =T QR 0, and V, = 71’Q§Z§7(2p-

Then, the natural map T — V), induces specialization maps
1 SPyv 1yl p=1 SPy p=1
H;, (K, T) — H;,(K,V,) and D(T) — D(V,)¥=.

Combining this with the results of section 4.4, for every v € X2t (R) and every
k € Z, the diagram

Expr«
HL (K, T) ——%  p(T)¥=!

Sp, Sp,

v ~

Expi«
H}, (K, V) ———— D(V,)#~!

fl“K X;yIé aV(—k)ospcyc,Vy

v ~

expi «
H' (K, Vi (—k)) —-8 Dyr (Vi (—k))

is commutative.
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Part 11
The theory for (relative) Lubin-Tate

extensions

The previous sections all deal with the most classical and well-understood situation
where K« /K is a cyclotomic extension. It is natural to hope that a similar theory
can be developed for other kinds of extensions. Unfortunately, the theory of
fields of norms of Fontaine and Wintenberger, which is essential to define the
base rings for (¢, T')-modules, imposes certain restrictions on the extension K« /K.
Specifically on the ramification properties of such extension.

The fundamental article [28] of Kisin and Ren, following ideas that had ap-
peared in work of Colmez and others, initiated the systematic study of p-adic
Galois representations through (¢, I')-modules when K /K is the extension ob-
tained from the torsion points of a Lubin—Tate formal group. There has been a lot
of progress in this subject since then, thanks to the work of Berger, Fourquaux,
Schneider, Venjakob, Xie. ..

The objective of this second part is to (slightly) generalize the p—adic Hodge
theory and the Iwasawa theory of Lubin-Tate extensions to allow for what are
known as relative Lubin-Tate formal groups, which often appear more naturally.

For the first time, we replace some of the notation of the previous sections.
More specifically, the same symbols will now denote more general versions of the
objects that appeared before. One can recover the previous theory by regarding
the cyclotomic extension as obtained from the torsion points of the multiplicative
formal group.
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5 Relative Lubin-Tate groups

Throughout this section, let K denote a fixed finite extension of Q, and write Ok
for its ring of integers and k = IF, for its residue field.

To begin with, we recall the basic theory of Lubin-Tate formal groups relative to
an unramified extension L/K, as introduced in de Shalit’s short article [36]. A more
detailed exposition with proofs is included in the first chapter of de Shalit’s book
[37] or in Schneider’s course notes [32]. Some results will not be stated in their
most general form here.

Let L be the finite unramified extension of degree d over K, with ring of integers
0 and residue field k. The Galois group Gal(L/K) is generated by the Frobenius
element ¢, which lifts the g—th power map on k;. Our goal is to describe Lubin—
Tate towers of extensions of the following shape:

Lo

Ly

totally
—1)ag"— 1
ramified (q ) q

LO = L <4’q>
d
unramified

K

wnite

Qp

5.1 The formal module

Definition 46. Let 711 be a uniformizer of 0. A Frobenius power series for my is a
formal power series ¢(Z) € 01 [Z] satisfying that

(i) ¢(Z) = m.Z mod Z? and

(i) ¢(Z) = Z9 mod 7mp.

Fix once and for all a uniformizer 71; and a Frobenius power series ¢(Z) for
rir.. We will write {x = Ny /x(7r) € Ok. As in the original theory of Lubin and
Tate, we can attach a formal group law to these objects.
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Lemma 47. Let n € Z>4. For every linear homogeneous polynomial
Fi(Z4,...,2,) =0 Z1+ - -+ anZy € Ok|Z4, ..., Z4)
(with coefficients in Og), there exists a unique power series
F(Zy,...,2y) € OLZ4,...,Z4]

(with coefficients in O, not necessarily in Ox) such that
(i) F(Z4,...,2,) = F(Z4,...,Zy) mod (Zy,...,72,)% and
(i) ¢(F(Z1,...,Zn)) = FP1(P(Z1),...,¢(Zy)).

Proof. See lemma 1.1.4 of de Shalit’s book [37]. H

As an immediate application of lemma 47, we obtain the following result.

Theorem 48.

(1) There exists a unique formal group law § = F4(X,Y) € OL[X, Y] for which the
Frobenius power series ¢(Z) defines a homomorphism § — §%4 of formal groups
over Oy, (i.e., p(F(X,Y)) = F(¢(X), ¢(Y))). Here, % denotes the power series
obtained by applying ¢4 to the coefficients of §.

(2) There is an injective morphism of rings [ - |¢: Ox — Endg, (Jy) defined as follows:
for every a € O, the power series [a]ly(Z) € OL[Z] is characterized by the
properties

[alp(Z) =aZ mod Z* and  ¢([aly(2)) = [al}" (9(Z)).
Proof. See theorem 1.1.3 and proposition 1.1.5 of de Shalit’s book [37]. O

Remark. Lemma 47 (resp. the second part of theorem 48) is a special case of lemma
1.1.4 (resp. proposition 1.1.5) of de Shalit’s book [37]. The more general results
allow one to relate the formal group laws obtained from different uniformizers
and Frobenius power series. For our applications, it is sufficient to note that ¢%7(2)
is a Frobenius power series for the uniformizer ¢, (77 ) and then qu = Tyvq and
[a]iq = [a]ys. Thus, we obtain at most d formal groups corresponding to the
Frobenius iterates of 717, all of which have the same norm k.

Definition 49. The formal group §y from theorem 48 is the Lubin-Tate formal group
(relative to the extension L/K) associated with the Frobenius power series ¢.
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5.2 Torsion points

Define ¢1 = ¢ and ¢, 11 = 4)(”5’ o Py = $% o gbq’g_l o---o¢%o¢forn > 1. Thatis,
¢n € Homg, (T, Sf;”) foralln € Z>. (In particular, ¢; = [Ck].) To these power
series we attach the torsion modules

Spn = Spldn] ={z € me, : Pn(z) =0},

x is any uniformizer of Ok, one can prove (usin eierstrass’s preparation
If y f fo Wi t ! t

theorem and counting points) that
Som ={z€mc,: [mklp(z) =0} ={z €mc, : [a]p(z) = 0foralla € mg }

Set L, = L(S¢,x) for every n > 1.

Proposition 50. For every n € Zx1, the set g, becomes a free (Ox /my)—module of
rank 1 with the addition given by § and the multiplication by scalars induced by [ - |4.

Proof. See proposition 3.3 of Schneider’s notes [32]. O

Proposition 51. Let n € Z>1. The extension Ly, /L is finite and Galois with a canonical
isomorphism Gal(L,, /L) = (O /m})*. Furthermore, L,/ L is totally ramified and any

generator z,, of §¢n generates O, over 0.
Proof. See proposition 3.5 of Schneider’s notes [32]. O

Definition 52. Let

Lo = Ln:L<U 3¢,n).

n>1 n>1

The Lubin-Tate character of § is the isomorphism xz, = x¢: Gal(Leo/L) = O
characterized by

0(z) = [xp(0)]p(z) forallz € | ) Fgnandallo € Gal(Loo/L).

n>1

Remark. One can prove that the fields L, for n € Z1 and the character xz, depend
only on {x = Ny ,x(71) (cf. proposition I.1.8 of de Shalit’s book [37]). In particular,
we may replace §y with Sg" = S(Pq,g for any n € Z. We write x¢, instead of x4
whenever we want to stress this independence of ¢.

Theorem 53. Let vg: K — Z U { oo } denote the normalized valuation of K. Recall
that d = [L : K].
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(1) The compositum of Lo and the maximal unramified extension K" of K is the

maximal abelian extension K of K. Consequently,
Gal(K®® /L) = Gal(Le/L) x Gal(K"/L).
(2) The map v (dZ) = 0 - &% — Gal(K?® /L) defined by

-8 — (g ¢) € Gal(Loo/L) x Gal(K"*/L)

1

(where [u=1]y denotes the element of Gal(Leo/L) corresponding to u™' via the

Lubin-Tate character xy) is the restriction of the (local) Artin reciprocity map
recg: K* — Gal(K?/K).

Proof. See proposition 5.8, theorems 5.9 and 5.26 and corollary 5.12 of Schneider’s
notes [32]. O

For our applications, we are going to need some more constructions and
notations. Throughout this section, let G; = Gal(K/L), H, = Gal(K/L«) and
I't = Gi/Hyp = Gal(Le/L). We sometimes identify I';, with &7 via the Lubin—
Tate character xg,-

Definition 54. The Tate module of the (relative) Lubin—Tate group § is

Ty§p=lmg oo = Bm )7 [(9%1)a] = limKer(¢%1' 09 00",
n=>0 ’ n>0

n>0

where the projective limit is taken with respect to the transition maps given by
—n+1

N g
P Sy 7 Sy

Remark. The set Ty § inherits the structure of an ¢ -module and an action of I'
from the respective structures on each %4) oy Propositions 50 and 51 imply that
N

Ty Sy = Ox(xg,)- That s, for every (z,)n>0 € Ty §¢p and every o € Iy,
U((Zn)nZO) = <[X§K(U)]¢¢‘7n (Z”))nz()‘

5.3 The formal logarithm

Definition 55. Let w(Z) = (1+---)dZ € OL[Z] dZ be the (normalized) invariant
differential of the formal group §p, characterized by

woFe(X,Y) = w(X)+w(Y).
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The formal logarithm of the formal group § is the formal integral
log,(Z) = logg, (Z) = /w(Z) —Z+--ez-L[Z]

Remark. The formal logarithm defines an isomorphism log: §y — G, of formal

groups over L. Its inverse is the formal exponential exp,: G, — S¢- In particular,
log,, (§¢(X,Y)) = log,(X) +1log,(Y) and log,([aly(Z)) = a-log,(Z) for every
a € Ok.

Lemma 56. The formal logarithm of §¢ can also be computed as

. ¢u(Z)
| Z)=1
0gy(Z) = lim ot () -+ g (L)L

4

where the limit is taken with respect to the (7ty, Z)—-adic topology of L[Z].

Proof. This is similar to part of the proof of lemma 9.8 of Colmez’s article [16]. We
reproduce the relevant parts here for the convenience of the reader.
Let

1(2) $u(2) _ ¢ o 0giog(2)

o) g(m)m g )y

We need to check that the sequence (1,,),,>1 converges in L[Z].
We can write

B 9T 0 pu(Z) — gh(m)pa(Z)  p% (gu(Z))
lis1(Z) —1,(Z) = or(m) - ggm)me gr(mn) - g(m)

with p(Z) = ¢(Z) — m.Z € Z?01[Z]. But the action of ¢, does not change the
valuations and ¢(Z) = Z7 mod 7t;. Thus, the coefficient of Z¥ in 1, 11 (Z) — 1,(Z)
has 717 —adic valuation at least

2(n — [log,(k)]) = (n+1) =n—1— [log, (k)| —— +oo.

n—o00

The previous estimate proves the convergence of the sequence (1,(Z)),>1; let
1(Z) denote its limit in L[ Z]. We can check that it satisfies the defining properties
of log:

* By definition, 1,(Z) = Z + - - -. Therefore, the coefficient of Z in [(Z) is 1.

* We claim that /(Z) defines a homomorphism of formal groups §y — G..
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WX Y) (X))
oo i) - g e i TN - ()

PuX)+0ulY)  _jixy4u(y),

where in the third equality we used that Sf (X,Y) = X+ Y mod (X,Y)?

and so the contribution of the higher order terms tends to 0 (as can be seen

from a rough estimate as above). O

Corollary 57. The formal logarithm of § satisfies the equation loggq o¢ = -log,.

Corollary 58. The zeros of the formal logarithm log ¢(Z) are exactly the torsion points
of Sy, namely

n>1

each with multiplicity 1.

Definition 59. The invariant derivation of the formal group § is

d

%= d(10g¢(Z)) .

Remark. Write d10g¢(Z ) = 8¢(Z)dZ. By the definition of 9y, for every formal
series f(Z) € L[Z, Z7 '] we get f/(Z)dZ = 94(f)(Z) dlog,(Z) or, equivalently,

(@) = L2

53



6 (Modified) period rings

Since the extension L« /L is no longer cyclotomic, we have to modify the con-
struction of some of the period rings of p—adic Hodge theory. The exposition in
this section is mostly based on the very detailed presentation in Schneider and
Venjakob'’s article [34], even if the main constructions were already present in Kisin

and Ren’s previous work [28].

6.1 Rings of formal series

Define E] = k.((Z)) and A}" = 0L[Z]. Let A} be the rr;-adic completion of
01((Z)) and let B} be its field of fractions. In more concrete terms,

Al = { Z aka € ﬁLHZ,Z_l]] : lim |llk|p = 0}
kez k——co

and

B} = { ) 0 ZF € L[Z,Z7"] : sup |ax|p < o0 and lim |ag|, =0 }
kez kez k= —eo

Then A/ is a Cohen ring with residue field E} and B} = A/ [r; !]. We endow A/
with the weak topology, for which the &7 —submodules

i AL+ Z"AtT fork,n € Zsg
form a basis of open neighbourhoods of 0, and

! —n A/l
n>0

with the direct limit topology.
We also consider the ring

Bl = { Y axZ* € L[Z] : lim |ay|,7* = 0 forall 7 € [0,1) }

of rigid analytic functions on the open unit disc B. Since the rigid variety B over
L is quasi-Stein (namely, it is the rising union of closed discs B([r] of increasing
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radius r), the ring Brlg | is a Fréchet L-algebra with respect to the norms

aZkH = max( |ay|,r forr € PR with r < 1.
Hk;) o llp T ko (Ialpr*) P

6.1.1 Operators

Definition 60. The Coleman Frobenius operator (associated with the relative Lubin-
Tate formal group F) is the morphism of K-algebras ¢;: A7" — A" defined by

94(f(2)) = f71(9(2))-

Lemma 61. The morphism ¢g: A’L’Jr — A'L’Jr is injective and

m(¢,) = {f(Z) e A" : f(§p(Z,v1)) = f(Z) forall vy € Fp1 }.

Proof. See lemma 4.1 of Schneider’s notes [32] (and observe that applying ¢, on
the coefficients of power series is an automorphism). O

Remark. The Coleman Frobenius operator can be used to define Coleman norm
and trace operators and a Coleman map on norm-compatible systems of units
as in the classical theory (cf. section 4 of Schneider’s notes [32] or section 2 of
Schneider—Venjakob's article [34]).

Since ¢4(Z) = ¢(Z) = Z7 mod my is a unit in A}, we can extend ¢, to a
morphism 0 ((Z)) — A} and by continuity to ¢;: A} — A} and ¢,: B] — Bj.
Similarly, we obtain ¢,: B ng ; — B ;. Analogously, there are actions of I'; on

A}, B} and B, ; defined by

rig,L*

(7. £(2)) = f([xe(M]g(2))-

Remark. The formal logarithm log ¢(Z ) converges on the open unit disc and so is

an element of B

g1~ Corollary 57 says that ¢, acts on log(Z) as multiplication by

7Ty,

Lemma 62. The ¢ (A} )-module A (resp. the ¢ (B} )—module B} ) is free with basis
1,Z,...,29°1,

Proof. See proposition 1.7.3 of Schneider’s book [31] (where the result is stated
for the classical Lubin-Tate case, but the proof works verbatim for the relative

Lubin-Tate situation.) O
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Definition 63. The operator ¢, on A] is the unique additive endomorphism of

A satisfying that
1
(PE] le) 17[Jq — 7T_L TI‘A/L/%(A/L) .

We define ¢, on B} and B:irg’L by the same formula.

Remarks.
(1) The fact that ¢, on A] is well-defined is not obvious, but it can be proved
exactly as in remark 3.2.i of Schneider-Venjakob’s article [34].

(2) By definition, 1, is almost a left inverse of ¢,:

9
¥q© ¢ g ()
The reason to normalize ¥, in this way instead of making it an actual left
inverse of @, is that, with this definition, the operators ¢, and ¢, are adjoint
via a certain Pontryagin duality, as Schneider and Venjakob showed in their
article [34].
(3) There is the projection formula

Yq(9q(f)g) = fpg(g) forall f, g € B (resp. B, ;).
Lemma 64. The actions of ¢, g and Ty on Aj (resp. B, B:irg,L) are continuous.

Proof. See proposition 1.7.8 of Schneider’s book [31] and proposition 2.4.(b) of
Fourquaux—Xie’s article [22] for the continuity on A} and B} (where the result
is stated for the classical Lubin-Tate case, but the proofs work verbatim for the

relative Lubin-Tate situation.)

TODO: find references for B;i“g/L O

Lemma 65. The operators ¢g, Y, and 9 (on either of the rings A}, B} or Bjig 1) satisfy

the relations

0po @y =TLPg00p and @z01Ps00p = dp O Pg 0 Py
Proof. Write dlog,(Z) = g¢(Z)dZ. Differentiating both sides of the identity
9q(log,(Z)) = milog,(Z), we see that ¢q(84(Z))¢'(Z) = m18¢(Z). That is,

¢'(2) L

8o(Z)  9q(89(2))
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Therefore,

990 po(f) = cvq(;;)cb _ svg)if(‘g);? _ nL(pq(g—(P) — 7T1.9q 0 0g(f).

On the other hand, one checks that

Tra; /g a) (f) = 2 f(Sp(o1, )

1€8p,1

(see the proof of remark 3.2.ii of Schneider—Venjakob’s article [34] for more details).

But dy is invariant under §y, which implies that

84,(f(3¢(01, . ))) = (8¢(f)) (S¢(01/ . )) for all 01 € 34,,1.

All in all, dy commutes with ¢, o 9. O

6.2 Constructions of p—adic Hodge theory

The rings introduced in the previous subsection are very simple but have the
disadvantage that the actions of ¢, and G| seem to be defined in a very ad hoc
way in comparison to their analogues for the usual period rings of p—adic Hodge
theory. In this subsection, we give other constructions that resemble the ones

introduced by Fontaine (cf. sections 2.1 to 2.4).

6.2.1 Perfect rings of characteristic p

Consider the rings

E+ = 1&1 ﬁcp = 1&1 (ﬁcp/ﬂ'Lﬁcp) and E = 1&1 Cp,

x—xf x—x4 x> x4

with the addition and multiplication laws defined as follows: for x = (x(”))n>0

and y = (y(ﬂ))n2 o in E, the elements x 4 y and xy of E are given by

(x +y)(n) — llm (x(n+m) _|_y(n+m))qm and (xy)(n) — x(n)y(n)'

m—00

One can show that E* is a valuation ring with fraction field E of characteristic p.
We write ¢, for the g~th power Frobenius endomorphism x — x7 of E.

57



6.2.2 Perfect rings of characteristic 0

To lift the constructions to characteristic 0, one can use rings of Witt vectors. In
fact, since we allow K to have ramification over Qp, it is more convenient to work
with ramified Witt vectors. (See section 1.1 of Schneider’s book [31] for a systematic
account of ramified Witt vectors.)

Let F = W(k)[p~!] be the maximal absolutely unramified subfield of K. Con-
sider the rings A* = Wx(ET) = W(E") ®g, Ok and A = Wi (E) = W(E) ®4, Ok
and let B* = A*[nr;!] and B = A[rr;!]. We endow A with the weak topology,
which is the product topology coming from the valuation topology on E. Al-
ternatively, if 77 is an element of E with Fcéo) = 7t and |71 ] is its Teichmiiller

representative in A, the sets
kA + [ ]"AT fork,n >0

form a basis of neighbourhoods of 0 for the weak topology on A. Then the weak
topologies on A*, B* and B are the induced ones regarding

AtcA, B=|Jnmn"A, B'CB
n>0
By the functoriality of the Witt vectors constructions, the g—th power Frobenius
endomorphism ¢, and the action of the Galois group G, naturally lift to continu-

ous actions on the rings A*, A, BT and B in characteristic 0 (cf. lemma 1.5.3 of
Schneider’s book [31]).

6.2.3 Imperfect rings of characteristic p

Since ¢%1 ! (Z) = Z9 mod 71, reduction modulo 717 at each level yields a well-

defined map

L: T(pg(p — E+

(zn)n>0 — (zn mod 711) ;>0

(not a morphism in any clear way). As a matter of fact, the image of « lies in the
maximal ideal of E*.

Fix once and for all a generator ty of Ty §¢ (as an Ox-module). We obtain
an embedding of E; into E given by Z — ((ty). One can prove that its image is
independent of the choice of ty. Let E;, = Im(E] < E). If 1(ty) = (Zu)u>0, there is
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an induced action of I'; on E; defined by

r(f (b)) = fu(r(to))) = f((bc@K(v)]Wn (1)) u20)

(where the power series [XgK(’y)]qb o is reduced modulo 711). There is also a g—th

power Frobenius morphism:

fi(to)) = f1(u(to)") = fP1(9(u(t0)))

(where the power series ¢ is reduced modulo 717). Next, we want to lift these
constructions to the rings of characteristic 0.

6.2.4 Imperfect rings of characteristic 0

Lemma 66. There is a unique map { - }: E* — A™ (not a morphism in any clear sense)
such that, for every x € ET, {x} is a lift of x with the property that g5 ({x}) = ¢({x}).
Moreover, { - } respects the action of Gy, and commutes with [a]y for all a € Ok.

Proof. This result is the analogue of lemma 1.2 of Kisin—Ren’s article [28], which in
turn is based on lemma 9.3 of Colmez’s article [16]. We adapt it here to the relative
Lubin-Tate situation for the convenience of the reader.

Let ¥ be an arbitrary lift of x in A*. We want to define

{x} = lim (¢, 09)" (%)
(where the exponent n denotes the composition of Pq Lo ¢ with itself n times). If
we can prove that this limit exists and is independent of the choice of ¥, it will
clearly satisfy the defining properties of {x}.

Observe that the set of lifts of x is precisely X + AT, Since on W)/ mr
is a unit and ¢(7tfAT) C 7FTIAT (as ¢(Z) = Z7 mod 1), the map g7l o¢is
contractive on X + 7t AT, But ¥ + ;A7 is complete with respect to the 71y —adic
topology. Therefore, there is a unique fixed point that must be {x}.

Next let ¢ € G;. We can write

7o (g7 0 p)(F) = ¢ 0P 0.0 (0" (F)).

Since 00 ¢! = g7 0o on AT, we deduce that o'({x}) is a lift of ¢(x) and that

@q(c({x})) = ¢(c({x})). Therefore, c({x}) = {o(x)}.
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Finally, for a € Ok, we can write

alpo (97 09)" (%) = ¢ 09" 0---0 9% ([a]f" 0 g™ (7))
=% 0P o0 ¢¢J”((pq—" o [a]4(%))

and we conclude that [a]y({x}) = {[a]¢(x)} by the same argument. O

Proposition 67. The map

lp: Tq,&l, — A+
t— {u(t)}

satisfies the following properties:
(1) [alp(tp(t)) = tp(a-t) for every a € Ok;
2) @q(1p(t)) = P(19(t)), and
) o(tp(t)) = 1p(0(t)) = 1 ([xp()p(1)) = [xg ()l (19(t)) for every o € Gp.

Proof. These properties follow immediately from lemma 66 and the corresponding

properties of .. O

Recall that we fixed a generator ty of Ty Fp. Define wy = 145(tg) € A*. By
analogy with the situation in characteristic p, we can define an embedding of
O -algebras A7 — At by Z wy. We observe that wy is a unit in the local ring
A, as its reduction in E is i(ty) # 0. Thus, and by continuity with respect to the
rt;—adic topologies, the embedding can be extended to

"<+A and B) < B.

Proposition 67 implies that these maps are compatible with the Frobenius operators
@4 and the actions of Gr. One can prove that the images of these embeddings are
independent of the choice of t( (cf. remark 2.1.17 of Schneider’s book [31]). Let
A =Im(A7" < A*), AL = Im(A] — A) and B, = Im(B} — B). The main
result that we are going to use is the following:

Proposition 68. The morphism of Or—algebras A} — Aj defined by Z — wy is an

isomorphism of topological Oy —algebras (with respect to the weak topologies) compatible
with the continuous actions of the Frobenius operator ¢4 and the Galois group T'y..

Proof. Only the fact that this map is a homeomorphism with respect to the weak
topologies is unclear, but that is the content of proposition 2.1.16.(i) of Schneider’s
book [31]. H
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This result allows us to work more concretely in terms of formal series and
then translate the constructions to work over A;, as is done in the article [34] of
Schneider and Venjakob.

6.2.5 Larger rings of periods

Let E denote the separable closure of E; inside E. Let B be the p-adic completion
of the maximal unramified extension of By inside B and put A = BN A and
At = BN A*. One can prove that A is a complete discrete valuation ring with
tield of fractions B and residue field E. Moreover, the theory of fields of norms of
Fontaine and Wintenberger gives natural isomorphisms

Gal(B/BL) = Gal(A/AL) = Gal(E/EL) = HL/

where for the characteristic 0 rings Gal( - / - ) means continuous automorphisms
(cf. lemma 1.4 of Kisin—Ren'’s article [28]).

Lemma 69. The sequence

is exact.

Proof. This is analogous to remark 5.1 of Schneider—Venjakob’s article [34]. We
recall the main idea of the proof here.

The sequence of the statement can be expressed as the projective limit of the
sequences

-1
0 —— Ox/ng0x —— A/mgA (Pq—> A/ngA —— 0

for n > 1, so it suffices to prove that each of those is exact (as the first terms satisfy
the Mittag—Leffler condition). An induction argument on n reduces the assertion
to the case of n = 1, but the exactness of

-1
0——F, —E "5 E——>0

is clear. ]

Recall that Acys is the p—adic completion of a divided power envelope of
W(E"). Consider Acrys kK = Acrys @ K. We have embeddings A C At C Acrys K-
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Recall also that Bys is constructed from A.ys by inverting a period that is usually
called t (“a p-adic analogue of 27ti”). Consider Beysk = Berys @ K. By (the
analogues of) proposition 9.10 and lemma 9.17 of Colmez’s article [16], we obtain
a period £y = log,(wp) € B( ¢ that can play the role of  in the (relative) Lubin-
Tate situation. Since 4 is a unit, we see that w is also a unit in B¢,y k-

It turns out that the inclusion A7" — Auysk given by Z — wy extends to a
continuous ring homomorphism Brlg L Acrys,K[nL_l], where we consider the

natural Fréchet topology on Bt ; and the 7r;—adic topology on AcryS,K[nL_l] (cf.

I'lg
lemma 1.4 of Schneider—Venjakob’s preprint [35]).

6.3 Rings of functions on annuli

Recall that we defined B;:g L

the p—adic unit disc over L centred at the origin. We can obtain other rings if we

to be the ring of global (rigid analytic) functions on B,

consider annuli inside B.

Consider r,s € pQ withr < s < 1 (resp. r < s < 1). The closed disc B]r]
of radius r is the affinoid subdomain of B defined by the inequality |Z|, < r.
The closed annulus B]r,s| (resp. the half-open annulus B]r,s)) is the affinoid
subdomain (resp. admissible open) of B defined by the inequalities r < [Z|, < s
(resp. r < |Z|, < s). Observe that

s)= | Blr,¢]

r<s'<s

and so we may view Blr,s) as a quasi-Stein rigid space.

Given a rigid analytic space ) over L and a complete extension L’ of L, we
write () /L’) for the ring of global (rigid analytic) functions on the base change
Vi and 0P4(Y /L) for the subring of ¢()/L’) consisting of those functions that
are bounded.

For every closed interval [r,s] C (0,1) as above, we define the Banach algebras

B;é L] = O(BJr,s]/L) and BZ’[r’S] = 0®4(B][r,s]/L). Then, for every half-open
interval [r,1) C (0,1) as above, we define the Fréchet algebras

t.r1 1,[r1 .ot
Brig,L) =0(B[r,1)/L) = L ngrLS and BL[r ) — O(B[r,1)/L) = @B [r.s]

r<s<l1 r<s<l
Finally, we define the LF algebras

1, .ot
ngL @BngL and B! :@BLV ),

r<1 r<1
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The ring B;rig, ; is called the Robba ring of L, while B} is the subring of overconver-
gent elements of B} . One can check that B;rig, ; is a Bézout domain and that B} is a
field whose subring of functions that are bounded by 1 is local (even henselian),
thus giving rise to another topology on Bf. The completion of B! with respect to
that topology coincides with B .

In more concrete terms, we can write

Bl = { ) aZ* € L[Z,27"] : sup|ay|, < o0 and
kez kez

lim ||, = 0 for some r € (0,1) }
k——oc0

and

Y. aZ* € L[Z,271 : lim |ag|,7* = 0 for some r € (0,1) }
keZ k——o0

t _
Brig,L - {

6.3.1 Operators

We can extend the operators ¢, and y € I'; from A’L’Jr to Bf and B!,

rig 1. DY continuity,

as was done for B} in section 6.1.1.

More geometrically, one checks as in lemma 2.6 of Fourquaux—Xie’s article
[22] that, if r,s € p@ satisfy that p~1/¢(~1 < r < s < 1, then every ¢ € I}
defines a bijective morphism Blr,s] — B(r,s] given on points by z — [x(7)]¢(2)

and that ¢, defines a surjective morphism Blr,s| — L ®,, 1 B[r?,s7] given on

t,[7,5]

t,[7,s]
rig,L — Bri

8L
are isometries with respect to the supremum normes.

points by z — ¢(z). Furthermore, the induced morphisms 7: B and

9o B+,[r‘7,s‘7] t,[r,s]
q .

rig,L rig,L
To extend 1, observe that each v, € 1 defines an isomorphism of affinoids

t,[r,s] t,[1,s]
rig,L - Brig,L

— B

Br,s] — Blr,s] given on points by z — §y(v1,2z). We define Try, : B
by
Try, (f) = ) f(Splvr, )

v1€8p1

(cf. the proof of lemma 65) and claim that its image is contained in the image of ¢,.
Indeed, by continuity it suffices to prove it for Try, (Z") forn € Z. If n > 0, this is
a consequence of the analogous statement for A}" (see the proof of remark 3.2.ii
of Schneider—Venjakob’s article [34]). If n < 0, we adapt the calculation of page 37

of Schneider—Venjakob’s preprint [35] using the previous case:

(2 (BE)) = o o (B257) ey PRI
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All in all, we can define

t,[7,5]
rig,L

ive limits as an operator ¢;: B

t,[r1,51)
— Brig,L

.I.
L Brig -

first as an operator ¢;: B and then by taking projective and induct-

.l.
rig,

64



7 (¢q I't)-modules

In this section we recall the definitions and results from Kisin and Ren’s article [28]
but adapted to our situation in which the Lubin-Tate formal group is relative. We
provide the proofs whenever they are not the same as in the original references.

7.1 Modules over A; or B,

Definition 70.

(1) An étale p;—module over Ay is a finitely generated Aj—-module M endowed
with a g;—semilinear morphism ¢, = @p: M — M whose A -linearization
¢y (M) = AL ®g, o, M — M is an isomorphism.

(2) An étale p;—module over By is a finitely generated B;-module M endowed
with a g;—semilinear morphism ¢; = ¢): M — M admitting a ¢,—stable
Ap-lattice N that is an étale ¢,—~module over A; with respect to ¢n = @um|n.

We write q)q—Mode (resp. q)q—ModIé;tL) for the category of étale p,—modules over
A (resp. over Br).

Remark. The Frobenius endomorphism ¢, of an étale ¢,—~module is automatically
continuous (see remark 3.8 of Schneider—Venjakob’s article [34]).

Definition 71. Let M be an étale ¢,—module (over A or Br). We define the

endomorphism

Yo =tpm: M +—— @i(M) —— M
f¢q(m) —— fom— l/’q(f)m

characterized by

q
97" (L)
Remark. The endomorphism ¢, is automatically continuous (see remark 3.8 of

quoq)q: idys .

Schneider—Venjakob's article [34]) and we have the projection formulae

1/)q(f§9q(m)) = ll)q(f)m and qu((Pq(f)m) = fl/’q(m)

by construction.

Definition 72. An étale (¢4, I'1)-module over A, or By is an étale p,—module with
an A - or By —semilinear continuous action of I’ commuting with ¢,. We write
(@4, T L)—Modi‘L (resp. (¢4, T L)—Mod%tL) for the category of étale (¢4, I'r)-modules
over Ay (resp. over By).
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7.1.1 Equivalence with representations

Let Rep, (GL) (resp. Repy(GL)) denote the category of finite Ox-modules (resp.
K—vector spaces) endowed with a continuous Ok-linear (resp. K-linear) action
of the Galois group G;. Let Rep,, ((GL) (resp. Rep,, ., (GL)) denote the full
subcategory of objects of Rep,, (GL) that are free (resp. killed by 7y for some
uniformizer 7tg of K and some n > 1) as Og—modules.

Definition 73.
(1) The (@q,I')-module (over Ap) associated with T € Ob(Rep,;, (GL)) is

D(T) = (A®g, T)ML.
(2) The (¢4, I't)-module (over Br) associated with V € Ob(Repy(Gy)) is
D(V) = (Beg V).
(3) The (Ok-linear) representation associated with M € Ob((q)q,FL)—ModitL) is
V(M) = (A, M)
(4) The (K-linear) representation associated with M € Ob((¢,, T L)—Mod%tL) is
V(M) = (B g, M)#L.

Theorem 74 (Kisin—-Ren). The functors

D .
RePﬁK(GL) —~ (G"qrrL)_MOdeAtL

(resp.
D .
Repy(GL) —~ ((qurL)_MOd%tL)

are exact quasi-inverse equivalences of categories that are compatible with tensor products
and duality.

Proof. For the non-relative Lubin—Tate case, this is theorem 1.6 of Kisin—Ren’s
article [28], which in turn uses the same arguments of sections Al1.2 and A3.4
of Fontaine’s article [21] for the cyclotomic case. (Alternatively, section 3 of
Brinon-Conrad’s notes [11] contains all the details of the proof once we know that
Gal(E/Er) = H.) Exactly the same arguments work in the relative Lubin-Tate
situation too. Here we just summarize the general strategy.
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The proof of this theorem can be seen as a series of reductions to simpler cases.

* The statement for Repy(Gr) and (¢, T’ L)—Mod%tL can be reduced to the
statement for Rep, (Gr) and (¢4, T L)—Modf‘{L by choosing Z,-lattices and
A -lattices.

* The objects of Rep,; (GL) (resp. of (qoq,FL)—ModéAtL) that are finite free as
Ox—modules (resp. as Aj—modules) can be written as the projective limit of
their quotients by powers of 7. Therefore, one can reduce to the torsion
case (i.e., to objects that are killed by some power of 7).

* The case of objects of Rep,;, (Gr) and (¢g, T L)—ModléfL that are killed by 7y
for some n € Z>1 can be reduced to the case by an induction argument on n
in which objects are killed by 7x.

¢ In the end the proof boils down to showing that (in the killed-by-7x case)
the maps

E®p, D(T) »E®p, T and E®g V(M) > E®p M

induced by multiplication in E are isomorphisms. Then one can deduce that,
in the most general cases of the statement of the theorem, the analogous

maps
ARa, D(T) = A®g, T and A®g V(M) = AR, M
(resp.
B®p, D(V) = B®xV and B®gV(M)— B®p, M)
are isomorphisms. O

7.1.2 Overconvergent representations

Definition 75. An étale ,—module over B is a finite B} -vector space M endowed
with a ¢;—semilinear morphism ¢; = @p: M — M whose matrix (in some basis)
is invertible. We write goq—Mod‘E.,tJ£ for the category of étale p,—modules over B} .

Definition 76. An étale ,I'.)—module over B is an étale ¢,~module over B}
Pq L Pq L
with a Bf —semilinear continuous action of I'; that commutes with ¢,. We write
,T1)-ModS for the category of étale (¢, ['1 )-modules over BY.
Pq B! gory Pq L

Base change from Bz to By (via the natural inclusion B{ — B/ and the iso-
morphism B} = By, given by Z — wy; cf. proposition 68) induces a functor
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(g, l“L)—Mod]é;Jr — ((pq,FL)—Mod%tL. Its essential image can be related to other
L

rings introduced in section 6.

Definition 77.

(1) An étale (¢4, I'1)-module M is called overconvergent if it admits a B;-basis
in terms of which the matrices of ¢, and of every v € I'; have coefficients in
(the image of) B} . Such a basis generates M' € Ob((g,, FL)—Mod']é;z) with
the property that B, ®g; M= M.

(2) A representation V € Repy(GL) is called overconvergent if its associated
(¢4, Tr)-module D(V) is overconvergent. In that case, we write D* (V) for
the corresponding module in (¢4, I L)—Mod‘éﬂ.

B L
We write (@, T L)—Mod;;’ft for the full subcategory of overconvergent modules in
(pq,T L)—Mod%tL and Rep} (Gy) for the full subcategory of overconvergent repres-
entations in Rep, (Gr).

7.2 Modules over B!

rig,L
Definition 78. A free ¢,—module over B;rig’L is a free B;rig,L—module A of finite
rank endowed with a ¢;—semilinear endomorphism ¢, = ¢ 4: .# — .# such
that the B;rig’L—linearization 1® @q: @5 (A) — A is an isomorphism. We write
¢;~Modg+ i for the category of such modules.
rig,L’

Definition 79. A free (¢4, T'1)-module over B;

.1.
ig
endowed with a B;rig

write (g, I'r)-Modg: e for the category of such modules.
rig,L”

i t
1 s a free p;—module over Blig L

p—semilinear continuous action of I'r commuting with ¢,;. We

Proposition 80. Foreach .# € Ob((¢4,T1)-Modg: ) .), there exist a radius ry € p®
rig,L”

such that p~V/@=1¢ < ry < 1 and a finite free B:i’ggl)—module My endowed with

(i) a @g—semilinear continuous morphism

t[r 1)

¢q: %0 — Brlg,L ®B+,[To,1) ’%0
rig,L
r 1) . o
such that the Brig 1 'linearization
/q 1/q
. +/[r(1) /1) +,[7’0 ,1)
1® Pq: Brig,L ®(Pq’B:i,g(£,1) My —> Brig,L ®B:i,gg,1) M

is an isomorphism and
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(ii) a B;’g%’l) —semilinear continuous action of I';, commuting with ¢4
with the property that

.I.
M = Brig 1 @ ting1) Ao

rig,L

compatibly with the actions of ¢, and I'y.

Proof. See proposition 2.24 of Berger-Schneider—Xie’s article [8] for a proof of a

more general result. O

In the notation of proposition 80, we may view .#{ as the global sections of
a coherent sheaf on the annulus B[rg,1). What is more, B[rg, 1) is a quasi-Stein
space and so its coherent sheaves are uniquely determined by their global sections.
Givenr,s € pQ with rg < r < s <1, we write

t,[r,s]
rig,L

1,[r,1)

®B+,[r0,1) My and //Z|B[r,l) = BriéL ®B+,[r0,1) M.

rig,L rig,L

%|B[r,s] =B

In particular,

Mgy = Um Mg and A = lim A |5,

r<s'<1 r'<1

7.2.1 Slope filtrations

In this subsection we briefly recall the theory of slope filtrations on ¢;—~modules
over the Robba ring. The general theory is explained in sections 1.4 to 1.7 of
Kedlaya’s article [24].

Definition 81. Consider .# € Ob(¢,~Modg: ) of rank m over B!

rig L rig,L*
(1) Choose a basis element

xe/\//

and consider « € (B, ;)™ such that ¢,(x) = ax. The degree of .4 is

rig,L
deg(.#) = v (a),

where Vgt is the normalized discrete valuation on B} given by the subring
of functions that are bounded by 1.
(2) If A is non-zero, we define the slope of .# to be
deg(.#
u(a) = 280

m
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(3) Lets € Q. We say that . is pure of slope s if u(.#) = s and u(4") > s for all

non-trivial subobjects .4 of .# in ¢,~Modg+ e
rig,L’
We write (Pq_MOdi‘Iig,yfr (resp. (goq,l“L)—Mod%Lg,L,ﬁ) for the full subcategory of

modules that are pure of slope s in (Pq_MOdB:ig,L,fr (resp. in (¢4, T L)_MOdB;rig,yfr)'
Theorem 82 (Kedlaya). Every .# € Ob (q)q_MOdBIig,L’fr) admits a unique filtration
O=do C M C - CMy=M
by saturated ¢,~submodules such that the successive quotients are pure of slopes
w( A M) < - < u( My ] My—q).
This filtration is known as Kedlaya's slope filtration of .Z.

Proof. See proposition 1.4.15 in Kedlaya’s article [24]. O

Definition 83. We say that .# € Ob(@;-Modg: ¢ ) is étale if it admits a lattice
rig,L”

¥ over the subring of functions bounded by 1in B} (i.e., of series with coefficients
in 01) with the property that ¢, induces an isomorphism ¢ (.4") — 4.

Theorem 84 (Kedlaya). A free p,~module .4 over B;figlL is étale if and only if it is pure
of slope 0.

Proof. See theorems 1.6.10 and 1.7.1 of Kedlaya’s article [24], noting that our

definitions are different from the (equivalent) definitions 1.4.6 and 1.6.1 in ibid.[J

7.2.2 Equivalence with K-analytic representations

Definition 85. The (¢,, I'1)-module over B},

rig,1, associated with an overconvergent
representation V € Ob(Repk(Gyr)) is

D/, (V) = Bjig,L Opy DY(V).

One can check that DI,

rig At
but it is not an equivalence of categories unless we restrict to certain subcategories.

defines a functor Rep}(Gr) — (g, I“L)—ModOBf
rig

Definition 86. We say that a representation V € Ob(Repy(Gy)) is K-analytic if
the C,—semilinear representations C, @,k V of G are isomorphic to the trivial
representation for all the embeddings o: K < C,, other than the identity.

70



Theorem 87 (Berger). Every V € Ob(Rep¥*(GL)) is overconvergent.
Proof. This is theorem C (or theorem 10.1) of Berger’s article [6]. O

Next we describe the essential image of Rep%'(Gr) under D;rig. More precisely,
we define a notion of analyticity of (¢, I'r)-modules based on the differential of
the action of I';.

Lemma 88. Let .# € Ob((q)q, rL)_MOdBIig’L,fr)'

(1) Foreveryr,s € pQuwithr < s < 1and for v € T sufficiently close to 1 (depending
on r and s), the series

_ Ly =1)F
log(y) = ¥, (-1

k>1

induces a well-defined operator on M | gy o).

(2) Let Lie(I'L) be the Lie algebra of Ty (regarded as a p—adic Lie group) and let
expr, : Lie(T'r) --» Iy be the corresponding exponential map. There is a well-
defined Z.,~linear map of Lie algebras

dry : Lie(FL) — EndL(///)
r — log(expy, (r))

such that, for every ¢ € Lie(T'),

(drL(x)) (fm) = (dTr(x)) (f) -m + f - (dT1(x)) (m)

forall f € B;fig’L and allm € M.

Proof. See section 1.3 (until equation 1.2) of Fourquaux—Xie’s article [22], which
in turn adapts the calculations of lemma 2.1.2 of Kisin—Ren’s article [28]. The

arguments work exactly in the same way for the relative Lubin-Tate situation too.[]

Definition 89. A module .# € Ob((¢,, I'.)-Modg: . ;) is called Ox—analytic if
rig,L’

the Z,-linear map dI'; : Lie(I'1) — Endp(.#) from lemma 88 is in fact Ox-linear.

We write (qoq,FL)—Mod%?ig,Ufr (resp. (¢g, FL)—ModOB'f“ ;) for the full subcategory

rig,L”

of Ox—analytic objects in (¢4, ['L)-Modg: ¢, (resp. (¢g, I’L)—Mod(];Jr
rig,L”

rig,L’fr)'

Lemma 90. Let .2/ € Ob((¢4,I')-Modgt ).

rig,L”
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(1) Foreveryr,s € pRQ withr < s < 1, the operator

log(7)

=—2>"—  on.|gys
¥ = Toglxe (7)) 51

is well-defined (for v € 'y, sufficiently close to 1 but # 1) and is independent of -y.
(2) Gluing these operators for varying r and s, we obtain an L-linear differential
operator Ny : M — A that commutes with ¢g. In particular,

Ny (fm) = Ny (f)-m+ f-Ny(m)

forall f € BE | andallm € 4.

(3) There is a singular connection V on .# with simple poles at the non-zero torsion
points of ¢ (i.e., the zeros of ¢, (Z) for n > 1 other than 0) such that

Ny = (V,1og,(2)y).

Proof. See equation 1.3 of Fourquaux—Xie’s article [22] and the calculations of

+
rig,L*

the same way for the relative Lubin—Tate situation. O

lemma 2.1.4 of Kisin—Ren’s article [28] over B The arguments work exactly in

Theorem 91 (Berger). The functor

D+ . Repi“(GL) — (q)q,FL)—Modg’f“

rig *
) rig,L’fr

is an exact equivalence of categories that is compatible with tensor products and duality.

Proof. This is theorem D (or theorem 10.4) of Berger’s article [6]. O

7.3 Modules over B;irg’L

Let Q(Z) =¢p(Z)/Z=mp+--- €A} C B;Eg,L, which by definition satisfies that
Pq(wp) = Qlwy) - wy.

+
rig,L

_l’_
rig,L

endowed with a ¢,—semilinear morphism ¢, = ¢ : .# — .#[Q"'] such that
the linearization 1 ® @g: @5 (4) Q7Y — .#[Q 7] is an isomorphism. We write
¢@g~Modg+ e for the category of such modules.

rig,L”

Definition 92. A free ¢—module over B, ; is a free B, ;.—-module .# of finite rank

Remark. The module .#, being finite free over the ring B% oL of global rigid analytic
functions on B, corresponds to a coherent sheaf on the quasi-Stein space B. Given
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r € pQ with r < 1, we write ./ BJr] for the sections of that sheaf on the affinoid
subdomain B[r] (the closed disc of radius r).

Definition 93. A free (¢4, I't)—module over B:irg . is a free ¢;—module .# with a

+
Brig,L

induced action on .# / Z.# is trivial. We write (¢4, 'z )-Modg i for the category
rig,L’

—semilinear continuous action of I', commuting with ¢, and such that the

of such modules.

Example 94. The ring B:irg,L itself, with the actions of ¢; and I'; induced by the
relative Lubin-Tate structures associated with ¢ as in section 6.1, is an object of
(¢q,T'r)-Modpg+ e (cf. lemma 2.1.1 of Kisin—Ren’s article [28]).

rig,L”

7.3.1 Differential operators

Lemma 95. Let 4 < Ob((([)q/ TL)—MOdBjig/L,fr)'

(1) For every r € p®R withr < 1 and for v € T sufficiently close to 1 (depending on
r), the series

_ Ly —1)F
tog() = Y- (-1 120

k>1

induces a well-defined operator on M | g|y).

(2) Let Lie(I'y) be the Lie algebra of Ty (regarded as a p—adic Lie group) and let
expr, : Lie(I'L) --» I' be the corresponding exponential map. There is a well-
defined Z.,~linear map of Lie algebras

dlry : Lie(l"L) — EndL(///)
r— log (exprL (x))

such that, for every ¢ € Lie(T'r),

(drL(x)) (fm) = (dTr(x)) (f) -m + f - (dT1(x)) (m)

forall f € Bl andallm € .

Proof. See lemma 2.1.2 of Kisin—Ren’s article [28], whose proof works verbatim for
the relative Lubin-Tate situation too. O

Definition 96. A module .#Z € Ob((¢g, I')-Modg+ . i) is called Ox—analytic if
rig,L’
the Z,-linear map dI'; : Lie(T';) — Endp(.#) from lemma 95 is in fact Ox-linear.
We write (¢g,T1)-Modg: . for the full subcategory of Ox—analytic objects in
rig,L”

((Pq/ FL)_MOdBﬁg,L,ﬁ-
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Remark. By lemma 3.4.13 and remark 3.4.15 of Berger-Schneider—Xie’s article [8],
every .4 € Ob((¢y,I')-Modg+ L'ff) is automatically Ox—analytic just because the

action of I', is trivial modulo Z. (The proof of this fact is not easy and we will not
use it.)

Lemma 97. Let .# € Ob((¢4 I')-Modg} ).

rig,L”

(1) For every r € pQ with r < 1, the operator

NV—M On%hg[r]

- log(xs(7))
is well-defined (for -y € T’y sufficiently close to 1 but # 1) and is independent of y.
(2) Gluing these operators for varying r, we obtain an L-linear differential operator
Ny: # — A that commutes with ¢g. In particular,

Ny (fm) = Ny(f)-m+ f - Ny(m)

forall f € Bl andallm € A.
(3) There is a singular connection V on .# with simple poles at the non-zero torsion

points of 5 (i.e., the zeros of ¢, (Z) for n > 1 other than 0) such that
Ny = <V,10g¢(Z)8¢>.

Proof. See lemma 2.1.4 of Kisin—Ren’s article [28], which works exactly in the same
way for the relative Lubin-Tate situation. O

7.3.2 Filtered ¢;—~modules

Definition 98. A filtered ¢ ~module over L is a finite-dimensional L-vector space D
endowed with a ¢,—semilinear bijective map ¢, = ¢p: D — D and a decreasing,
separated and exhaustive filtration, indexed by Z, by L-subspaces. We write
(Fil, ¢5)-Mod|, for the category of filtered ¢,—modules over L.

Following subsection 2.2 of the article [28] of Kisin and Ren, which in turn
adapts the constructions of subsection 1.2 of Kisin’s article [27] to the Lubin-Tate

situation, we want to exhibit an equivalence between the categories (Fil, ¢,)-Mod

and (@4, FL)—Mod%r}ig e
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7.3.3 The functor ./

Fix once and for all a lift of ¢; € Gal(L/K) to ¢; € Gk. Write ty = (z,,)n>0 and
let v, = q)g(zn) € 8¢ forall n € Z>g. Since ¢ is a generator of Ty 5y, for every
n > 1 the element v,, € L, is a zero of

¢n(2)

4711—1(Z) = q)gil(Q(Z))

and L, = L(v,). Kisin and Ren define

Q(2) )
MZ) = " <— € B/
( ) nl;[O (Pq L rig,L
that, by lemma 56, is nothing else than A(Z) = log,,(Z)/Z. In particular, the zeros
of A(Z) are the non-zero torsion points of 4 (cf. corollary 58), namely the Galois
conjugates of the v, for n > 1. Therefore, given n € Z~, the function AP (Z) has

a simple zero at z,,. Also,

milog,(2) _ Z L
o(z) —h

¢q(AM(Z)) =

by corollary 57.

Let n > 1 and write x, for the point of B corresponding to the Galois conjugacy
class of z,. Let S;, denote the complete local ring of B at x,,, which is a complete
discrete valuation ring with residue field L, = L(z,). The field L, can be viewed
canonically inside S, and so we have an obvious uniformizer Z — z,. By the
observation at the end of the last paragraph, A%s ! (Z) is another uniformizer for
S;.. We consider S,, with the natural filtration given by its discrete valuation.

Let D € Ob((Fil, ¢;)-Mody). For every n > 1, we define

Bl (A @LD —— Su[(Z—zu) '@ D

f(2) @6 ———— f7(Z) ® ¢, (0)

(where we use the canonical morphism B;irg . — Sy and the fact that ¢,: D — D

is bijective). Set

M (D) = {x € B A ®L D 1y(x) € Fl'(S,[(Z — 20) Y 1. D)

foralln € Zzl}/
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where the filtration on S, [(Z — z,) '] ® D is the tensor product of the filtrations
on S,[(Z —z,)!] and on D.

Lemma 99. Let D € Ob((Fil, ¢5)-Mody ). The operator ¢z on B, | A @ D in-

duces the structure of a free g —module over ng L on M (D).

Proof. This is analogous to lemma 1.2.2 of Kisin’s article [27]. We reproduce (most
of) the proof with the necessary changes here.

Let r € Z~g such that Fil'™(D) = 0. Since 1,,(A) is the product of Z — z, and a
unit in S, and

Fil’(S,[(Z —z4) Y| ®. D) = Y (Z — z4) /S, @ Fil/ (D),
JEZ

we deduce that ./ (D) C )\_’B;{g,L ®@r D. But A_rB:irg,
B;irg, ; and so are its closed submodules (cf. lemma 1.1.5 of Kisin’s article [27]). One
can prove that /(D) is a closed submodule using the continuity of the maps ¢,
forn > 1.

To check that

; @1 D is finite free over

Pq: /\"B:gg,L ®r D — /\_rB;gg,L ®r D

F(Z) @6 — ¢4(f(2)) © 94(8) = f71(9(2)) @ 94(9)

induces an isomorphism ¢} (.# (D))[Q "] = .#(D)[Q '], we can identify ./ (D)
with its corresponding coherent sheaf on 5 and work on points. The result is only
unclear at the points of B where A is not a unit; that is, at the x/, corresponding to
the Galois conjugacy class of v, (or equivalently to (pg_l (Q(Z))) forn > 1.

Letn € Z>;. Since z,, = 4)9”? " (zy4+1), we have a well-defined morphism of
Ly-algebras ¢%1" " : S, — S,.1 defined by Z ~ ¢#1" (Z). In fact, the diagram

ATBl, @D — s (Z—=2,)7"S, @1 D

—n—1
qul %1 ®idp

ATBlp ®1LD —— (Z—2zy41) "Sus1 @1 D

+

is commutative. In particular, regarding S, asa B; oL

-module via the morphism

F(Z) — f%5"(Z) (and analogously for S,,;1), the morphism 4)9”“7”71 : Sy — Spy1 s

76



@g—semilinear in the sense that the diagram

+

rig, L—hnearlza’aon

is commutative. Then, the B

@5 (Sul(Z = 2a) 7)) = Su1l(Z = zur1) 7]

is an isomorphism taking ¢} ((Z — z4)"Sy) onto (Z — z,,41)"S, 41 for allm € Z.
Define
U%JDy:{xeB%Lm*W®LD:MujeFﬂX&ﬂZ—z@—H®LD)}

Clearly /4 (D) C #,(D) and this inclusion becomes an isomorphism at the point
x), of B. On the other hand, (, induces (over the residue fields of x/, and x,) a

bijection
B;ig,L ®L D In S?’l ®L D ~
n—1 ~ ’ 7 = Ln ®L D’
(e (Q(2)) = (Z —zu)
which implies that
Z—1z4,)7"S D
0 — .//ln(D) SN A—rB;&i—g,L @1 D In , ( Zn) n QL . 0

Fil’((Z — z4) 'S, @1 D)

is a short exact sequence.

Since ¢,: B, ;, — Bt

g L rig L 18 flat, we obtain a commutative diagram

" Z—z,)""S D
0 — ¢ (Mu(D)) — ¢(A "B}, @1 D) = (p;;<< Zn)mo " ®L ) o
1

| I

n Z — -7 D
0 — My1(D) —— )‘_rB;iLgL @D — ( ZnJrl)F-loanrl e,
' i
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with exact rows. Using that

%/\*1

1N\
q’q(/\ ) = -

7

we see that the vertical arrow in the middle has image Q(Z )’/\"B;i’g,L ®@r D and
we deduce by the snake lemma that the kernel and cokernel of the left vertical
arrow are 0 and (A™"B,i,; ®1. D)/ (Q(Z)'A7"B, | @1 D), respectively. But these
are in fact the kernel and cokernel of ¢;(# (D)) — /(D) at the point x;,,
as the inclusions ¢;(# (D)) C ¢;(#x(D)) and A4 (D) C My11(D) become
isomorphisms at x;,_ ;. Since Q(Z) is invertible at x;,_;,
isomorphism at this point.

It remains to prove that ¢} (.# (D))[Q™'] — .#(D)[Q"] becomes an iso-

morphism at the point x{. But x| corresponds to Q(Z) and so inverting Q makes

we obtain the desired

A into a unit at this point too, which makes the result clear. O

Proposition 100. Let D € Ob((Fil, ¢;)-Mody). Then 4 (D) is naturally an object
of (¢q, Tr)-Modgt .

rig,L”

Proof. This is analogous to lemma 2.2.1 of Kisin—Ren’s article. We adapt it to the
relative Lubin—Tate situation here.

Having lemma 99, it remains to show that .4 (D) has a natural Ox—analytic
action of I'y. For y € T'f,

log,y (e (Mp(2) — xe(Mlogy(Z)  xp(1)-Z
T = Xe(Mp(Z)  IxeMe(Z) X (1)]p(2) MZ)

X

and so A(Z) and y(A(Z)) differ (multiplicatively) by a unitin (A7")”. Thus, the
Ok—analytic action of I'; on B;irg,L induces an action on B;irg,L [A1] ®1 D that is
again Ok-analytic.

The same argument shows that I'; acts by automorphisms on S, for each n > 1.
Since, for every v € I'r, composition with [x¢(7)]s(Z) (resp. [X¢(7)]$JH(Z))

preserves the order of vanishing on torsion points of §y (resp. Sg‘? ), we see by
the definition of ./ (D) C B:i“g, [A71] @1 D that # (D) is stable under the action

of FL. ]
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7.3.4 The functor D

an
+

To go in the opposite direction, consider .# € (¢;, T'L)-Modg

o and set
rig,L”

D(#)=.4]Z.4,

which is clearly a finite L-vector space and inherits an action of ¢, from ..
Observe that, as .# /Z.# = #[Q~ 1/ Z.#]Q7"], the L-linearization of ¢, is an
isomorphism ¢;(D(.#)) = D(.# ). We want to define a filtration on D(.#), but

for that we need a previous result.

Lemma 101. Consider .## € Ob((@q, Tr)-Modg' ). There exists a unique L-linear
rig,L”

pqequivariant map &: D(M) — 4 [A~1] whose reduction modulo Z induces idp 4
and such that the elements of Im(¢) are T'p—invariant. Furthermore,
(1) the morphism ¢ induces an isomorphism
1®&: Bl AN Yo D(#) — #4271
and
(2) the image of 1 ® ¢: B;{g,L ®r D(A) — [N coincides with the image of
(1@ @q): 9z(A) — A [A~1Y] over an admissible open neighbourhood of the point
x1 of B corresponding to Q(Z).

Proof. This is analogous to lemma 2.2.2 of Kisin-Ren’s article, which in turn adapts
lemma 1.2.6 of Kisin’s article. We reproduce the proof with the necessary changes
here.

Lemma 95 gives a connection V on .. Since D(.#) = .# /| Z.# can be viewed
as the stalk of .# at the origin, for r € p® small enough there exists a unique
parallel (with respect to V) section §;: D(.#) — .#|p},). Since Ny commutes
with ¢, and with v € I';, we see that the sections ¢, 0 ¢, o (pq_1 and y o ¢ oy ! are
also parallel. By uniqueness, ¢, must be ¢,— and I';—invariant.

To extend ¢, to the whole B, observe that we can define ¢ 1/, by requiring that

the diagram

01 (D(a0)) 5 gt () AT

J J

be commutative. Since /9" approaches 1 as n — co, we get &: D(.#) — # [\ 7]
by repeating this argument inductively using r!/7" in place of r.
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Now the other two claims follow from a variation of the same argument.
Namely, the fact that { modulo Z is an isomorphism implies that there is some
r € pQ small enough for which 1 ® &,: Bjig/L A @LD(A) — (M) A s
an isomorphism. Next we use the commutativity of the diagram

@5 (12¢r)
s (B LA @ D(A)) = 95 (A 5) A7)

! !

1&¢ 1/ B
B;irg,L (A ®@LD(A) q (‘//Z|B[r1/‘7]) (A1)
and the fact that 0(2)
-1y _ -1
q)q (/\ ) - L A ’

which implies that the two vertical arrows become isomorphisms if we invert
Q(Z) (or its multiple A(Z)) above. Therefore, the lower horizontal arrow is an
isomorphism too and we can repeat the argument inductively with 71/7" in place
of r to obtain claim (1).

For claim (2), choose r € pQ such that p=1/¢0-1) < r < p=1/e4(4-1) 50 that
B[r1] contains no non-zero torsion points of F¢ but B[r] contains v;. Since the
morphism 1 ® ¢: B;gg’L ®L D(#) — #[A"1] becomes an isomorphism after
reduction modulo Z (i.e., over the origin), there exists some n € Z> for which
the restriction 1 ® ¢ 4 : B;iLg,L QLD(A) — (M| Bwn]) [A~1] is an isomorphism. If
n > 1, then A is invertible over B [rqnfl] and we obtain a commutative diagram

Pa(18¢ )
¢;(Byiy 1 ®LD(A)) = 9 (A gpam)

lIIZ lI\Z
1®€ n—1

B;Eg’L(X)LD(///) _— '///|Br 1

showing that1®¢ .1 is also an isomorphism. Finally, for n = 1, the commutative

diagram
« ot pp(108q) |
goq (Brig,L ®L D(%)) T> (Pq (%lB[I’q])
luz l
1®CV _
B, ®LD(A) (A |g) IA]
gives the desired result. O
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Given .# € Ob ,T'1)-Mod2 , we define a filtration on ¢*(.#) b
Pq B fr q)q y

Fil' (p;(#)) = {x € gi(M): (1@ ¢;)(x) € Q' } foreachic Z

—linearization morphism). This

(where 1® ¢g: ¢ (#) — #[Q '] is the B;i_g,L
:i—g,L

a neighbourhood of x/, an isomorphism B;gg/L @ D(A) = ¢5(M ), where we

identified ¢ (.#) with its image inside .# [Q71]. In particular, over x| we obtain

is a decreasing filtration by finite free B_. ;—modules. Lemma 101 gives, over

an isomorphism

Ly @ D(A) = @y (M) ] Qg (A ).

The filtration on ¢ (.#) now induces a filtration on Ly ® D(.#) that is stable
under the action of I';, and descends to a filtration on D(.#). It is clear by definition
that the filtration is separated and exhaustive. Thus, from now on we view D(.#)
as an object of (Fil, ¢;)-Mod.

7.3.5 The equivalence of categories

Lemma 102. Let .# € Ob ,T'1)-Mod2 . Let S/, be the complete local ring of B
Pq B, fr 1 p g

at the point x' corresponding to Q(Z). The may ¢ from lemma 101 induces isomorphisms
p 1 P 8 P P

Fil'(S; @, D(.#)) = Y QS| @, Fil' / (D(4)) = S} Dg; Fil' (g7 ()
j=0 '

foralli € Z.

Proof. This is analogous to lemma 2.2.5 of Kisin—Ren’s article [28] and to lemma
1.2.12.(4) of Kisin’s article [27]. We reproduce it here for the convenience of the
reader.

Lemma 101 gives an isomorphism S} ®; D(.#) = S, Dy, (1® @q) (@5(A))
(over x7). Takean index r € Z such that (1® ¢;) (95 (.#)) C Q"4 or, equivalently,
Fil' (p} (.#)) = @, (4 ). By the definition of the filtration on D(.#), we see that
Fil' (S| @ D(#)) = S| ®1 D(.#). Therefore, it suffices to prove the lemma for
i > r and we do so by induction. The base case is obvious.

Suppose that we have the result for i — 1 and we want it for i. The inductive

hypothesis shows that

Q- Fil' ! (S} @ D(.#)) = QS} @g; , (18 ¢q) (Fil' " @z ().
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But
Fil' (S} @1 D(.#)) = Q-Fil' (S} @ D(#)) + S} @ Fil'(D(4)).

On the other hand, since the filtrations on ¢;(.#) and on S| ®, D(.#) both
induce the same filtration on their common quotient L1 ®; D(.#), the preimage of
S/ D, (1® @) (Fil' @ (A)) lies in Fil' (S| @ D(.#)). Thus, it suffices to prove
that the image of Fil'(D(.#)) lies in S OBt (1® @) (Fil' 9} (A )).

Let d be an element in the image of Fil' (D(.#)) and decomposeitasd = do +d;
with dy € S] Ops (1® ¢q) (Fil' ¢} (#)) and d; € QS} OB, (1@ @q)(@s(A))
(cf. the definition of the filtration on D(.#)). The operator

33X, Y)

N
v Y ’ (X,Y)=(Z,0)

d
' 10g¢(Z) VA

on B:irg,L (cf. lemma 97) extends to S| and then to S} ®; D(.#) by acting trivially

on D(.#). Similarly, the operator Ny on .Z extends to S| ®Br+ig,L A . By the
construction of ¢, the isomorphism S| @ D(.#) = S/ Dy, (1® @) (@5 (A)) is
compatible with Ny and so Ny (d) = 0. Note also that Ny (Q) C QBjig/L because
log,,(Z) is a multiple of Q(Z) and that (1 ® @) (@;(.#)) is stable under Ny by its

compatibility with ¢,. Therefore,

Ny (d) = —Ny(do) € S} @p:  (QL 2 ¢g) (95(-#)) N (12 @) (Fil' 93 (.2))).

We claim that Ny induces a bijection on
M; =S @y (QUL® ¢)(9;(#)) N Q')

and this claim implies that d; € M; C S} ®Br+ig,L (1® ¢q) (Fil' @:(A)), as required.

We prove the last claim by induction on i > r. The base case follows from

the compatibility of the isomorphism S} @ D(.) = S} @+ (1© ¢y) (pa(a))
rig,

with Ny and the fact that Ny induces a bijection on QS]. For the inductive step,

we use the commutative diagram

0 > Mi > Mz'fl E— Mifl/Mi — 0
le Al| Ny l
0 ? Ml' > Mz’—l — Mi—l/Mz’ — 0
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with exact rows and the snake lemma. More precisely, since M;_1/M,; is a finite-
dimensional L-vector space, the surjective right vertical arrow must in fact be an

isomorphism. Then Ny : M; — M,; is an isomorphism too. [

Lemma 103. Let .# € Ob((¢g, FL)_MOd%r}ig,L/fr)' The map ¢ from lemma 101 induces
an isomorphism M (D(A)) = A .

Proof. This is analogous to proposition 1.2.13 of Kisin’s article [27]. We adapt it
here to our situation.

Write Dy = Br+ig,L ®r D(A). By definition, .#' = # (D(.#)) is a submodule
of Dg[A71] = B:i_g,L A=Y ® D(.#). On the other hand, by lemma 101 we have
an isomorphism 1 ® ¢: Do[A~1] — .#[A~!] by means of which we identify .#
with a submodule of Dy[A ] too. Interpreting Do[A 1] as (the global sections
of) a coherent sheaf on B, we have to prove that the two subsheaves .# and .#’
coincide at all points.

At the points of B where A is a unit, the inclusions .# C DoA™ Y] D .4’
become isomorphisms. Thus, we have to focus on the points x/, corresponding to
gog_l(Q(Z)) for n € Z>1 (cf. the proof of lemma 99).

Letn > 1. Atx]_,, the map (1® ¢g): ¢;(Do[A"']) = Do[A~!] becomes an
isomorphism because Q(Z) is a unit there. Similarly, the inclusions ¢ (.#) — .#
and ¢;(#") — .#' are isomorphisms at x, ;. But, as ¢4(x;, 1) # xj, for any
m > 1, the inclusions ¢ (.#) C ¢} (Do[A™']) D @ (.#") are isomorphisms at x], ;.
We conclude that . and .#’ coincide at ), ;.
It remains to study .# and .#' at x]. That is, we have to compare S| ®g+ A

rig,L

and S| ®g+ #'inside S| ®g+ Do A1 2 81[Q7Y) @, D(.#). On the one hand,
rig,

rig,L
¢ induces an isomorphism

S| QLD(A) =S| Qg+

rig,L

(1® ¢q) (@ (4))

by lemma 101. On the other hand, (1® ¢;) (¢} (Do)) = Do and at x] the submod-
ules ¢ (Do) and ¢ (.#") become equal, so

19g; , Do =S1®g; (19 ¢9)(95(Do)) = S1@p | (10 ¢g)(95(4")).

Now we have to check that an element of S| ®; D(.#) lies in QS| ®g- -/ ifand
. rig,
only if it lies in Q'S} @~ .’ (for any i € Z). But this is equivalent to showing
rig,
that the filtrations on the two sides of the isomorphism

St g, (19 0,) (95 (") = Sy @1 D(A) 2 8 @, (10 9y) (¢ ()
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(induced by ¢) coincide, which is the content of lemma 102. O

Theorem 104 (Kisin—Ren). The functors

D .
(@q,TL)-Modg} B i 7 (Fil, 94)-Mod,

are exact quasi-inverse equivalences of categories that are compatible with tensor products.

Proof. For the non-relative Lubin-Tate case, this is proposition 2.2.6 of Kisin—Ren’s
article [28], which in turn is analogous to theorem 1.2.15 of Kisin’s article [27].

Lemma 103 proves one direction of the fact that D and ./ are quasi-inverse.
For the other direction, let D € Ob((Fil, ¢,)-Mod ). By the definition of .# (D),
we have a natural I';—equivariant inclusion D C . (D)[Q~!]. This inclusion
induces an isomorphism between D and D(# (D)) = #(D)/Z.# (D) and so D
must be the image of &: D(.# (D)) — #(D)[A~1] (cf. lemma 101). Tracing the
definitions and using lemma 102 (modulo Z), one sees that the filtrations on D
and on D(. (D)) coincide.

The exactness and the compatibility with tensor products can be proved exactly
as in theorem 1.2.15 of Kisin's article [27], working on points of B and using some
of the arguments that appeared in the proof of lemma 99. O

Kisin and Ren restricted this equivalence of categories to certain subcategories
that we define next.

7.3.6 An equivalence of subcategories

Definition 105. We say that .# € Ob (q)q—ModB+ ) s pure of slope O (or étale) if
its base change .Zg+

rig,L
only slope appearing in Kedlaya’s slope filtration or, equivalently, that .Zg:+ is

rlg
étale as in definition 83). We define (¢,, T L)—Mod0 A .. to be the full subcategory
r1 L7

of (¢4,T'L)-Modg L of modules that are pure of slope 0 as ¢;—modules.

= Brlg L OB | A is pure of slope 0 (in the sense that 0 is the

Remark. For .# € Ob ( (pq—ModB+ fr) the base change .#g:  is indeed an object

rig,L.

of cpq—ModB;ri - because Q is 1nvert1ble in Brlg I

Definition 106. Let D € Ob((Fil, ¢;)-Mod} ).
(1) If D is 1-dimensional over L, choose a basis element x € D and consider
& € L such that @,(x) = ax. The Newton number of D is

tN(D) = Vi (a)
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(where v, denotes the normalized valuation of L). If D has dimension m

over L, the Newton number of D is

(2) The Hodge number of D is

ty(D) = Y i-dim; (Gr'(D)).
i€Z
(3) We say that D is weakly admissible if t(D) = t5(D) and ty(D') < tn(D')
for all subobjects D" of D in (Fil, ¢,)-Mod. We write (Fil, ¢;)-Mod}* for
the full subcategory of weakly admissible objects in (Fil, ¢,)-Modj..

Proposition 107. An object D of (Fil, p;)-Mod, is weakly admissible if and only if
M (D)gt . is pure of slope 0. Therefore, the functors
rig,

0, D ,
(@q, T L)—ModBrii:;’fr % (Fil, ¢4)-Mod]"®

are quasi-inverse equivalences of categories.

Proof. See proposition 2.3.3 of Kisin—Ren’s article [28], which works exactly in the

same way for the relative Lubin-Tate situation. O

7.4 Filtered ¢,-modules and crystalline representations

We want to apply the theory introduced in the previous sections to study crystal-

line Okx-linear representations of Gr.

7.4.1 The functors D¢rys and Derys k

Recall that the ring Bcrys comes equipped with a p—-th power Frobenius endo-
morphism ¢, (and so with a g-th power Frobenius endomorphism ¢, too). Let
F (resp. F’) denote the maximal absolutely unramified subfield of K (resp. of
L). We define Byysk = Berys @ K and write again ¢, for the endomorphism
¢q @1 on Beys k. (Note that, since L/ K is unramified, we could equivalently use
Berys,L = Berys @ L, which is the same as Beys k-) In addition, Berys and Berys k
inherit filtrations from Bgg via the natural inclusions Berys < Berys k < Bgr-
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Definition 108. Let V be a K-linear representation of Gy, (i.e., a finite K—vector
space endowed with a continuous action of Gy ). We define the crystalline filtered
@q—modules

Derys(V) = (Barys ®q, V)

and
Dcrys,K(V) = (Bcrys,K Xk V)GL = (Bcrys QF V) GL-

We say that V is crystalline if dimp (Days(V)) = dimg, (V). We write Repy””(GL)
for the category of K-linear continuous representations of Gy that are crystal-
line and Repgzsfr(GL) for the category of free Ox—modules T endowed with a

continuous action of G, and such that K ®4, T € Ob(Repy’°(Gr)).

Remark. By definition, Derys (V) is a module over BCGrg,s QrK=F @K =L and
so is an object of (Fil, g)-Mod|. Similarly, Derys(V) is @ module over F' ®q, K.
We view Dy x(V) as the identity component of Derys(V), in the sense that it
corresponds to the identity of Gal(F/Q) = (¢;) in the isomorphism

Bcrys ®Qp V= @ (Bcrys Ko,F V)-
occGal(F/Qp)

7.4.2 The functors Virys and Virys k

Definition 109. A free filtered ¢,—module over F’ ®q, Kis a free (F ! ®q, K)-module
D of finite rank endowed with a (¢, ® idx)-semilinear bijective map ¢,: D — D
and a decreasing, separated and exhaustive filtration on D; = L ® D, indexed
by Z, by (L ®q, K)-modules. We write (Fil, q)p)—Modp/®Qp K fr for the category of
such modules.

Definition 110.
(1) Let D € Ob((Fil, gop)—Modp®Qp K fr)- We define its associated representation

~ . ol
VCrys(D) = FIIO (Bcrys ®1:/ D)gop € Ob (RepK(GL))
(2) Let D € Ob((Fil, ¢5)-Mody ). We define its associated representation
. =1
Vcrys,K(D) = Fil’ (Bcrys,K QL D) ?1=" ¢ Ob (RepK(GL)) .

7.4.3 The equivalence for crystalline representations

One of the most important results of p—adic Hodge theory is that the functors

Derys and Verys are quasi-inverse if we restrict them to appropriate subcategories.
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Next we recall that result and later transport it to Derys xk and Verys k-

Definition 111. Let D € Ob((Fil, gop)—Modp@Qp Kfr)-
(1) Regard D as an F'—vector space. Let m = dimp (D) and choose a basis
element
m ~
xe A\D.
Consider & € F’ such that ¢, (x) = ax. The Newton number of Dis

tn(D) = v (a)

(where v, denotes the normalized valuation of L).
(2) The Hodge number of Dis

ty(D) = Y i-dim; (Gr'(D)).
i€z
(3) We say that D is weakly admissible if t;;(D) = tx(D) and ty(D’) < ty(D') for
all subobjects D’ of D in (Fil, gop)—Modp®Qp K - Let (Fil, (pp)—Mod‘ﬁ%Qp K fr
denote the full subcategory formed of weakly admissible objects inside
(Fil, 9p)-Modpig K fr-

Theorem 112 (Fontaine, Colmez-Fontaine). The functors

Dcrys
Rep;l‘ys (GL ) «— (Fll, gDp )—MOd%v/i@Qp K fr

crys

are exact quasi-inverse equivalences of categories that are compatible with tensor products
and duality.

Proof. See proposition 9.1.11 of Brinon—Conrad’s notes [11] and theorem 11.19 of
Colmez’s article [16], for instance. O

7.4.4 Comparison of filtered ¢,— and ¢,-modules

In the remainder of this subsection we explain how one can view the category
(Fil, ;)-Mod, inside (Fil, ¢P)—Modp/®Qp k fr and describe the corresponding (full)
subcategory of crystalline representations.

Letr = [F : Qp), so that ¢ = p". We extend q);;: F' — F'to

90;®id1<

¢h: L= F @pK —— F @ K

@p,F
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foreveryi > 0. Given D € Ob((Fil, (pq)—ModL), we define

—_
—_

r— r—

D= 6_90 (@p)"(D) = G_BO ((F' @4y, ¢ K) ®, D) = Fg, D

and regard it as an (F’ ®q, K)-module using the decomposition
r—1

Foq, K= (F
i=0

9 F K).
Then D is finite free of the same rank as D.

Next we define Pp: D — D as follows. For 0 < i < r—1,we consider the
morphism ¢, (go%)*(D) — ((p?rl)*(D) naturally induced by ¢,: F' — F’; for
i=r—1,wehave @,: (q);_l)*(D) — D given by

(F/ ® r—1 ha K) ®q)r71’L D

Pp p
id
(Px ll K \ﬁq

(PI XF K) KL D

(recall that ¢ = p", so ¢p: F/ — F' and ¢;: D — D are indeed compatible as
shown in the diagram).

Finally, since L ®Qp K is artinian, we can decompose

ﬁL: EB (ﬁL)m/

mGSpm(L®QpK)

where the direct sum runs over all maximal ideals of L ®q, K. In particular, there
is one maximal ideal my corresponding to the natural multiplication morphism
L ®q, K — L (equivalently, to idx: K — L via the decomposition of L ®q, K as
a direct sum of L ®, x K for ¢ € Gal(K/Qp)) and we call (Dr)n, = L ®L®QPK D;
the identity component of D;, which is naturally identified with D. We endow Dy,
with a filtration that is the direct sum of the filtration on D and the trivial filtration

on the other direct summands (Dy )y, for m # mg. Thus, we formed an object D in
(Fll, qop)_MOdF’@QpK,fr'

Remark. We can recover the identity component directly from D, without passing
to Dy. That is, we can consider an analogous direct sum decomposition of D

using the maximal ideals of F’ ®q, K and, if my is the kernel of the multiplication
morphism F’ ®q, K —* L, then Dpy =L ® Flog,K D is naturally identified with D.
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Definition 113.
(1) We say that D € Ob((Fil, qop)—Modp/®Qp K fr) is K—analytic if the filtration on

EL: @ (5L)m

meSpm(L®QpK)

restricts to the trivial filtration on every direct summand other than the
identity component. Let (Fil, ¢,,)-Mod%/, o, Kt (resp. (Fil, gop)—Mod‘g,g:;; K i)
denote the full subcategory of K-analytic objects of (Fil, ¢,)-Modp/g oKt
(resp. of (Fil, gop)—Mod}"/?@Qp K fr)-

(2) We say that V € Ob(Repy” (Gr)) is K-analytic if Derys(V) is K-analytic. We
write Rep” ™" (Gy) for the full subcategory of such representations.

(3) We say that T € Ob (Repcﬁrzlsfr(GL)) is Ox—analytic if K ® g, T is K—analytic

(i.e., if Derys(T) = (Barys ®z, T)CL is K—analytic). We write Repgl}('ff’fn(GL)

for the full subcategory of such representations.

Remark. There is a more general notion of K—analytic representation: a K-linear
representation V of Gy is called K-analytic if the C,~semilinear representations
Cp ®g x V are trivial for all the embeddings ¢: K — C, other than the identity.
If V is crystalline (and so de Rham and Hodge-Tate), we recover the definition
above.

Lemma 114. The rule D + D described above defines a fully faithful functor
(Fll, (Pq)—MOdL ;> (Fll, (PP)_MOdF/(X)QpK,fr

that is compatible with tensor products. Moreover, the essential image of this functor is
(Fil, 9, )-ModF/, o, Kt

Proof. This is analogous to lemma 3.3.1 of Kisin-Ren’s article [28]. We only sketch
the proof here.

It suffices to give a quasi-inverse functor
(Fil, qop)—Mod%5‘®Qp ke — (Fil, ¢g)-Mod.

Given D € Ob((Fil, ¢,)-Mod3, o Kf), we construct D' = L @prg K D. We have
a ¢g—semilinear map

~ P9} ~
qu: D/ = L®F’®QPKD e L®FI®QPKD = D/
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and a filtration on D’ coming from that on D. Then the decomposition

r—1
F' ®q, K= 690 (F' ®(P2/F K)
1=

allows one to define a canonical isomorphism D’ 2 D from the equality on identity
components. Then one checks easily that the two functors are quasi-inverse to
each other and preserve tensor products. O

7.4.5 The equivalence for crystalline K-analytic representations

Lemma 115. Let D € Ob((Fil, ¢5)-Mody ). Then

tN(D) = tn(D) and  ty(D) = ty(D)
and D is weakly admissible if and only if D is weakly admissible.

Proof. See lemma 3.3.2 of Kisin—Ren’s article [28], whose proof works verbatim in
the relative Lubin-Tate situation. O

Corollary 116 (Kisin—-Ren). The functors

Dcrys,K
Repy "™ (GL) —— (Fil, ¢;)-Mod}*
crys, K
are exact quasi-inverse equivalences of categories that are compatible with tensor products

and duality.

Proof. Lemmata 114 and 115 show that we have a commutative diagram of func-

tors

y
Rep%rys(GL) —— (Fil, gop)—ModVF"/?@QpK,fr

T

Dcrys,K
Repy” ™™ (Gr) —— (Fil, ¢;)-Mod}"®
crys, K

and so the result is a direct consequence of theorem 112. More precisely, lemma 114

implies that there are canonical functorial isomorphisms

Dcrys(V) = DCWS,K(V)N forall V € Ob (Repgys’an(GL))
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and proposition 3.3.4 of Kisin—Ren’s article [28] gives canonical functorial iso-

morphisms

Verys(D) = Verys k(D) forall D € Ob((Fil, ¢;)-Mod}'?)

(or rather their duals). O

7.5 Wach modules

In this subsection we combine the results relating (¢4, I'r)-modules with integral
(i.e., Ox-linear) representations of Gy with the results for crystalline K—analytic

representations. We do so by means of Wach modules.

Definition 117.

(1) A free g,—module over A is a finite free A —module N endowed with a
@q-semilinear morphism ¢; = ¢n: N — N[Q(wg) 1] with the property
that the Af -linearization 1 ® ¢g: ¢5(N)[Q(wp) '] = N[Q(wy) '] is an
isomorphism. We write ¢,~Mod AL i for the category of such modules.

(2) A free (¢q,T1)-module over A} is a free p,;—module N over A equipped with
an A} —semilinear continuous action of I';, commuting with ¢, and such that
the induced action on N/wgN is trivial. We write (¢4, I'r)-Mod Al fr for the

category of such modules.

Recall that we fixed an isomorphism A" = A} defined by Z — wy. Com-

bining this isomorphism with the natural inclusion A'L’Jr < B ., we obtain an

rig,L”
;irg,L characterized by wy — Z. Then definition 117 is com-
pletely analogous to definitions 92 and 93. In fact, base change gives a functor

B;;g’L Rpf " (qoq,l“L)—ModAflfr — (@q,TL)-Modg: 4.

rig,L”

inclusion A] — B

Definition 118. A module N € Ob((¢g, T)-Mod,+ () is called &x-analytic if its
base change B;irg,L ®p+ Nisin (g, FL)_MOd%TTg,L,fr' We write (¢, FL)_MOdan,fr

for the full subcategory of Ox—analytic objects of (¢4, I't)-Mod Al fr

Similarly, base change by the natural inclusion A] < A; induces a functor
AL @y - (¢q,I'1)-Mod Abfe = (¢q,T L)—ModéAtL,ﬁ, because Q is invertible in A].
Putting together the results of the previous subsections, we obtain a diagram of
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functors

P’ V \
(q)q/ I—‘L)_MOd?\tL,fr < = i RepﬁK,fr(GL)
" D
AL®AZ’ . ]
N R s » Repy, 1 (Gr)
Bi{g L®A7L
D
AN .
(q)q,FL) Mod Bl fr j{ (Fil, ¢;)-Mod, K®gy -
D VcrysK e
(@4, T1) ModO m PR (Fil, goq)—l\/lodwa Rep” "™ (Gy)
rlg L M Dcrys K 1
¥ Varys -

(Fil, ¢p) MOdP/®Q Kfr = Repy”*(Gr)

crys

in which the horizontal pairs of arrows are quasi-inverse equivalences of categories
and the small squares are commutative. Our goal in this subsection is to fill in the
dashed arrow with an equivalence of categories that makes the whole diagram
commutative.

7.5.1 The functors V*

As the upper half of the previous diagram shows, in order to define the functor
(@q,T1)-Mod, A+ o Rep%}(',sf’fn we just need to check that the composition of
A ® AF with V lands in the right subcategory. To study this composition,
however, it is be more convenient to work with the dual (or contravariant version)

of the functor V: for M € Ob(qoq—Mod A, ir), we define
* ~ =1
V*(M) = Homa, ¢, (M, A) = (A ®a, Homa, (M, AL))""".

Analogously, and by an abuse of notation that will be justified by lemma 119, for
N € Ob(¢;~Mod A{,fr) we set

V*(N) = Homy+ , (N, A" [wy ')
Lemma 119. Let N € Ob(p;—Mod, ().

(1) If the map @4 on N induces a morphism ¢z (N) — N (without inverting Q(wy)),
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then
V*(N) =Hom, , (N, A").

(2) The natural map
V*(N) — V(AL ®Af N)

is an isomorphism and both sides are free Ox—modules of the same rank as N.

Proof. See lemma 3.2.1 of Kisin—Ren’s article [28], whose proof works exactly in

the same way for the relative Lubin-Tate situation. O

n

In order to prove that, for every N € Ob((¢,,I'1)-Mod3’ ), the representa-
L7
tion V*(N) is crystalline and Ox—analytic, we need to study more carefully the
lower half of the previous large diagram.

7.5.2 Isogeny categories

crys,an

Observe that the functor K @4, -: Rep, 7 — Repy factors through the

ﬁK,fI‘
crys,an

isogeny category Rep; { ®z,Q) (i.e., the category obtained by applying - ®z,

Qy to the Hom modules of Rep(;zsf’fn). As a matter of fact, we have an equivalence

of categories K®g, - : Repzzsf’f " ®z,Qp = Repy””™". There is an analogous result

for (¢4, ' )-modules:

Proposition 120. There is an equivalence of categories

~ 0
¢q~Mod,y - ®z, Qp = q)l]_MOdB;irg,L,fr
given by N > B:gg’L ®pt N that is exact and compatible with tensor products, where
* ¢;~Mod A i 92, Qy is the isogeny category obtained by applying - @z, Qp to
the Hom modules of ¢p;~Mod A} fr and
L4 q)q_MOd%J,-

rig,L”

. 18 the full subcategory of q)q_MOdBfﬁg,yﬁ of modules that are pure
of slope 0.
Consequently, we obtain an equivalence of categories

(g, T'L)-Mody’ ¢ @z, Qp = (@q, TL)-Mod2" ¢

rig,L” T
defined in the same way.

Proof. The characterization of .# € Ob(¢p,~Modg+ . ;) being pure of slope 0 in
rig,L”
terms of ¢,-stable lattices of .Zg: . implies that the objects obtained by base
rig,

change from ¢,~Mod A} i ATe in (pq—ModOB+

rig,L” fr
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As for the equivalence of categories, the proof of lemma 1.3.13 of Kisin’s article
[27] works exactly in the same way (ignoring the monodromy). O

Proposition 121. Let N € Ob((¢4, I'L)-Mod?’ ) and let D = D(B;ggL R N).
LI 7

There is a canonical Gy—equivariant bijection

K ®ﬁ1< \'A (N) — V;krys,K(D) = HomK,Fil,q)q (D/ Bcrys,K)
that is compatible with tensor products. In particular, both sides have the same dimension
over K.

Proof. This is proposition 3.2.3 of Kisin—-Ren’s article [28]. We reproduce it here for
the convenience of the reader.

Recall that wy and t, are units in Beyys x and so A(wy) = ty/wy and Q(wy) are
invertible in By x too.

Write 4 = B;gg,L B¢ N and consider the natural maps

HomA{,(Pq (N,AT [wqjl]) - Homng,Ll(Pq (A, Berys k)

\ l
N
N
AN
X

HomB ((P,}k (ﬂ) ’ Bcrys,K)

+
rig,L” Pq

(the vertical arrow is well-defined because Q(wy) is invertible in Berys k). We
claim that the image of the composition consists of morphisms that respect the
tiltrations.

An A[-linear map f: N — A" induces f;: .# — Bgys x by composition with
AT — Bctys,K > Berys k and base change by Al < B:irg,L. Localization at Q yields
fo: #[Q 7] — Baysk and precomposition with (1® @,): ¢*(#) — #[Q]
gives f3: @;(.#) — Berys k. Consider x € Fili(go;]‘(/// )) for some i € Z, which
means that (1 ® ¢,)(x) € Q'.#. Then f3(x) € Q(wy)' - Bjrys/K C Fil' (Bgr) because
Q(wy) € Fil'(Bgr) by proposition 2.1.19 of Schneider’s book [31]. Therefore,

f 3 € HomB:irg/L,Fil,goq
Next, consider the inclusions

(4); (%)/ Bcrys,K) as claimed.

¢y (A)1Q7] C @y (M)A 2 oy (AAT]).

Since these modules differ by elements of chrys, k- having f3 is equivalent to having

fa: @5 (A [A7']) = Berys k- But lemma 101 gives a map ¢: D — .#[A7'] and
finally we can compose f4 with 1 ® ¢ to obtain the desired f5: D — Berys k- By
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the definition of the filtration on D = D(.#) in terms of &, we conclude that

f5 S HomK,Fil,(pq (D/ Bcrys,K) .
In this way, we have constructed a canonical Gi—equivariant map

K ®ﬁK HOI’I’IAZ-’(Pq (N, A+ [w(;l] ) — HomK/Fﬂ,(Pq (D, Bcrys,K)

given by f — f5. Tracing the steps of the construction, one checks that this map is
compatible with tensor products and injective (the only non-clear step is f4 — fs,
but that follows from lemma 101). Finally, comparing dimensions we obtain the

bijectivity. O

7.5.3 The equivalence of categories
Theorem 122 (Kisin-Ren). The functor N — V(AL ® ar N ) induces an exact equi-
valence of categories

Vi (o To-Mod , —— Repi"(Go)

that is compatible with tensor products and duals.

Proof. This is corollary 3.3.8 of Kisin—Ren’s article [28]. We reproduce its proof
here for the convenience of the reader.
Combining lemma 119 and proposition 121, we see that N — V(A ® ar N )

crys,a

induces a fully faithful functor (¢g, I't)-Mod}’ ¢ — Rep -~ " that is exact and

L
compatible with tensor products and duals. A

It remains to prove that the functor is essentially surjective. To that aim,
take T € Ob (Repzzlsg;n(GL)) and consider M = D(T) € Ob(((pq,l“L)—Modilefr)
and .# = M (Derys k(K @4, T)) € Ob((¢y, rL)—ModOB'gUﬁ). By proposition 120,

we find N’ € Ob((q)q,l“L)—Mod;r}{,fr) such that .# = B:i“g,L Dpr N'. Therefore,

lemma 119 and proposition 121 imply that the representation V(A ® A N’) is
isomorphic to a G;—stable Ok-lattice T" of K ®4, T.
Now we can use the equivalence of theorem 74, which provides isomorphisms

B ®,s N 2D(K®g T) 2 D(K®g, T) 2B, @, M
that we regard as an identification. We define

N=MNN[p~ '] c M[p~'] = B, ®a, M.
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Since A; N AT [p~1]
over A]". Using the structure theorem of finite modules over A]" (equivalently,
over A7 + = 01[Z])), one can check that N is free over A} (cf. the argument at the
end of lemma 1.3.13 of Kisin’s article [27]). All in all, N € Ob (((pq, I'r) ModA+ . )
and Ap ©,+ N = M. We obtain isomorphisms V(AL Dar N)vM)=T. O

= A/ (inside By), we see that N is a finite (¢,, ' )-module

The proof of theorem 122 shows that, for every T € Ob (RepCrys “"(GL)), there
exists an A —submodule N of D(T) that inherits actions of ¢, and I';, making it
an object of (¢4, I'7)- ModA+ 7 and with the property that A; ®,+ N = D(T). We
fix once and for all such an N for every T forming a quasi-inverse

N: Rep}r:,sf’fn(GL) (¢q,TL)-Mod’) A+f

to the functor V of theorem 122. The results of this section can be summarized in

the commutative (up to natural isomorphisms) diagram of functors

\

(¢q,T1)-Mod} 4 - = D(l) " Repg, (GL)
AL®A+ N [
V AN
(¢g,TL)-Mod;, A+f ¢ = ) " Rep, i (GL)
N

crys,an
Py, & (GL) ®z, Qp

(0. T1)-Mod3 , &7, 0, R
Blpi®ar |10 (3) . | Ko, -
M D crys, K v
(90, T)Mody™ =@ (Fil, g;)-Mod}® =" Repy”™™(Gr)
rlg A DcrysK

where the equivalences of categories are:
(1) theorem 74 (section 7.1);
(2) theorem 122 (section 7.5);
(3) proposition 120 (section 7.5);
(4) theorem 104 and proposition 107 (section 7.3), and
(5) theorem 112 and corollary 116 (section 7.4).

7.5.4 Behaviour with respect to Hodge-Tate weights

Next we want to study, for T € Ob (RepCrys an(GL)), the relations between the
Wach module N(T) and certain submodules defined in terms of the operators g,
and 1, depending on the Hodge-Tate weights of V = K®g, T.
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By the definition of K-analyticity, most of those Hodge-Tate weights must
be 0. More precisely, if m = dimg(V), then there are m - [K : Qp] weights, from
which only the m corresponding to the identity component of C, ®q, V might be
non-zero. We call the other m([K : Q,] — 1) weights the trivial weights. We also
adopt the convention that the cyclotomic character x.yc has weight 1.

If the symbol ? is an interval [a,b] (with a,b € Z) or < 0 or > 0 (for the

intervals (—o0,0] or [0, ), respectively), we write Repgys’an’?(GL) for the full
subcategory of representations in Repy”~*"(Gr) whose Hodge-Tate weights lie

in the corresponding interval. Similarly, we write Repcﬁrz"sf’f n’?(GL) for the full
subcategory of T € Ob(Rep),” " (GL)) such that K@, T € Ob (Rep”™™™™ (GL)).

Lemma123. Let T € Ob (Rep}rz,sf’fn’[”’b](GL)) for some interval |a,b]. If we write
N = N(T), then
Qlwyp) "N C A} - ¢4(N) € Q(wy) °N.

Proof. The analogous result for .# = Bjig’L Bat N is corollary 3.37.i of Berger—
Schneider—Xie’s article [8] (where they use the notation Iz, for the ideal generated
by Q and normalize the weights in such a way that our interval [a, ] is their
~b,—a)).

The statement of the lemma follows with the same argument as in remark 1.6

of Schneider-Venjakob’s preprint [35], checking that A7" [Q~1] N B:gg,L =A/".0O

Lemma 124. Let T € Ob (Rep;z’sf’fn(GL)).
(1) The Wach module N(T) is the unique A —-submodule of D(T) which inherits
actions of ¢4 and Ty making it an object in (¢4, I'1)-Mod and such that
AL ®py N(T) = D(T).

(2) Foreveryr € Z,N(T(xy)) = wy 'N(T) ® i, where tq is a generator of Ok (x)-

an
A'L*' fr

Proof. See proposition 1.10 and lemma 1.12 of Schneider—Venjakob’s preprint [35],

whose proofs work verbatim in the relative Lubin-Tate situation too. O

Since the Lubin-Tate character x4 has (non-trivial) Hodge-Tate weight 1, up to
twisting we may always work with representations whose Hodge—Tate weights
are > 0, which is convenient for some proofs.

7.5.5 Comparison between Wach modules and D,ys k

Lemma 125. Let T € Ob(Rep' ™ " (GL)) with r € Zgand set V = K04, T,
D = Derysk(V) and A =B, | ®ps N(T). Identifying D with D (), the map ¢
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from lemma 101 induces inclusions
Nt C(1@8) (B, @ D) C A
Proof. The definition of the functor ./ (see section 7.3.3) gives inclusions

B+

451D C M (D) C A B}

r1gL®LD'

Applying 1 ® ¢ and using lemma 103 we obtain

(1®¢) (Bl ®.D) C .4 C (1®5)(A "By

rig,L ®L D)’

whence the lemma follows. O]

Definition 126. Let V € Ob(Rep}”~*"(G.)) and choose a G, -stable Ok-lattice T
of V. We define

N(V)=N(T)[p"] and N(V)=Af ¢,(N(V)) C N(V)[Q(wy)'].

Remark. Since Q(wy) is already invertible in Ay, we can view N(#1 J(V) c D(V).
The operator ¢, on D(V) restricts to

g N9 (V) = N(V).

crys,an,>0

Proposition 127. Let T € Rep, ¢~ (GL) and set V. = K®g, T. Consider also
M = B;irg,L Dpr N(T). Identifying D(.A ) with Derys x (V), the map & from lemma 101
induces inclusions

() N(V) € (158) (B, &1.Deysr(V),

(2 N(V) C (1©¢) (B, | ®1 Darysi(V)) and

3) (N (V)" € (1©8)((By)" " @1 Derys (V).

Proof. This is corollary 1.14 of Schneider—Venjakob’s preprint [35]. We reproduce
it here for the convenience of the reader.
Applying lemma 125 to T(x,") and using lemma 124, we get that

Z”/\rB:;g L ®Ai N(T) ® to_r - (1 X (:)( rig, L KL Dcrys K(K ®ﬁ1< (X(;r)))
- B;Eg,L QL t(pDcrys,K(V) Rty

Since ZA(Z) = log(p(Z) and ty = log¢(w¢), we deduce the first inclusion. The
second inclusion follows from the first and the compatibility of 1 ® ¢ with ¢,.
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To prove the last inclusion, take

x = Zfzqoq ) € N(0(V)

such that

Palx) = i () = 0.

Letey, ..., em be an L-basis of Derys k V) and express
m
X; = Z gl] & g(e]) with gl] S Brlg L
j=1

(which is possible by the first inclusion that we already proved). By the linear
independence of the ¢;, the condition 1, (x) = 0 means that
n n
=) Yalfi)gis = ¥y <Z fiqvq(gi,-))
i=1

i=1

for each j. Therefore,

=(1®¢) (Zfz(l)q X ) }mj{iﬁ@q 8ij } ® ¢ (@q(ej))

j=1Li
lies in (1 ®C)(( rlgL)%:O@)DcryS,K(V))' U

7.5.6 Comparison between N(T)¥~! and D(T)%:~!
Lemma 128. Foreverym € Z>q,
m—1

%(L) € 7y (1) +

a)$ w

Lo+

m—1 AL :

¢

Proof. The proof is analogous to that of lemma 1.25 of Schneider—Venjakob’s pre-
print [35]. We adapt it to the relative Lubin—Tate situation here for the convenience

of the reader.
Let

M(Z) = 9y(Q2)™) = gy (D21 € . 0
Z™m

We can write h(Z) = ¢,(9,(Z™)Z27™)

= Z"p,(Z7™), so we need to compute
h(Z)/Z™. As a matter of fact, since h(Z) — h(0) € ZA}", we just need to check
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that 1(0) = ¢, ' (7r1)™ 1. Indeed,

24(1(0)) = 93(O) = (pyo ) (UEY)|
_ 1 P(Sp(v1,Z))" 1 5 Pp(Z)"

L 01€541 Sp(vL, 2" 7o T 016%/1345(01,2)'” Z=0

— —Q(0)" =y,

Lemma 129. Let T € Ob (Repgzsf’fn’zo(GL)) and let k € Z>1.

(1) We have an inclusion

g (rD(T) + w;kN(T)) c {ﬂLD(T) + a);lN(T) ifk=1,

mD(T) + w, " 'N(T)  ifk > 1,

~EN(T),

(2) If x € D(T) satisfies that (g — 1)(x) = pg(x) —x € mD(T) + w,

then x € 1. D(T) + w, *N(T).

Proof. The proof is completely analogous to those of lemmata 1.26 and 1.27 of
Schneider—Venjakob’s preprint [35], taking into account that 71 and (pfitl(nL)
differ (multiplicatively) by a unit and that, even if ¥, is not &) -linear, it is still

[ l_semilinear. O]

Proposition 130. For every T € Ob(Rep,; “=0(G)),

D(T)¥=" C w, 'N(T).

Proof. This is analogous to lemma 1.28 of Schneider—Venjakob’s preprint [35]. We
adapt it here to the relative Lubin-Tate situation for the convenience of the reader.

We prove by induction on k € Zq that D(T)¥=1 C 7¥D(T) + w;lN(T). Then
taking k — oo gives, for each x € D(T)¥~!, a sequence in w;lN(T) converging
to x.

The base case k = 1 follows directly from the second part of lemma 129 applied
to x € D(T)¥=!. For the inductive step, write x = 71fy + n with y € D(T) and
ne w;lN(T). Since (¢, — 1)(x) = 0, we get that
o7 (7m1)

L

pg(n) —n = —”Ii(< )k‘/Jq(y)—y)-
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But the first part of lemma 129 shows that y4(n) —n € w, IN(T). We deduce that

o7 (L) 1
(n—> ¥g(y) —y € wy, N(T)
because T D(T) N w;lN(T) = ik glN(T)

We claim that y € 7y D(T) + wqle(T). To prove it, take | € Z>( such that
y € mD(T) + w,'N(T) buty & 7 D(T) + w, *'N(T). If I > 1, then we would

have ¢, (y) € m;D(T) + wq;lHN(T) by the first part of lemma 129 and so

~1
_ (9q ()N ¢q (L) 141
y= <7T—L) ¥e(y) — (n—> Pg(y) —y ) € mD(T) + w, "T"N(T),
thus contradicting the choice of /. Therefore, | < 1.

The previous claim allows us to write y = 7mrpy’ +n’ with ¥/ € D(T) and
n' e wqle(T). In conclusion, we can express x = 7s "1y’ + (7tkn’ 4 n), which
completes the proof of the inductive step. O

Lemma 131. Let V € Ob (Repgys’an’ZO(GL)). If Derys x (V) 911 0, then V has the
trivial representation K as a quotient.

Proof. This is lemma 1.29 of Schneider-Venjakob’s preprint [35]. O
Proposition 132. Let T € Ob (Rep}rz’sf’ra 1“’ZO(GL)). If V= K®g, T has no quotient

isomorphic to the trivial representation K (and so Dcrys,1<(V)"’q:1 = 0), then
D(T)¥=! = N(T)¥%=1,

Proof. See lemma 1.30 of Schneider—Venjakob’s preprint [35], whose proof works
in the same way for the relative Lubin-Tate situation too. We reproduce it here for
the convenience of the reader.

By proposition 130, it suffices to prove that (wqj IN(T))¥=1 C N(T). Let
e1,...,em be an Al —basis of N(T). By lemma 123, we have N(T) C A} - ¢4(N(T))

and so we can express

m
e = Zgijgoq(ej) with g;; € Al
j=1
Take
n = Zflel SIN(T))¥=1 (with f; € wqlezr).
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Comparing the coefficients of each ¢;, the condition zpq(wqjln) = Wy !

that

n implies

m

fi= Z Py (figij) for every j.

i=1
Now, writing f; 1 (resp. gij0) for the coefficient of w;l (resp. the constant coeffi-
cient) in fi(wy) (resp. in g;j(wy)),

lpq(figij) € lpq(fi—l 'gijO'w +A+) - on (fz ~-18ij,0 )qu( )+A+
Co; (fz 181;0) Ly A7,

whence . .
Pq(wefi) = ¢4 (Z qul/Jq(fz'gij)) € Y fi18ij0 + wpAT
i=1 i—1

Combining these congruences modulo wy with the definitions of the f; and the g;;,
we conclude that

3

Z (wg fiej) = Z Zfl ~18ij,094(¢))

=1 i=1j=1

®q(n)

~.

Il

~
I
—_

fi—1e; =n mod wyN(T).

That is, the operator ¢; on Derys (V) = (N(T)/wgN(T))[p~!] acts as the identity
on n mod wgN(T), which means that n = 0 mod wyN(T) by hypothesis. O
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8 Rigid character varieties and distributions

Schneider—Teitelbaum’s article [33] constructed a character variety, whose points
parametrize characters on the ring of integers of a finite extension of Q,, and
related its rigid analytic functions to locally analytic distributions via what they
called p—adic Fourier theory. Furthermore, they used a Lubin-Tate formal group
(plus the theory of p—divisible groups) to show that such character variety is a
twisted version of the open unit disc.

In this section, we recall the constructions of Schneider and Teitelbaum and
adapt certain technical parts to obtain the analogous results using a relative Lubin—
Tate formal group to give the module structure on the open unit disc. After that,
we use the identification between distributions and functions on the character
variety to study spaces of distributions and even some larger spaces, following
the preprint [35] of Schneider and Venjakob.

8.1 The construction of the character variety

To begin with, we summarize the first two sections of Schneider-Teitelbaum’s
article [33], where they construct the character variety. This part does not use
Lubin-Tate theory and so there are no changes, but beware that we use the symbol
K where they use L (and their K has a different meaning).

8.1.1 Locally analytic characters

Let H denote the p-adic Lie group 0k, regarded as a locally analytic manifold
over K, and let Hy be its restriction of scalars to Q,. We want to describe a rigid
variety X over K whose points parametrize locally K-analytic characters of 0.
Such X will be a closed subvariety of a larger X, whose points parametrize locally
Qp—analytic characters of k. (The symbols H and Hy are introduced to avoid
confusions between the two notions of analyticity, depending on the base field
one wants to consider.)

Let C*"(H,C,) (resp. C*"(Hy, C})) denote the locally convex C,—vector space
of locally analytic functions on H (resp. on Hp) with values in C,. Consider
the subsets H(Cp) C C*"(H,Cy) and ﬁo(Cp) C C*(Hp, Cp) of locally analytic
characters. We define the space of locally analytic distributions D(H, C) (resp.
D(Hy, Cp)) to be the continuous dual of C*"(H, C) (resp. C*"(Hy, Cp)), endowed
with the strong dual topology; it is in fact a Fréchet algebra over C, (with the

convolution product).
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Lemma 133. Forgetting the K—analyticity identifies C*"(H, C,) with a closed subspace
of C*"(Hy, Cp), in the sense that C*"(H,Cp) — C*(Hy, Cy) is a topological embedding
with closed image.

Proof. See lemma 1.2 of Schneider-Teitelbaum’s article [33]. Lemma 1.1 of ibid.
even gives an explicit characterization of the image in terms of the action of the
Lie algebra h = Lie(Hp) = Lie(H) = K (by means of an exponential map). O

Remark. Thanks to lemma 133, we can apply Hahn-Banach’s theorem to obtain a

surjective continuous morphism of Fréchet algebras
D(Hy,Cp) — D(H,Cp)

that has to be then a quotient map.

Using the action of the Lie algebra hh = Lie(Hp) = K on C*"(Hy, Cp), we can

define a group morphism
d: Hy — Homg, (K, Cp)

as follows: given x € Hy,

dx(x) = [%x(tx)]

forallr € K.
t=0

Lemma 134. Via the embedding C*(H,C,) < C*(Hy,Cp), the set H(C,) is identi-
fied with the subset of x € PAIO(CP) such that dx is K-linear (and not just Q,~linear).

Proof. See lemma 1.3 of Schneider-Teitelbaum’s article [33]. O

Remark. The diagram

is cartesian.

8.1.2 The rigid variety &)

Next, we recall Schneider-Teitelbaum’s construction of the rigid variety Xy, which
is a polydisc of dimension [K : Q,] with X;(C,) = Hy(C,). To that aim, let B;
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denote the rigid analytic open disc of radius 1 centred at 1 over K. Thus, its set of
points Bi(Cp) = 1+ mc, has the structure of a Z,—module, where the addition is
multiplication in (1 + m¢,)* and the multiplication by scalars is raising elements
of (1+mc,)” to powers in Z,. (Note that Athis is precisely the module structure
given by the multiplicative formal group Gn,. Later we will use the Ox—module

structure given by a relative Lubin-Tate formal group as in section 5.)

Lemma 135. The set of locally Qp—analytic characters of Ok with values in C, can be
described as

Hy(Cp) = Hom§ (6, C) = Homgz, (Ok, Bi(Cp))
= B (CP) ®Zp Homzp(ﬁ}(, Zp).

In particular, z @ B € Bi(Cp) ®z, Homgz,(Ok, Zy) corresponds to the character
Xzep € Ho(Cp) defined by

Xzop(a) = 2P foralla € Hy = Ox.

Proof. Observing that O is a finite free Z,~module, this follows from standard
results:
* Continuity of characters forces the images to liein 1 + mc¢,.
* A Z,-linear map f: Z, — B1(C,) is of the form f(a) = z* (for z = f(1))
and that is automatically locally Q,—analytic.
TODO: find references (maybe in Colmez'’s article on one-variable p—adic analytic

functions, maybe in Amice’s transform original article?) O

Since Homg, (Okx,Z,) is a free Z,~module of finite rank [K : Q;], we can form
a rigid analytic variety Xy = By Rz, Homzp(ﬁK,ZP) (this “tensor product” is
just notation) over K whose C,—points are 51(Cp) ®z, Homz, (0, Z,): once we
choose a Z ,-basis of Homy ) (Ok,Z,), Xy is (non-canonically) isomorphic to the

open polydisc BEK:Q” | Lemma 135 shows that Xp(Cp) = PAIO(CP), as desired.

8.1.3 The rigid variety X

Finally, to define the character variety X" as a closed subvariety of &, we need
to identify “rigid analytic equations” characterizing H(C,) inside Ho(C,). But
lemma 134 gives a condition for x € ﬁo(Cp) to belong to H (Cp) interms of dy. A
simple computation shows that, for z € B;(Cp) and g € Homg, (0k, Z,),

dXz@[% = log(z) - B
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(where we view B € Home(K,Qp) in the obvious way). Now lemma 134 can
be reformulated as saying that X'(C,) should be defined inside Ay(C,) by the
equations

(B(t) —t-p(1))log(z) =0 forallt € K.

In fact, it suffices to consider the [K : Q,] equations corresponding to a basis of K
over Q.

Let 0(Xy/C,) denote the Fréchet algebra of global analytic functions on the
base change of Aj to C. Schneider and Teitelbaum extend previous work of Amice
and exhibit for each t € K a rigid analytic function F; € ¢(Xy/C;) such that
Fi(xzep) = (B(t) —t-B(1))log(z) for all z® B € By(Cp) ®z, Homz, (O, Zp).
They explain that the ideal sheaf # in Oy, generated by these functions is a
coherent sheaf defining a reduced closed K-analytic subvariety X of X)) with the
desired property that the canonical isomorphism Xp(C,) = H()(Cp) restricts to
X(C,) = H(C,).

Definition 136. The Fourier transform of a distribution y € D(H, C,) is the func-

~

tion F,,;: H(Cp) — C, defined by

Theorem 137. The Fourier transform defines an isomorphism D(H,C,) = 0(X /Cp)
of Fréchet algebras over C,. More generally, for every subextension C, /K’ /K with K’
complete, we obtain an isomorphism D(H,K') = 0(X /K).

Proof. This is theorem 2.3 of Schneider-Teitelbaum’s article [33]. O

8.2 Twisted unit discs: the isomorphism at the level of points

The construction of the character variety & in section 8.1 relies on the open unit
disc with the Z,—module structure given by the formal multiplicative group Gm.
In section 3 of their article [33], Schneider and Teitelbaum study the open unit disc
endowed with the &g—module structure given by a Lubin-Tate formal group and
find that, after base change to Cy, it is isomorphic to X" in a very explicit way. Here
we adapt the theory of loc. cit. to the case of the relative Lubin-Tate formal group
§¢ (keeping the notation from section 5).
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8.2.1 Formal modules and p-divisible groups

Let B denote the rigid analytic open unit disc centred at the origin over L, which
we regard as an Ox—module object by means of the relative Lubin—Tate structure.
Namely, B(C,) is an Ox—module with the addition given by F¢( -, - ) and the
multiplication by scalars given by [ - ]4( - ). As explained in section 2.2 of Tate’s
article [39], the formal group § corresponds to a connected p-divisible group
G = (Gu)nx0 over O of dimension 1 and height [K : Qp]. More precisely, we
can write G, = Spec(A;) for A, = Or[Z]/([p"]¢(Z)) and the comultiplication
morphism A, — A, ®¢, Ay is defined by Z — Fp.

Let G' = (G),)n>0 be the Cartier dual of G. Thus, G’ is an étale p—divisible
group of dimension [K : Q,] — 1 and height [K : Q,]. By Cartier duality, there are
canonical isomorphisms G, (0¢,) = Hom(Gn,ﬁsz Gm’ﬁcp) for all n > 0 (Where the
symbol Hom means morphisms of finite flat group schemes over &c,). Let T, G’
be the p-adic Tate module of G'. If Hoc, denotes the p—divisible group of roots of
unity over Oc,, then T, G’ = Hom(GﬁCp, ‘I/lﬁcp) (where the symbol Hom means
morphisms of p—divisible groups over O¢,). But, by the equivalence between
connected p—divisible groups and divisible commutative formal Lie groups given
in proposition 1 of Tate’s article [39], Hom(GﬁCp, Plﬁcp) o Homﬁcp (Tg @m)

Thus, every t € T, G’ determines a morphism of formal groups Fy: §y — Gm
over Oc,. Such Fy is a power series in Z0¢,[Z] and we call its leading coefficient
Qp = F/,(0) the Lubin-Tate period associated with t'. Alternatively, using the
isomorphisms to the additive formal group Ga given by the formal logarithms of

J¢ and G, the power series Fy(Z) is characterized by
1+ Fy(Z) = exp(Qy 10g¢(Z)).

There is a canonical isomorphism T, G’ & Homgz, (T, G, Ty ) as Gi-modules
(see step 1 of the proof of proposition 11 in Tate’s article [39]) and so T, G’ = Ok (1),

where T = Xcyc - xqjl. The structure of Ox—module is given as follows:
Fuw(Z) = Fy([a]yp(Z)) forallt’ € T,G andalla € Ok.

From the isomorphism T, G = Homﬁcp (&p,@m) we obtain (on points) a

natural Gy —equivariant, Z,-bilinear and Og-invariant pairing

(+,): T, G' ®g, B(Cp) = B1(Cp)
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given by
(t,z) =1+ Fu(z) forallt' € T,G andallz € B(C,).
Lemma 138. The maps

a: B(Cp) — Homg, (T, G', B1(Cp)) and da: C, — Homg, (T, G, C,)

z— (-,2) r— (£ = Qur)
are injective and

I
B(C,) i . C,

[ 2

logo-

is a cartesian square.

Proof. The isomorphism T, G’ = Homg,, (Tg, G ) induces « on points and da on
tangent spaces. Thus the commutativity of the square is clear. The injectivity of «
and du is part of proposition 11 of Tate’s article [39].

We consider a commutative diagram of Z,-modules

J:da
logo -

Homg, (T) G, Bi(Cp)) —— Homz, (T, G, Cp)

and we have to check that there exists a unique # fitting in it. By the injectivity
of w and du, it suffices to prove that Im(f) C Im(a). But proposition 11 of
Tate’s article [39] implies that the lower horizontal arrow induces an isomorphism
Coker(a) = Coker(dwa). Therefore, the image of f inside Coker(«) corresponds to
the image of da o g inside Coker(da), which is trivial. O

108



8.2.2 The isomorphism on points

Proposition 139. The map

Z ® t/ |_> KZ@t/

defined by
Kzor(a) = (¢, [alp(2))

is a well-defined isomorphism of Z-modules.

Proof. For a non-relative Lubin-Tate formal group, this is proposition 3.1 of
Schneider—Teitelbaum’s article [33]. The proof in loc. cit. uses the general results
of Tate’s article [39] and so works exactly the same for the relative Lubin-Tate
situation. We repeat it here for the convenience of the reader.

The map of the statement will be defined by commutativity of the “cube”

log,, ®1

\\\
~o
A~ d

« r ldoc
' » Homgz, (0k, Cp)

Ho(C,) d » Homg, (K, C))

IR

» Homg (K, Cy)

that we explain next.
* The front face is the cartesian square from the remark after lemma 134.
¢ In the bottom face, the equality on the left is part of lemma 135 and the
isomorphism on the right is the obvious one. The commutativity of this
square comes from the computation

dxzep(-) =log(z) - B(-) =log(zF)) = log o xzep( ).

* The rear face comes from the cartesian diagram of lemma 138 after tensoring

with T, G" over Ok and using the isomorphisms
Homg, (T, G, ) @4, Ty G' — Homg, (0k, )
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fet — (a— f(at'))

in the lower row.
¢ In the right face, the upper isomorphism is defined to make the square
commutative. This is possible because any map in the image of da is clearly
Ox—linear:
da(r @t')(a) = Qurr = aQyr.

By definition, this morphism C, ®¢, Ty G’ — Homg(K,C,) is obviously

injective. Counting dimensions over C;, one sees that it is also surjective.
Now the universal property of the front face implies the existence of a unique
morphism B(C,) ®¢, Ty G’ — H(C,) making the whole diagram commutative.
This dashed arrow must be the map in the statement of the proposition by the
commutativity of the left face and the definition of «. Finally, the same argument

with the universal property of the rear face gives an inverse. O

Fix once and for all a generator t6 of the Ox-module T, G’. From now on we
write (O = Qp and k; = K,y to simplify the notation. By proposition 139, we
have an isomorphism

k(Cp): B(Cp) — X(Cp)

Z— Ky

of Z-modules. The next goal is to prove that this isomorphism on points comes
from an isomorphism «: B¢, — X¢, of rigid varieties over C,. More precisely, we
are going to construct compatible admissible coverings by affinoid open subsets
giving both B and X the structure of a quasi-Stein space.

8.3 The isomorphism of rigid analytic varieties
8.3.1 Covering the disc B by affinoids

For each r € p®, let B[r] denote the closed disc of radius r over L. If r < 1, we

regard B[r] as an affinoid subdomain of B.

Lemma 140. Let e be the ramification index of K/Qy. Let my be a uniformizer of Ok
and take r € pQ such that p=1/¢0=1) <y < 1. Then

7ty (BIr]) = Bl and  [pl, " (Blr]) = Blr'/7]

and the maps [p")¢: Blr'/1"] — Blr| are finite étale for all n € Z .
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Proof. This is analogous to lemma 3.2 of Schneider-Teitelbaum’s article [33]. We
repeat the proof in the relative case for the convenience of the reader.

Since p and 7§ differ by a unit u € ¢ and |[u]g(z)|, = |zp, it suffices to
prove the statements for 7rx. But multiplication by 7k is given by a power series

[ﬂK](P(Z) = 2 anZ” - ﬁL[[Z]]

n>1
with a1 = 7rx and whose first unit coefficient is that of Z9, as § is a formal group

of height [K : Q,]. Therefore,

1 - .
27, = |z} ifn>g.

We deduce that |[7x]¢(z)|, < max{p~1/¢|z|,,|z|] } and this maximum is |z|}
precisely when |z|, > p~1/¢@=1)_ This completes the proof of the first part because
179 > p=1/e(a-1),

The finiteness and the étaleness of [7rk]y follows from the form of the power
series [71x](Z) and Weierstrass’s preparation theorem, which allows us to reduce
it to a distinguished polynomial. O

8.3.2 Covering X by affinoids

Similarly, for each r € pQ with r < 1, let B;[r] denote the closed disc of radius r
centred at 1 over K, regarded as an affinoid subdomain of B;. Then we define the
affinoid subdomains Xy[r] = Bi[r] ®z, Homg, (4, 7, of Xpand X[r] = Ao[r]N X
of X.

Lemma 141. Let r € pQ such that p=?/(P=1) < r < 1. Then
[p] " (X[r]) = X[r'7]
and the maps [p"]: X [rV/P"]| — X[r] are finite étale for all n € Z..

Proof. This is a special case of lemma 140 using the multiplicative Lubin-Tate
formal group Gy, over Qy (in place of §y relative to L/K). O

8.3.3 The valuation of the period ()

Lemma 142. If z € B(C)) is a zero of Fy,, then z must be a torsion point of 3.
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Proof. This is lemma 6.2 of de Shalit’s article [38] and a claim inside the proof of
lemma 3.4.c of Schneider—Teitelbaum’s article. We reproduce the proof here for
the convenience of the reader.

Since Fy defines an element of Homy, (So. Gm), the hypothesis that Fy(z) =0
implies that Fy ([aly(z)) = (1 + Fté(z))a —1=0foralla € Z}. If z were not a
torsion point, then Fy would have infinitely many zeros of p-adic absolute value
r = |z|,. But this is impossible because a non-zero function on the affinoid B[r]

can have at most finitely many zeros. O

Lemma 143. Let f(Z) = bZ(1+ W Z + byZ> + - - - ) € Cp[Z] which converges for
|Z|p, < 1and has no zeros in 0 < |Z|, < 1.
(1) The coefficients by for n € Z>q are all in Oc,, and tend to 0 as n — oco.
(2) The function f has only finitely many zeros on |Z|, < 1.
(3) Letzg € ﬁép (ie., |zolp = 1). If f has a zero on the residue disc |Z — zg|, < 1, then
|f(Z)]p < |b|p throughout that disc; otherwise, | f(Z)|, = |b|p for |Z — zo|p < 1.

Proof. This is lemma 6.3 of de Shalit’s article [38]. TODO: find a better reference
(de Shalit only says it is “well-known” and cites a book where I couldn’t find the
result). O

Proposition 144. The p-adic valuation of the Lubin—Tate period associated with t{, is

1 1
p—1 e(g—1)

Proof. This result is proved (for non-relative Lubin-Tate groups) in the appendix

of Schneider—Teitelbaum’s article [33] using complicated constructions in p—adic
Hodge theory from Fontaine’s article [20]. Here we adapt the more elementary
proof from proposition 6.1 of de Shalit’s article [38].

Fix p € Oc, with |p|, = p~1/¢(@=1) and consider

f(Z) = By (0Z) = pQZ(1 + 01 Z + b 7% + - - ) € Cp[Z].

This power series converges for |Z|, < 1 because Fy (Z) does for |Z[, < 1. We
claim that f(Z) has no zeros in 0 < |Z|, < 1 and so we can apply lemma 143.
Indeed, if zg € B(C,) satisfies that f(z9) = 0, then z = pzg is a zero of Fy and
must be a torsion point of § by lemma 142. But the non-zero torsion points of
3¢ have p-adic valuations of the form 1/eq" (g — 1) with n > 1 and all these
numbers are strictly larger than v, (z). Therefore, zg = 0.
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Consider the torsion points in §y 1. If 77k is a uniformizer of Ok, we can write
891 = Ker([7k]p). Since p differs (multiplicatively) from 7ty by a unit and Fy is a
morphism of formal groups, we deduce that Fy (33,1) C {{p —1:p € pp }. We
can find z € §,1 such that Fy (z) = {p — 1 # 0: otherwise, F; would factor through
[7k]g, but this is impossible because t is a generator of T, G’ = Ok(7). Write
z = pz9. Comparing p-adic valuations, we see that |zg|, = 1. Now lemma 142
implies that f(Z) cannot have any zeros in |Z — zg|, < 1, as z is the only torsion

point of §p in the corresponding disc. The last part of lemma 143 says that

|pQ|P = |f(ZO)|}7 = |Cp — 1|P = p_l/(p_l)

and this concludes the proof. O

8.3.4 The isomorphism of varieties over C,

Proposition 145. Let r € pQ with r < p~1/¢(1=1), The power series Fy (Z) defines an
analytic isomorphism between B[r|c, and B[r|Q|p]c,,-

Proof. This is lemma 3.4.c of Schneider-Teitelbaum’s article [33].

Write Fy (Z) = QZ(14+ b Z + byZ? + - --) € Cp[Z]. To prove that this power
series defines an isomorphism from Blr]c, to B[r|Q}|p]c,, it suffices to check that
bu|p < p"/¢=1) for all n € Z>1, by the hypothesis on r. If there were some 1 > 1
for which |b,|, > p"/¢@0=1), then the Newton polygon of 1+ byZ + by Z? + - - -
would tell us that this series has a zero z with |z[, < p~1/¢4=1). But lemma 142
implies that the only zero of Fy (Z) with absolute value < p~1/¢(-1) is 0, so such

z cannot exist. O

We finally have all the ingredients to prove that the isomorphism on points
x(Cp): B(Cp) — X(C,) is induced by an isomorphism of rigid analytic varieties
k: Be, — X¢, compatible with certain quasi-Stein coverings. That is, we see « as
an isomorphism of two families of affinoids exhausting B¢ ) and Xc,

To define x as a rigid analytic morphism (on affinoids), we choose a Z ,-basis
e1,- -, e[K-Q,) of Ok and letej, ..., EFK:Q,,] be the dual basis of Homgz, (Ok,Z,). This

]

allows us to identify &y with the polydisc BgK:Qp and then x: Bc, = (Xo)c, is

given in coordinates by
[KiQp]

=) (1 +Feit6(z)) R e}
i=1
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The expression in terms of power series shows that « is rigid analytic over C,
and we have seen (on points) that it factors through the closed subvariety ch of
(X0)c, (cf. proposition 139).

Theorem 146 (Schneider-Teitelbaum). Let r = p~7/¢0=1), For every n € Z~,

1 en 1 n
k: B[r'/a ]Cp = X[(r|Qf)"? ]Cp
is an isomorphism of affinoids over Cp,. Consequently, x: Be, — X¢, is an isomorphism
of rigid varieties over C.

Proof. For a non-relative Lubin-Tate formal group, this is theorem 3.6 of Schneider—
Teitelbaum’s article [33]. The proof in for the relative case is exactly the same
using the results that we have previously stated (especially proposition 144). We
reproduce it here for the convenience of the reader.

First we prove the case n = 0. By the expression of x in terms of power series
just before the theorem and proposition 145, we have a well-defined rigid analytic
morphism «: Blr]c, = X[r|Qy]c,. Since r < p~1/¢(@=1), the formal logarithm
log,, defines a rigid isoAmorphism log,,: B[r] — B[r]. The same argument applied
to the formal group G, shows that log: B[r|Q}|,] — B[r|Q)|,] is also a rigid
isomorphism, as 7|Q)[, < p~1/(P=1)_ Therefore, we obtain a commutative diagram

B[V]Cp T B[”]C,,

i alw

X[7|Q|p]cp m B[r|0|p]cp

of rigid analytic morphisms. (Here, the notation - (1) means the following: if
the Z,-basisey, ..., e[K-Q,] of O whose dualej, .. ., efK:Qp] gives the identification

Xy = B

corresponding to e7.) At the level of points, this commutative diagram corresponds

has e; = 1, we restrict to the intersection of X and the copy of B;

to the top of the cube appearing in the proof of proposition 139 once we identify
Homg (K, C,) = C, via evaluation at 1.

We claim that the lower horizontal arrow is injective on Cp—points. Indeed, if
log(x2(1)) = 0 or, equivalently, x;(1) = 1, then by local K-analyticity x; must be
locally constant and so of finite order. But B [r|Q2|,](Cp) has no non-trivial torsion.
Thus k, must be the trivial character.

Looking at the diagram on points, we see that the top and right arrows are
isomorphisms and the left and bottom arrows are at least injective. Therefore, all
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arrows must be isomorphisms on C,—points. This implies that all arrows are rigid
isomorphisms because all the affinoids in the diagram are reduced.
Next, we prove the theorem for n > 0. We use the commutative diagram

B[rl/q”’]cp SN X[(r|Q|p)1/P”}C

[p%l l[r’”]

B[V]Cp B — X[7’Q|p]cp

p

and lemmata 140 and 141 to reduce to the previous case. (Observe that we can
apply lemma 141 because r|Q)| = p~ 1/ (P=1)=1/e > p=p/(p=1) )

First, we consider the diagram at the level of C,—points. We know that
x: B(Cp) = X(Cp) is an isomorphism of groups by proposition 139. Thus, since
the lower arrow «: B[r](C,) — X[r|Q|,](C) is an isomorphism and lemmata 140
and 141 tell us that the upper arrow is obtained from the lower one by taking
preimages under [p"], we deduce that the upper arrow is an isomorphism on
Cp—points.

Again by lemmata 140 and 141, the two vertical arrows are finite étale affinoid
morphisms of degree "¢ = p"KQp] Thus the problem is reduced to a general
result on reduced affinoids (cf. the end of the proof of theorem 3.6 in Schneider—
Teitelbaum'’s article [33]). O

8.3.5 Global functions

>~

The isomorphism of rigid varieties B¢, = A, from theorem 146 induces an
isomorphism on rigid functions &(X/C,) = 0(B/Cp) = B;iLg,C,,' We can now
translate the natural action of G, on 6(X/C,) = O(X/K) @k Cp to 0(B/Cp)
as follows. For z € B(C,) and ¢ € Gy, we define 0 x z € B(C,) as the unique

element satisfying that xy., = 0 o k. More precisely,

ookz(a) = o((ty, [alp(z))) = (o (ty), o0 [aly(2)) = (t(0)ty, [alp(o(2)))
= (to, [t(0)alp(o(2))) = (to, [ale ([T(0)]g(0(2)))) = K(e(0)]y(0(2)) (@)

foralla € Ok and so 0 *z = [1(0)]y(0(2)). Then, for F € 0(B/C,) and ¢ € G,
the action of o “coefficientwise on (X /C,)” gives

(c+F)(z) =0(Flc 1 %2)) = F (c(c %2)) = F o [t(c1)]g(2)
forall z € B(C,). Thatis, o« F = F o [t(¢71)]y.
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Corollary 147. There is an Ox—equivariant isomorphism of Fréchet algebras over C,

D(H,Cp) = 0(X/Cy) = 0(B/C))

Yo >Ay

characterized by
Au(z) = /ﬁ kz(a)u(a) forallz € B(Cy).
K

More generally, for every subextension Cp,/L'/L with L' complete, we obtain an iso-
morphism D(H, L") = ¢(B/C,)° (where the Galois action is the one described above).

Proof. This is an immediate consequence of theorem 137 and theorem 146. O

8.4 Distributionson I’}

(Relative) Lubin-Tate theory provides us with an isomorphism x¢, : I'r — 0.
In particular, I';, is a locally analytic manifold over K, isomorphic to g copies of
Ok via x¢, and the canonical decomposition ¢ = F, x (14 mg)* given by the
Teichmiiller character. Our objective in this subsection is to describe the algebra
D(T',Cyp) of Cp—valued locally analytic distributions on I';, in terms of character
varieties. We follow section 2.1 of Schneider—Venjakob’s preprint [35].

Choosing a uniformizer 7tx of K (later we fix a particular one), we obtain an
isomorphism (14 71g Ok )™ = Ok mapping 1 + 7k to 1. Now, identifying &¢ with
IF; X Ok, we can construct a character variety X'~ over K as the product of g copies
(indexed by IF;) of X'. The C,—points of X' are the locally K-analytic characters
of the p—adic Lie group 0 with values in C,. The Fourier transform defines an
isomorphism D(0y,C,) = 0(X* /Cp) (cf. theorem 137).

It is more convenient to view D (&%, C,) inside D(0k,Cp) and describe these
distributions as a subset of ¢'(3/C) by means of corollary 147. To that aim, we
first need to translate the extra structure on &(B/C,) provided by Lubin-Tate
theory.

8.4.1 The action of 0k on distributions

We have an “action” of the multiplicative monoid &k \ {0} on B given by [ - ]:
in terms of C,—points,

axz=[a]p(z) forallac Okxandzec B(Cp).
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A straight-forward computation shows how to define the analogous action on X
and later on D(0k,Cp). Namely, for z € B(Cp) and a,b € 0k,

Karz(b) = 1+ Fy ([blp(axz)) = 1+ Fy ([ably(z)) = xz(ab).

We define the action of 0k \ {0} on C*"(0k,C,) and on D(0, C,) as follows:
fora € Ok, f € C*(0k,Cp) and u € D(0k,Cp),

a’(f)=fla-) and a.(p)=poa’.

The restriction of this action to characters (i.e., to X'(C,)) comes in fact from the
analogous action on the rigid variety Xy = B; ® z, Homzp (Ok, Zp) (or rather on
the second factor of this “tensor product”).

Using the notation of corollary 147, we see by construction that
As(Z2) = Ay(lalp(Z)) foralla € Ok and p € D(0k, Cp).

8.4.2 The action of ¢, on distributions

Next we want to define an action of ¢,. Consider G(Z) € &(B/C}) corresponding
to F € 0(X/C,) via the isomorphism Be, = Xc,. By definition,

94(G)(z) = G%1(p(2)) = 94(G(9, ' 0 ¢(2)))
= @q(F(Kporp2))) = FP1 (95 0%t ()

We have to understand the argument of F¥7 above in terms of k.. Using the explicit
description of x(C,) in proposition 139, we can compute

Pq © K(p;1(¢(z))(”) = ¢q(1+Fy ([alp (g " 0 ¢(2))))
= ¢q(exp(Qlog, ([alp(9; " 0 9(2)))))
= exp(94(Q) logy’ ([a]y" (9(2))))
= exp(@q(Q) i log, ([alp(2)))-
Since exp (¢, (Q) 7, log,( - )) defines an element of Homg, (So Gm), it must be
of the form 1 + Fy( - ) for some t' € T, G'. But T, G’ is free of rank 1 over Ok

and, comparing the valuations of ) and ¢,(Q) 71, we conclude that t' = 7k - t;,
for some uniformizer rx of K. From now on, 7t always denotes this particular
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uniformizer (which depends on many choices). Then

P30 K 1(p(e1) (@) = 1+ Fo([alg(2)) = 1+ Fy ([mkaly(2)) = e (xa)

and so
9q(G)(z) = F¥1 (g (xz)).

Therefore, we define
¢q(F) = FPf1omy  forall F € O(X/Cy).

Let 4 € D(0k,Cy) and consider its Fourier transform F, € (X /C,). For
every x € X(Cp), we can compute

P(F) () = B (7 () = 9 (Fu (97 (7 (1))
=94(/, o' (k@) 1@) = o3[ 07" (xra) (a)).

We define ¢, (1) € D(0k,Cp) by 9q(#)(f) = ¢q(u(@; " o i (f))) or, equivalently,

g Pal) = @ (/ﬁK [97 0 4 (f)] ;4) for all f € C*™ (0, C,).

Lemma 148. The endomorphism ¢4 makes 0(B/Cy) (resp. 0(X/C,), D(0k,Cp))

into a free module over itself of rank gq.

Proof. Since the endomorphisms ¢, are defined to be compatible with the iso-
morphisms ¢(B/C,) = 0(X/Cp) = D(0k,Cp), it suffices to prove the claim
for D(0k,Cp). But y — (7x)«(p) defines an isomorphism between D(0k,Cp)
and D(7mtx Ok, Cp), while p +— ¢4 0 y((pq*l o - ) is an automorphism that preserves
D(mx 0k, Cp) inside D(0k, Cp). The lemma follows from these observations be-
cause the Dirac distributions J,, where a runs over a set of representatives of
Ox/ kO, form a basis of D(0x,Cy) over D(mx Ok, Cp). ]

Lemma 149. For every G(Z) € B, C,

G([mxlg(2)) € g (Bl

Furthermore, the morphism B;Eg,cp — @y (B:irg,cp) given by Z — [rig]y(Z) is bijective.
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Proof. By corollary 147, we can view G = A, for some y € D(0k,Cp). Consider
i € D(0k,Cp) defined by

F@@) = ¢;' ([ (90 )@ p@) forall f € C™(0,C,),
Ok Ox
so that ¢, (11) = (7 )«(p). Then
G([milp(2)) = Apr). (0 (2) = Ay (2) = 94(Au(2)).
The assignation p — ji is clearly bijective and we can reverse the construction. [

8.4.3 The action of ¢; on distributions

Definition 150. We define the operator ¢; on D (0, Cp) to be the unique additive
endomorphism of D(0y, C,) satisfying that

1
g0 ¥g = 7 TD(0,€,) /Dm0 Cy) -

The operator 1P, can be defined on ¢(B/C,) and &(X /C,) analogously.

Remark. In section 2.1.1 of their preprint [35], Schneider and Venjakob give a
more explicit definition of ¥, (in fact, without the factor 7r;). Namely, they define
(k)12 C*(Ok, Cp) — C*(0k,Cp) by

f(nlzla) ifa € g0k,

(7)1 (f)) (a) = {

0 otherwise,

and consider its dual (7tx)': D(6%,Cp) — D(0k,Cp). Then

Pa(p) = 97" o —((mx)' (1)) (@q o -)  forall p € D(Gx, Cp).

8.4.4 The Mellin transform

By definition,

Therefore, we get a decomposition

D(6k,Cp) = ¢4(D(6k,Cp)) ® D(Ok, Cp)¥1="
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p="E o) + (1= T oa(wy()

which allows us to identify D(&y, Cp,) with the second direct summand. Indeed,

the decomposition Ox = mx Ok LI O induces a decomposition

D(6k,Cp) = D(rix 0k, Cp) @ D(0g,Cp)
and we have seen in the proof of lemma 148 that ¢,(D(0k,C,)) = D(nk 0k, Cp).
Definition 151. The Mellin transform is the isomorphism

=0
M: D(T,Cp) — (B:gglcp)%

obtained as the composition of the isomorphisms
D(T;,C,) = D(6F,Cp) & D(0k,Cp)V1=" = 0(X/Cp)¥1=0 =2 0(B/Cp)¥1~"
described above.

Lemma 152. If u € D(0x,Cp) corresponds to A, € B;;g c, via the isomorphism of
corollary 147, then the distribution

([, af@p)

corresponds to Q™19 (A,) € Bjig c,

Proof. First we claim that, given z € B(C,), the distribution y, given by

| J@pe@) = | w@)f@ e

K

corresponds to A, = A, (Fy(z, - )). Since the characters are dense in C*" (0, Cp)
and we have the isomorphism B(C,) = &X' (C,) from proposition 139, it suffices to
check that A, (z') = A, (Fp(z,2')) forall 2’ € B(C,). Indeed,

Ay, (z') = /

Ox

e (@) (@) = [ 5,0 (0) (@) = Au(Fp(2,2))
K
Now, to prove the assertion of the lemma, we observe that

99(Au)(Z) = lim " (expy (logy(Z) +¢)) — Au(Z)

e—0 &
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i Au(Z +5,expy(e)) — Au(Z)

e—0 €

and use the claim with z = exp ¢(€)' Thus, writing y’ for the distribution corres-
ponding to 9y(A,)(Z),

| @) (a) = lim

e—0 &

Kexp¢(s)(a)f(a) _f(a)
Ok

. Fy ([a]p(expy(e)))
:hm/ﬁK

e—0 &

where in the last equality we used that

expy(Z) =Z+---, lalp(Z)=aZ+--- and F,(Z)=QZ+ --.

8.5 Robba rings over C,

BJr and BT

In the same way as we defined the rings B rig L

rig, L’ using the rigid analytic

BE and B;flg c, using the base change

Bc,. More precisely, all the definitions appearing in section 6.3 extend to Cp in

variety B over L, we define rings Bng C,

the obvious way. (Note however that the structure of the Robba ring is more
complicated over C, than over a discretely valued field.) Similarly, definitions 78,
79 and 89 and proposition 80 work in the same way replacing Brlg . with Brlg C,

8.5.1 Explicit bases over the image of ¢,

As in section 1.1.3 of Colmez’s article [17], we set
n(a,Z) =1+ Fy (Z) = exp(aQlog,(Z)) foreverya € k.

Lemma 153. Let a,b € Ok.

(1) #(a+0b,Z) =1n(a,Z)n(b, 2).

) n(a,3p(X,Y)) =n(a, X)n(a,Y).

3) v(n(a,Z)) = n(x¢p(7)a, Z) for every v € T'.
4) @q(n(a,2)) = n(an, )——n%,[ﬂKh( )-

6) $4(1(a,Z ey e ?) o€

otherwise.
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Proof. The first three properties are clear from the definition of 7 and the properties
of log,,. The fourth property is just a rewriting of the definition of 7x given in
section 8.4.2 and the last property follows from the relation ¢; 0 ¢, = g/ %—1 (7).

Proposition 154. Let f € Bl For everyn € Z>q,

rig,Cp-

n—1
P )T (g oy (-0, 2)f) n(a,2),

qn
aGﬁK/T[IréﬁK

f=

where the sum runs over any system of representatives of Ox / y Ok.

Proof. We prove the formula by induction on 7 using the expression of ¢, o ¢, in
terms of Try, .

For the base case n = 1, we write for each a € Ok

(@qoq)(1(—a,2)f(Z - Z;;’ n(—a,8p(v1,2))f(S¢(v1,2))
V1€5p1
— ) n(=a,0)n(—a,Z)f(3p(01,2)).
L 01€8p,1

But, given vy € §y1, 71( -, v1) defines a finite character of IF; = O/ mx Okx which is
trivial if and only if v; = 0. In particular,

qg ifv; =0,
Y. n(-av)= ,
aEﬁK/TCKﬁK 0 lf '01 ;é 0

Therefore, using that #7(—a, Z)n(a, Z) = 1 and summing first over a € Ox/ g Ok
and then over v; € §y,1, we conclude that

Y (g0t (-0, 2)f(2)(a,2) = - f(2)

aEﬁK/nKﬁK

as desired.

Now suppose that we have the formula for n and let us prove it for n 4- 1. We
can pick a system of representatives of Ok / n”*lﬁ k of the form ¢ = a + b with
a€ Ox/ng0kand b € Og/ng0k. Then

n(c,Z) =n(a+mgb, Z) = n(a, Z)n(mgb, Z) = n(a, Z)pg (1(b, 2))
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and by the projection formula

(@h o™ ((—c, Z)f(Z))y(c, Z
= (¢j o (¢q°¢q) o) (¢ (1(=b,2))y(—a,2)f(Z)) 9y (11(b, Z))1(a, Z)
= 93 (a0 ) (1=, 207 (1(~a, 2) £(2))) (b, 2) ) 2, 2).

)
(

Summing over b € Ok /mxOk and using the base case we obtain that

Y. (@qotg)(n(=b,Z)py(n(—a,Z)f(2)))n (b, Z)

bely/mxOk

= L9~ 2)f(2))

Therefore,

Yo (ggovy™)(n(—¢,2)f(2))n(c, Z)

CGﬁK/TL'Ir?rlﬁK

=1 Y (gl oy (n(—a,Z)f(2))y(a,Z)

q)g(n )IZEﬁK/T[KﬁK
qn—l—l

- (pg(m) ce QDq(TCL)T[Lf(Z)

by the induction hypothesis. O

Corollary 155. Let .# € Ob(@;~Modg: . i) (resp. A € Ob(p;~Modg+ . o))-

rig, p’ rig,! p’
For every n € Z>1 and every system of representatives of Oy / 7y Ok, we have a decom-
position of LF (resp. Fréchet) spaces

M= D na,Z)e;(A)

HEﬁK/TL’IZﬁK

and also decompositions of Banach spaces

%chprs - @ 77 a, Z)(Pq(‘/ABC " s })

aEﬁK/ﬂ'KﬁK
forallr,s € pRwith0 < r <s <1 (resp. r <s<1).

Proof. These decompositions follow frorn the formula in proposition 154 and

(iterates of) the isomorphism (1 ® ¢4): B ngC ® M — M. O

Pq Brlg Cp
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Corollary 156. Let # € Ob((pq—ModBJr fr) or # € Ob(p,~Modg+ f). The
rig,C
decomposition in corollary 155 (forn = 1) restrzcts to

M= @D e, 2)gy().
aE(ﬁK/ﬂKﬁK)X

In particular, if we apply corollary 156 to B

D(0k,Cp) = legc

in the beginning of section 8.4.4.

rig C, and use the isomorphism

from corollary 147, we recover the decomposition explained

8.5.2 The Robbaring of I';,

Next we recall the construction of the ring Brlg c, (I'p) following section 2.2.2 of
Schneider—Venjakob’s preprmt [35].

The isomorphism B, = D(0k,Cp) from corollary 147 sends Z to some

rig,Cp
distribution pz. Then, if the symbol ? means either a subinterval of (0 1) as the

ones appearing in section 6.3 or nothmg, we can define a ring BrlgC (0x) by

formally replacing Z with iz in B, . . Our objective is to extend this construction

rlg Cp’
to define a ring BrlgC (Tp).

Recall that the Lubin-Tate character x4 defines isomorphisms I';y, = &7 and
I't, = Gal(Leo/Ly) = (1 + g Ok)* for alln € Z>q. Fix ng € Z>1 such that log
and exp define isomorphisms between (1 + 71’ 0x)* and 7’ 0. Consider the

isomorphisms ¢;,: I'r,, — Ok defined by

() = —r log(xe(7)
K

for all n > ny. We get isomorphisms lyy: D(I'1,,Cp) — D(0k,Cp) and set

Uz = ;1 (1z). We define rings Brlg c, (I'z,) by formally replacing Z with uz , in

12
rig,Cp*
Consider m,n € Z with m > n > ng. The natural inclusion I'y, C I'y induces

a morphism Brlg c, (Tr,) — Brlg c, (I'L,) that we want to study. Observe that we

have a commutatwe diagram

and that the action of 7rx on distributions is “almost” ¢,. More precisely, the
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computations in section 8.4.2 show that ¢}’ ™" acts on D(x, Cp) as the composition
m—n

of the automorphism p +— @' ™" o u(@)™" o -) and (71 ").. All in all, the

inclusion I';,, C I'y, induces a commutative diagram

Ll

t ’ ~ pt
Br1gC (er) o~ rlgC (ﬁK) BrlgC
l .Zb—>[7t§<” "(2)
é V
t 1% ~ pt
BrlgC (FLn) ~ rlgC (ﬁK) BrlgC

where the dashed arrow defines an isomorphism from Brlg c, to eg " (leg Cp) by
lemma 149.
On the other hand, corollary 155 shows that

Brlg C, — @ W(alz)(f)q (Brlg Cp)

ﬂEﬁK/T[InginﬁK

Equivalently, we may view Brlg c,asa module over iy " Ok vian(- /g ™", Z)
and then

Blyc, X g Ok — B,

rig rig, C

f(2) @ la] —— f(Ing "p(Z))n(a, 2)

is an isomorphism. Therefore, the natural map BrlgC (I'y,) — Bjig,cp(an) in-

duces an isomorphism

B‘l‘

rig,C, (er) AT L an - BrlgC (an)

fluzm) @ [v] ——— f([mg "lp(nzn)) oy

making the diagram

legC (er) AT L an — B.rl-lgC (an)

fm,*lHZ lelfn,* Z\Ilfn,*

B+ NmnﬁﬁK—>B

rig,Cp rig,Cp

commutative.

Definition 157. The Robba ring of I'; is

t +
Brig,Cp (FL) = Brig,Cp (anO) NTLHO I
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Definition 158. We define :: BIig,Cp(FL) — BL . (I'r) to be the involution in-

rig,Cp
duced by the automorphism <y +— =1 of I';. More precisely, : acts on Z[I';] by

[v] = [y~!] and on Bjig,c,, (I's,,) by requiring that the diagram

g
t 0 +
Brig,Cp (FLnO ) o~ Brig,Cp

ll l’ﬂl
ng,*

+ t
Brig,C p (anO ) ~ Brig,C p

be commutative, where y_; € I'f is characterized by x4(v-1) = —1 € O (ie,
the right vertical arrow is defined by Z — [~1]4(Z)).

8.5.3 The action of BIig,Cp (') on Ker ()

Let .# € Ob((¢g, FL)—Mod%r;}ig Cp,fr). One might wonder if the action of T on
A extends to a continuous action of Bjig C,

with the corresponding Dirac distribution 6, € D(I';,Cp) C B;rig,cp (T'1)). In their

preprint [35], Schneider and Venjakob prove that this is true at least for . %1,

(I'L) (where we identify each v € Tt

By corollary 156, we obtain an isomorphism

U(l’Z)q)l](%) NFLl FL — @ ”(Q,Z)qu(%) = //[1/)[,:0
ﬂe(ﬁK/ﬂ.'KﬁK)X

1(1,Z)pq(m) @ [v] — v (1(1, Z)pg(m)) = 1(xp(v), Z) pq(v(m))

(well-defined by the identity (4) of lemma 153) thanks to which it suffices to prove
that the action of I';, induces a continuous action of B}, 2C, (Tr,) ony(1,Z2)y(A).
This is done in sections 2.2.4 and 2.2.5 of Schneider—Venjakob’s preprint [35],
where they use proposition 80 to work over .7 | Be,Irs] for certain closed intervals
[7,s] C (0,1) and then reduce the problem to the analysis of an analogous action

of B;rig,cp(an) forn > 0.

Theorem 159 (Schneider-Venjakob). Let . € Ob((¢4 I')-Modg: ) ¢). The
rig,Cp”

action of ', on .4 induces a unique continuous action of BY, 6C, (T') on . ¥7=0 which

makes .#¥1=C into a free B;rig CP(I"L)—module of the same rank as A: if e1,..., ey is

a Bjiglcp—basis of M, then n(1, Z)g(er),...,1(1, Z)¢pq(er) is a Bjig,CP(FL)—basis of
YAl
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Proof. See theorem 2.31 of Schneider—Venjakob’s preprint [35], whose proof works

exactly in the same way for the relative Lubin-Tate situation. O

8.5.4 The Mellin transform

In section 8.4.4 we introduced an isomorphism 9: D(I't,C,,) — (B;gg c, ) Y170 that
we can now extend using the constructions of sections 8.5.2 and 8.5.3.

By corollary 147, for every u € D(0k,C,) we have

Au(2)= | n(a,Z)p(a)

In particular, if 47 is the Dirac distribution supported on 1, then A; (Z) = #(1, Z).
But ¢ is the unit element of D(&, C;,) with respect to the convolution product,
which means that every A € D(0%,C,) can be expressed as A - §;. These observa-
tions combined with theorem 159 motivate the following definition.

Definition 160. The Mellin transform is the isomorphism
=0

m: BIig,Cp(rL) — (Bj‘-ig,Cp)l/)q

A— A(1(1,2))

induced by the action of I';, on (B )%:O (see theorem 159).

rig,Cp

Remark. The fact that this definition does extend definition 151 follows from
lemmata 2.2 and 2.5 of Schneider—Venjakob’s preprint [35].

Since we always identify I'; with € via x4, lemma 152 motivates the next
definition.

Definition 161. We define the twist by x4 to be the unique isomorphism Tw,, that
makes the diagram

Twy
1 ¢ 1
Brig,Cp (FL) - Brig,Cp (FL)

)%ZQ 09, (BJF )%:0

(B+ rig,Cp

rig,Cp

commutative. More generally, for i € Z>( we define TWXfp to be the composition
of Twy,, with itself i times and Tw, ; = Tw L.
X¢ Xy
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Remark. The fact that Q!9 defines an automorphism of (B, tig,C, )%:0 follows
from proposition 2.12 of Fourquaux—Xie’s article [22].

8.5.5 The operators ©, and =,

By lemma 97, we have an operator Ny on BrlgC given by Ny = log¢(Z)8¢ (cf.
the calculations in the proof of lemma 2.1.4 of Kisin—-Ren’s article [28]). It turns out
that this operator corresponds to the action of a distribution in D(I';,Cp) that we
call again Ny. Indeed, we can compute

Ny (7(1,2)) = log,(Z) - #AZ) [exp(Qlog, (2))] = Qlog,(2)y(1,2),

which corresponds to Ny - &1 via the isomorphism B! - = D(0k,C,). Writing

rig,Cp
Qlog, (2)1(1,2) = ¢ (07" () og(2))(1,2),

we see that this power series belongs to (B;;g c, ) $e=0 by corollary 156. Therefore,

Ny =m~(Qlog,(Z)y(1,Z)) € D(T'1,Cp) C BngC (Tp).

Remark. The operator Ny is often called V in the literature. Moreover, in section
2.1.2 of their preprint [35], Schneider and Venjakob define V directly as a distri-
bution given by the element of Lie(I';) corresponding to 1 via the isomorphism
Lie(T;) = Lie(0y ) = K induced by x4 and then one can check that it acts as our
Ny (see lemma 2.14 and corollary 2.15 of Berger-Schneider—Xie’s article [8]). In
fact, since Lie(T';) = Lie(I',) for any n € Z>4, one can view V € D(I'z,,Cj) too.

Proposition 162. Consider n € Z>1 and letb = (by,...,by) be a Z,—basis of I' . If
n is large enough,

— 1 nﬁ(log Xp(b 5&1)

(where oy, denotes the Dirac distribution supported on b;) is a well-defined element of
D(FLn,C ) C BrlgC (T'r,) and we can write

M(Op) = ¢5(C)y(1,2)

with
log,(Z)
Z

&H=q" =q "MZ) mod log,(Z)B

rig,Cp*
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In particular,

is a well-defined element of Brlg c, (T'z,)-

Proof. This is analogous to remark 2.34 of Schneider—Venjakob'’s preprint [35] (but
observe that the definition of ®; in loc. cit. does not include the normalizing
factors that we used). We adapt it here to the relative Lubin-Tate case for the
convenience of the reader.

Consider the power series

zZ

=@ -1°

€ Q7]

which has a positive radius of convergence. Thus, we choose r € p® small enough

1,[07]

and work in Bng{j

As operators, using lemma 97 for n > 0 we can write

)Ny
bj))Ny)—1

Ny log(xy (b
j
))Nv - gi(log(xs(bj)) Nv)

log()((p(bj))éb 1 exp(log(x 4)((
=1+ log(x(b;

F(log(x¢(bj))Nv)

for some g; € Bng)o:] Multiplying these equations for 1 < j < m, we can express

Oy =q "+ Ny - g(log(x¢(b1))Ny, ..., log(xs(bm))Ny)

for some power series g. Since

Ny(1(1,2)) = Qlog,(2)y(1,Z) and Ny(Qlog,(2)) = Qlog,(2),

iterated uses of Leibniz rule show that

n—1
Ny(1(1,2)) = | [ [(Qlog,(Z) +1)| - n(1,2).
i=0
All in all, we can express

M(Oy) = [77" + Qlog,(2)f(2)] - 7(1,Z)  with f(Z) € B

On the other hand, the calculations of lemma 2.4.1 and the first part of lemma
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2.4.2 of Berger-Fourquaux’s article [7] show that we can express

log¢(Z) o 10g<p(Z)
95(Z) Mz = (%”(m) o qvql(ﬂL)Z)h(Z)

©,(1(1,2)) =

for some h(Z) € B

rig,C,s I fact, since ¢, (®;(17(1,Z))) = 0, we deduce from the

)%:0 and it must be of the form

projection formula that h(Z) € (BrJgg,C,,

WzZ)= Y. ¢(h(Z))y(a,Z)

a€(Ox /g Ok)*>
by corollary 156. But we may view @, € D(I';,,C,) C D(I',Cp), whence
M(Oy) € ¢ (Bigc,)n(1,2).
This is possible only if 1(Z) = ¢,(h1(Z))1(1,Z) and

log,(2) m(2)) = ¢"(h(Z)) f h(Z) € B
i@y Pon(2) = ¢((2)) for some h(Z) € By,

In particular,

_ _ Zh(Z) )
hz:"( ng) e o\t
rl1a(2) = g (") g ) o
and we can define ¢(Z) = Zh(Z)/ log,(Z) € B;irglcp. Then

log. (Z
(@) = g B! )c<z>)n<1,2>=¢3(A<Z>c<z>>n<1,z>.

Comparing the two expressions of 2 (©,), we see that

P (MZ)e(Z)) = 7" + Qlog,(Z)f(2)

and, evaluating both sides at Z = 0, we see that ¢(Z) = g~ " + - - -, which concludes
the proof. O

Proposition 163. Keeping the notation and assumptions of proposition 162, the image
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= =) . pt t ;
By of By under 0y, Brig,Cp(an) = Bligc, s

= _ a0 m—1 7 log(xp (b))
Ey=q " (= log,(Z I
b =1 (n;; B )> Hq(en(bj),Z)—1
In particular,
Z,= K mod B:
=b = 7"QZ mod Bg c, -

Proof. This is analogous to remark 2.13 in Schneider—Venjakob’s preprint [35] (but
note that the definition of 5 in loc. cit. does not include the normalizing factors
that we used). We reproduce the proof here for the convenience of the reader.

By corollary 147, the isomorphism

L ~
D(an/Cp) — D(ﬁK'CP> = Bjig,Cp

sends u € D(I';,,Cp) to

Au(2)= | n(ta(r),2) u()

Applying this to J;, for 1 < j < m, we obtain the denominators in the formula
for Zy. It remains to prove that Ay (Z) = Q log,(Z)/ mg. But indeed, using x
to identify ', and &F, we can regard the distribution Ny as the element 1 of
Lie(T'r) = L and then

Ny (n7(mt"log(-),Z)) = %[q(ﬂgn log(exp(1- t)),Z)} )t:O
= %[exp(%tlogq)(Z))] )t:O = %log(l,(Z).

The last formula follows easily by plugging the expansions
O
n(ln(b;), Z) —1 = Flog()(cp(bj))z +-- and  log,(Z) =Z+---
K

in the formula for &;. O]
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9 Iwasawa cohomology and duality

In this section we adapt the results of Schneider-Venjakob’s article [34] to express
Iwasawa cohomology with respect to the relative Lubin—Tate tower Lo, /L in terms
of (¢4, I'r)-modules. Conversely, we can construct cohomology classes from
(¢q,I'r)-modules using results of Berger-Fourquaux’s article [7] and Schneider-
Venjakob’s preprint [35].

Apart from that, we adapt other kinds of dualities defined in Schneider—
Venjakob’s preprint [35] in terms of the Robba rings introduced in the previous
sections.

9.1 Cohomology of representations
9.1.1 Iwasawa cohomology

Definition 164.
(1) Let T € Ob(Rep,; (GL)). We define the fwasawa cohomology groups

Hi (Leo/L,T) = limH'(Ly, T),
n>1

where the projective limit is taken with respect to the corestriction maps.
(2) Let V € Ob(Repg(Gyr)) and let T be a G —stable Ok-lattice of V. We define
the Twasawa cohomology groups

Hi,(Leo/L, V) = Hi (Leo/L, T) ®g, K.
(This is independent of the choice of lattice T'.)
Lemma 165 (Shapiro). Let T € Ob(Rep Ox (GLr)). There are canonical isomorphisms
Hi, (Lo/L,T) 2 H(L, Ap,(TL) ®g, T)
foralli € Z, where Ay, (T1) = Ox[I'L].
Proof. See lemma 5.8 of Schneider—Venjakob’s article [34]. ]

Proposition 166. The Iwasawa cohomology Hy,, (Leo /L, - ) is a cohomological é—functor
on Rep,, (GL).

Proof. See lemma 5.9 of Schneider—Venjakob'’s article [34]. ]
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9.1.2 Local Tate duality

In this subsection we recall the duality between Galois cohomology groups of
a representation and of some kind of dual representation. The notion of dual
representation depends on the kind of representation that we consider; namely, we

have to distinguish between free and torsion (finite) Ox—modules.

Definition 167. The Pontryagin dual of T € Ob(Rep,, ,.(GL)) is the representa-
tion
TV = Homg, (T, K/ Ok).

Remark. Lemma 5.3 (and the paragraph preceding it) of Schneider—Venjakob’s
article [34] shows that one can define Pontryagin duals using either Q,/Z, or
K/ Ok. Note that, since T is of finite length, it is endowed with the discrete topology

and so our definition really coincides with that of Schneider and Venjakob.

Theorem 168 (local Tate duality for torsion representations). Let L' be a finite ex-
tension of L and let T € Ob(Rep G tor GL)). The cup product and the local invariant
map induce perfect pairings of Ox—modules

H'(L',T) x H* (L', Homg, (T, (Q,/Z,)(1))) — H*(L,(Q,/Z,)(1)) = Q,/Z,
and
H{(L', T) x H*7'(L/,Homg, (T, (K/ 0x)(1))) — H*(L', (K/ 0x)(1)) = K/ Ok
forall i € Z. Therefore, there are canonical isomorphisms
H (L', T) = H*>(L,TV(1))".

Proof. See proposition 5.7 of Schneider—Venjakob’s article [34]. O
Corollary 169. Let T € Ob(Rep,, ,..(GL)). Local Tate duality induces isomorphisms
Hi (Leo/L,T) 2 H* (Lo, TV(1))

foralli € Z.

Proof. The corollary follows from theorem 168 by taking limits over the L, for
n>1. O
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Definition 170. The dual of T € Ob(Rep,, ¢ (GL)) is the representation
T = HomﬁK(T, ﬁK)

Remark. As in the torsion case, the paragraph before lemma 5.3 of Schneider—
Venjakob’s article [34] shows that one can define duals using Z, instead of Ok.

Theorem 171 (local Tate duality for free representations). Let L’ be a finite exten-
sion of L and let T € Ob(Rep ﬁK,fr(GL))- The cup product and the local invariant map
induce perfect pairings of Ox—modules

H'(L',T) x H*7/(L',Homg, (T, Z,(1))) — H*(L, Z,(1)) = Z,
and
H' (L', T) x H*/(L',Homyg, (T, 0x(1))) — H3(L', 0x(1)) = 6k

forall i € Z. Therefore, there are canonical isomorphisms
H (L', T) = H> (L, T*(1))".

Proof. See proposition 3.12 of Schneider—Venjakob’s preprint [35], where this form
of local Tate duality is deduced from theorem 168 by taking projective limits of
quotients by 7ty for n > 1. O

9.2 The module of differential forms

Definition 172. Let R be any of the rings A}, B} or B;rig,L'

(1) The module of differential forms over R is Qk = RdZ; it is endowed with the
actions of ¢, and I'; given by

¢0q(f(2)dZ) = f1(¢(Z))¢(Z)rr; 1 dZ  and
v(f(2)dzZ) = f(Ixe(Mp(Z)) [xg(7)]¢(Z) dZ

forall f(Z)dZ € Qk and all 7y € T}.
(2) We define (continuous) maps d: R — QL and Res: QL — L by

d(f(Z)) = f'(Z)dZ and Res(kz akadZ) =a_y.
€7

(3) The module of differential forms over Ay is Q}&L = A} dwy; it is endowed with

the actions of ¢, and I'; induced from those on Qk, via the isomorphism
L
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Q}*’L = (), defined by Z — wy and dZ — dewy.
Remark. One can check from the definition that Q}AL € Ob((¢q,I'L)-Moda, f)-
Below we show that it is étale by comparing it with another (¢4, I't)-module.

Recall that the Tate module Ty §y is isomorphic to Ok (xy) as an Og-module
with an action of G, and that we fixed a generator ¢y of Ty §y. Next we define a
(@q,Tr)—module A] (x¢) as follows: as an Aj—module, A} (xy) = A} ®g, Tp ¢
and we always express its elements as f(Z) ® to with f(Z) € A]. The action of ¢,
on A’ (x¢) is given by

9q(f(Z2) @ to) = 9q(f(2)) @ to  forall f(Z) € A}

and the action of I'y, on A} (x¢) is given by

Y(f(Z) @ to) = xp(1)Y(f(Z)) @ty forall f(Z) € A} and all y € T.

That is, A} (x¢) is simply the module A} with the I'; —action twisted by x4 and, in
particular, it is an étale ((pq, 't )-module over A} . By base change, we also obtain

B;rig,L (xp) € Ob((gy, rL)_MOdBIig,L,fr) :

Lemma 173. The map

AL (xp) — Q4
f(Z) @ tg — f(Z) dlog,(Z)

is an isomorphism of (g, T )—modules over A}. (Thus, ), is an étale (g, Tt )—module
L
over Aj.)

Proof. Write dlog,(Z) = g¢(Z) dZ. Since g¢(Z) =1+ - - - is invertible in A, the
map in the statement of the lemma is well-defined and bijective. The fact that it is
compatible with ¢, and T';, follows from the relations ¢4(g¢(Z))¢’(Z) = m1.84(Z)
(see the proof of lemma 65) and gy ([aly(Z))[aly(Z) = agy(Z) for a € Ok. O

Lemma 174. The map d: B;rig L= 0113+ satisfies the following properties:
’ rig,L

(1 ﬂL-q)qod:dO(pq;
(2) yod=doyforally € Ty;
(3) d(-)olalg =d(- olaly) foralla € Ok, and

(4) Pgod = (Pefl(nL)‘dOIPq-
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Proof. This is analogous to lemma 3.16 of Schneider—Venjakob's article [34] (the
only difference is the factor ¢, L(71) in identity (4)).

The first three assertions are straight-forward from the definitions. For the
last one, we observe that ¢, (on Qllsjig L) is injective and so it suffices to prove the

relation after composing with ¢,. Thus, using identity (1), we have to prove that

Pq 0 god =do g0 ¢y

But we can translate the computation to B;rig/ 1 (X¢) by means of lemma 173. Then,

for f(Z) < B-rl-ig,L’

(93291 °D)(F2) = (04> 99 ((2)42) = gy o) (L Zr 00

= (@q019) (99 (f)(Z) @ to) = (g0 Yq) (9p(f)(Z)) @ to
and now we can use lemma 65 and move back to Q1

+
Brig,L

(990 99) (99(f)(2)) @ to = 9y ((pq 0 9g) (f(Z))) ® to
=9y ((@g 099)(f(2))) dlog,(Z) = d((¢q © ¢4)(f(Z))).

Putting everything together, we obtain identity (4). O

Proposition 175. The residue map Res: Q}y — L satisfies the following properties:

rig,L

(1) Reso @ = 7L - ¢4 0 Res;

(2) Resoy =Res forall y € I';;
(3) Res( - o[mk]g) = q - Res, and
(4) Reso; = ¢, ' oRes.

Proof. The proof of proposition 3.17 of Schneider—Venjakob’s article [34] works
almost verbatim in the relative Lubin-Tate situation, now using lemma 174 and

taking into account that ¢, does not act trivially on L. O

Corollary 176. For every f(Z) € B;rig,L,

Res(f([7xly(2)) dlog,(Z)) = -1 Res(f(Z) diog, (2)).
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9.3 Duality of (¢,,I')-modules
9.3.1 The internal Hom

In the category (¢4, I L)_MOdit’L (and soin (¢4, T L)—ModéAtL too) there is an internal
Hom functor: given M, N € Ob((¢,, TL)—Modit,L ), we define actions of ¢, and
of I', on Homy, (M, N) as follows: for every « € Homy, (M, N) and 7y € ', the
elements ¢(x), y(x) € Homy, (M, N) are the unique maps making the diagrams

/S S > N M- N
1®%Tuz ZHT1®(P£1 and WT“Z Ay

/ / s
AL Og,a; M 12 AL @g, a1 N M—= N

commutative. The paragraphs after lemma 3.12 and until formula (17) of Schneider
and Venjakob’s article [34] justify that Hom,, (M, N) € Ob((¢q, T L)—ModéAt/L) :
Analogously, given .#, 4" € Ob((¢g, T'1)-Modg: ) ;), the same constructions
rig,L’
make HomBLg’L (A, N) € Ob((gy, FL)_MOdBIig,L,fr)'

9.3.2 The residue pairing

Schneider and Venjakob introduced several pairings in their article [34] and their

preprint [35]. All their pairings are constructed from the following starting point:

Definition 177. Let R be any of the rings A’L or Bf

rig, L+ Lhe residue pairing for R is

{-, }={, Jr:RxQk —1L
(f,w) — Res(fw)

(where Res is the residue map from definition 172).

Corollary 178. Let R be any of the rings A}, or BY

rig,- The residue pairing { -, - }g

satisfies the following properties: for every f € R and every w € O,
D) {9g(f), #q(w0)} = L og({f, w}),
@ {7(f),r(w)} = {f,w} forally €Ty,
@) {9q(f), w} = 97 ({f, 9g(w)}) and
@ {f,9g(@0)} = 97 ({9q(f), w}).

Proof. These identities follow from proposition 175, the last two in combination
with the projection formulae 1, (f ¢4 (w)) = ¥g(f)w and P, (@4(f)w) = fpg(w).0
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9.3.3 Duality for torsion modules over A}

Our goal is to study the Iwasawa cohomology of representations in Rep,;, (Gr)
using their associated (étale) (¢,, I';)-modules over A; (or equivalently over A7).
Since corollary 169 provides a description of Iwasawa cohomology for torsion
representations in terms of Pontryagin duality, we focus on the full subcategory
(¢q,T L)—Modit/L tor Of torsion modules in (¢g, I L)—ModéA"/L and mimic Pontryagin
duality by means of the residue pairing.

Let n € Z>;. Observe that the residue pairing induces a pairing
A} /mlA] x Q}&,L/ngﬂ}% —— L/0y
(f,w) ——— m¢"Res(fw) mod 0Oy
and so we obtain a continuous 07 -linear map
Oy, /7 Qy, — Hom@ (AL /m[AL, L/ O),

where Hom"é?L“t means the module of continuous & -linear maps with the compact-

open topology. This last map is an isomorphism (see lemma 3.5 of Schneider-

1

Venjakob’s article [34]), which means that we should view Q}&, SAON
L

, as “the
L
Pontryagin dual” of A} / 71} A} . More generally:

Lemma 179. Let M € Ob((¢,, FL)—ModéAt/L’tor), so that M is killed by 7t} for some
n > 1. The map

g » " Res(g(-)) mod O,

is an isomorphism of topological 0’1 —modules.
Proof. See lemma 3.6 of Schneider—Venjakob’s article [34]. O

Definition 180. For M ¢ Ob((q)q,FL)—ModéAt/L
killed by 71}, we set

tor) and n € Z>q such that M is

M"" = Homy, (M, Qy, /7}Qy,) € Ob((¢g,T1)-Mody 1)

A] tor
and define the pairing
{-,-}={" M MxM" — L/
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by
{m,g} = " Res(g(m)) mod 0, forallm € Mandg e M"".

Remark. There is a slight abuse of notation here: the actual Pontryagin dual of
M is HomC@S’Lnt(M, L/ 01), but we use lemma 179 to obtain “a Pontryagin dual”
(depending on ) that is again a (¢,, I'L)-module.

Proposition 181. Let M € Ob((¢,, l"L)—Modf;f,L’tor) and let n € Z~q such that M is
killed by 7t}. The residue pairing { -, - } m n satisfies the following properties: for every
m € M and every g € MVn,

(D) {@g(m), 4(8)} = g ({m,g});

@) {v(m),v(8)} = {m,g} forall y € I';

3) {q(m), g} = o' ({m, ¢q(g)}), and

@) {m,vg(2)} = 95 ({9q(m), 8})-

Proof. These identities follow easily from proposition 175 and the definition of MV
as an étale (¢4, I'r)-module (see section 9.3.1). See proposition 3.19 of Schneider-
Venjakob’s article [34] for the full details of the proofs of identities (3) and (4). [

9.3.4 Duality for torsion modules over A}

Next we translate the results of section 9.3.3 to the category (¢, I"L)—ModéAtthor
of étale torsion (¢4, I'r)-modules over A; using the equivalence provided by
proposition 68.

Let M € Ob((¢q,T1)-ModY, 1) and assume that M is killed by 7} withn > 1.
Combining the isomorphism

ArL(xg) — Q}\L

from lemma 173 with (the analogue of) the isomorphism in lemma 179, we obtain

an isomorphism of topological &7 -modules
Homa, (M, Ar/7}AL) (xg) — Hom™(M,L/0y)

defined by
§®to — 1" Res(g( ) dlog,(wy)) mod .

Thus, we define the Pontryagin dual
MY = Hom@™(M, L/ )
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and identify it with
MYr = HomAL (M, Ap /NZAL) (X(P)
by means of the pairing

{-, y={ Imn: MxM'" — L/0Oy
(m, g ®to) — 1y Res(g(m) dlog,(wy)) mod O

with the properties described in proposition 181. In particular, the operators ¢,
and 1, are essentially adjoint with respectto { -, - }.

Proposition 182. Let T € Ob(Repy, (,,(GL)) and let n € Z >y such that Ty T = 0.
There is a natural functorial isomorphism of topological 0'1—modules

D(T)” = D(T"(xy))

which is independent of n and through which the operator g on D(TV (xy)) corresponds
to %—1 o @) () where ¢, denotes the dual of g5 on D(T)) and goq_lz L/0p — L/Oyis
induced by the inverse of the Frobenius in Gal(L/K).

Proof. This is analogous to remark 5.6 of Schneider-Venjakob’s article [34]. We
adapt it here to the relative Lubin-Tate situation for the convenience of the reader.
First, observe that 777, and g differ (multiplicatively) by an element of /.
Therefore, an 7 —module is killed by 7} if and only if it is killed by 7r¢. In
particular, one checks easily that D(0x /i Ox) = AL/} A;.
Now, by the identifications described before the proposition and by the com-

patibility of the functor D with duals and tensor products, we can write

D(T)” = D(T)"" = Homg, (D(T), AL/} AL) (Xg)
~ Homa, (D(T), D(0x/ 7k 0k)) (xp)
=~ D(Homg, (T, Ox/ 7t 6x)) (xp) = D(TY)(x9) ZD(T" (xy))-

Here, the first and the second-to-last isomorphisms depend on 1, but these two

dependences “compensate each other”. The correspondence between ¢ To (pt\{( -)

and 1, is a consequence of the relation goq_l o{@g(- ), Yomm =1 ¥ )}p(m)n
(cf. part (4) of proposition 181) used in the first isomorphism. O
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9.3.5 Duality for modules over Brlg c,

The definitions and results given in this section over B, ; have obvious analogues

rig,L

.l.
over BngC

because it allows us to study distributions.

As already seen in section 8.5, working over leg c, is more convenient

Lemma 183. The residue pairing { -, } from definition 177 identifies B, £Cp with

the topological dual of Ql . That is to say, the residue pairing induces isomorphisms
rlg Cp
1 ~
Bl c, = Homcont (QB:ig,c,,' C,) and QBLg . HomC(’“"(Brlg ¢, Cp)-
Proof. This is lemma 2.35 of Schneider—Venjakob’s preprint [35]. O

Definition 184. For .# € Ob((¢,,T'1,)-Modg+ i ), we set

rig,C

M"Y =Homg: (M, Ql

rig, Cp ng Cp

and define the pairing
(b =1 Yttt —C,

by
{m,g} = Res(g(m)) forallme # andgec .#".

Remark. By lemma 173 (or, rather, its base change from A} to B;rlg c, ), we have a

canonical isomorphism .#" = HomBEg,c (A, BrlgC )(xg) = A ( )(4,).

Proposition 185. Let .# € Ob((¢g,I'1)-Modg: ). The pairing

rlng
{',‘}:%X%V%CP

induces an isomorphism
VAR= Homcont(/// Cp).

Proof. This is a consequence of lemma 183, as .# is free over Brlg C,

Proposition 186. Let .# € Ob((¢4,I'1)-Modg: . ¢)- The residue pairing { -, - } »
rig, p’
satisfies the following properties: for every m € .4 and every g € A",

) {pq(m), 94(g)} = niquq({m,g});
@) {v(m),v(g)} ={m, g} forally € Ty,
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3) {¢q(m), g
(4) {m, 9q(g)

b= o0 ({m 9q(8)}), and
b= ;" ({9q(m), 8})-

Proof. The proof is identical to that of proposition 181. O

9.3.6 The pairing for B}, ¢C, (Tr)

. . . 1 ~ .|.
Using the isomorphism QBLgc = Bligc,
=P

., -} Bt x Ol — C, induces a pairin
{ } rig,Cp B:ig, Cp 4 p g

(X¢) from lemma 173, the residue pairing

BlTig,Cp X BIig,Cp — Cp
(f,&) — Res(fgdlog,)

.I.
(of Brig,(:,,

to Bl . (I'L) by means of the Mellin transform. We follow subsections 2.3.2 and
&Lp

2.3.3 of Schneider—Venjakob’s preprint [35].

—modules, ignoring the actions of ¢, and I';) that we can try to translate

Definition 187.
(1) We define o: BIig,Cp (I't) — C, to be the composition of the maps

L

(FL”O) Mg L — B; (FL"o) %; Bjig,Cp(ﬁK) =~ B}, — Cp,

.l.
B rig,Cp rig,Cp

rig,Cp

where the last arrow is given by

)
g <7TiK> Res(g dlog,).
(2) We define the pairing
(/) Blige,(I') X By, (I) — Cp

by

(A, u)=0(Ap) forallA,ue BIig,C,,(FL)-

Remark. Alternatively, we could define ¢ as the composition

Res( - dlog,, )

(logoixy) -
Blyc,(TL,) %1, To — Bl e (T, ) —— ) ——— Cyp,

no pt
rig,C, ¢y’ (B

rig,Cp

which justifies the appearance of the factor (q/7tx)" by corollary 176.
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Lemma 188. The definition of o is independent of the choice of (large enough) ny.

Proof. We have to check that, for m > n > ny, the diagram

L
+ + m,* +
Brig,CP (Tr,) TL Iy, — Brigicp (I'z,,) = BrigICr’

7" 1
) A Res(- d og(P)

Cp

L

T nx t
Brig,Cp (an ) ~ Brig,Cp

luz .
Z—In( Res( - dlog,,

is commutative.
First consider f(uzm,) ® [v] € BIig,Cp(er) xr, Tp, withy ¢ T'r,, which is
sent to 0 by the first horizontal arrow. Using the lower row, this element maps to

FUR g (mzn))oy = f(E e (Z))1(u(7), Z) € Biigc,

By lemma 149, we can write f([rr¢ "]4(Z)) = 4)31_”(]7(2)) with f(Z) € B
Now the projection formula and identity (5) of lemma 153 imply that

+
rig,Cp*

I (ol (F(2)(Ea(7), 2))) = 0

because ¢, (y) & g " Ox. We conclude that

Res(f([mrg"p(Z))n(4u(7), Z) dlog(P(Z)) =0

by the last identity of proposition 175.
Next consider f(pzm) ® [11] € B;rig,cp(er) xr, Tp,, wherey; € T, is char-
acterized by x¢(v1) = 1. This element is mapped to

Pz, = F(20(0,2) = F(Z) = ()" Res(f(2) dlog, (2))

via the upper row of the initial diagram and to

PR g 2oy = FE10(2)) = () Res(F([f "]y(2)) dlog (2))

via the lower row. These two expressions coincide by corollary 176. O

Proposition 189. The pairing (-, - ): BIig,Cp<FL) X B;rig,cp(rL) — C, induces iso-
morphisms

B/, ¢, (T'1) = Hom&" (B, ¢ (I'1),Cp)

+
rig,C, rig,Cp
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and

D(T1,Cp) = Hom@® (B, ¢ (T1)/D(I't, Cp), Cp).

Proof. This is proposition 2.44 of Schneider-Venjakob’s preprint [35]. O

Proposition 190. For every A, i € B;rig c, (Tp),

(Twi, (A), Twyg, (1)) = (A, )

Proof. See lemmata 2.47, 2.48 and 2.49 and corollary 2.50 of Schneider—Venjakob’s
preprint [35]. Note that, in the relative Lubin-Tate situation, one must use g in
place of the 717 in loc. cit. O

There is an alternative definition of the pairing ( -, - ) from which the relation

with the residue pairing { -, - } becomes clearer.

Definition 191.

(1) The twisted Mellin transform M, : B (T) = (O )lp"zo is given by

1-.
g Cy tig Cp

My, (A) = A(5(1, 2) dlog,(Z)) = Twy, (1) (4(1, 2)) dlog,(Z)

forall A € B;rig,C,, (Tp).

(2) We define ¢: B;fig,cp(I“L) — Cp by

¢(A) = Res(M(y_1)My,(A)) forall A € BIig,CP(FL),

where y_; denotes the element of I'), mapping to —1 under x4 (that we
identify with the corresponding Dirac distribution).

Theorem 192 (Schneider—Venjakob). The maps o from definition 187 and ¢ from
definition 191 are equal.

Proof. This is theorem 2.51 of Schneider—Venjakob’s preprint [35]. We sketch the
proof here (in the relative Lubin-Tate situation) for the convenience of the reader.
Since Res (0113+ ) = 0, we see that ¢ factors through BY,_ - (I')/D(T1,Cp).

- rig,Cp
r1g,Cp
By proposition 189, there exists u € D(I'1,C;) such that g(A) = (A, ) for all

A€ B;rig,Cp (I'L). Using lemmata 2.53 and 2.54 of Schneider—Venjakob’s preprint

(whose proofs work verbatim in the relative Lubin-Tate situation), one checks
that # must be constant. Therefore, ¢(A) = (A, u) = o(uA) = po(A) for all
A€ B;rig,cp(rL)' It suffices to find one A € B;rig,cp(rL) such that g(A) # 0 # o(A)
to compute pu.
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Next we choose a large g € Z>1 and a Z,-basis b = (by,...,by) of I'r,, and
evaluate ¢ and ¢ at the element Z;, introduced in proposition 162, following lemma

2.55 of Schneider—Venjakob’s preprint [35]. (Note that &, is called E, in loc. cit.)
On the one hand, by proposition 163

- T\ 1
Coo s (Bp) = (7K> a7 mod BEg,C
and so
dlog,(Z)
=) = (-L)" 5 _ Res(—oe )y _ L
0(Ep) = <7TK) Res(ﬁno,*(ub)dlog(P(Z)) —Res( a7 > =4

On the other hand, by definition 161 and the fact that Ny acts on B;rig,Cp as
log,,(Z)dy, we can express

6(Zp) = Res(M(y—_1)M(Twy, (Ep)) dlog,(Z))
= Res (;7(—1,2)%4’931(%) dlog¢(Z))

= éRes <17(—1, Z) ij;(q)@();)) dlog¢(Z)>.

Now by proposition 162, we conclude that

¢(8p) = éRes (&% dlog(P(Z))

:q’go1("L)'(')'(”4(7TL)”LRes(¢Z,’°< S )dlog¢(Z))

_ 47 oo g L _1
=5 % (Res(q OZdlog(P(Z))) =a

In conclusion, ¢(&;) = ¢(&;) as claimed.

Corollary 193. The diagram

()i Blgc, (ML) x Bl o (TL) ——— €y

Y-1 Omoll lm)((l) H

{0} (Blge) " x (L, )"

C 4
rig,C p

is commutative.
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Proof. Let A, € Bjig,cp (T'L). We can express

(A ) = g(Ap) = Res(M(y—1)My, (Ap)) = {M(y-1), My, (An)}.

.1.

rig,Cp(rL)/ we see that

But by the definition of MM, in terms of an action of B

m)&p (/\.u) =A (m)ﬁ,‘b (:”)) :
Now identity (2) of corollary 178 implies that

{v()=0710) p={M(), -} forallyel;

and this adjointness with respect to : can be extended to the action of BIig,C,, (Tp)
by a continuity argument (see lemma 2.39 of Schneider—Venjakob’s preprint [35]).

Putting everything together, we conclude that

(A ) = L) (1)), My, ()} = {M(A) Y1), My, (1) }
= {M(r-16(A)), My, (1)} = {r-1(M((A))), My, (1)},

where in the second and the last equalities we used again that 91 is defined in

terms of an action of B, ~ (T'p). O

rig,Cp

9.3.7 The Iwasawa pairing

Definition 194. Let.# € Ob((¢,, I'L)-Modgi ). We define the pairing

Brlg,C p’

{0 e =1 Y A5 ()90 = B¢, (T1)

by requiring that the diagram

(m,g A)—=(mA(g))

M0 X (V)0 x BIig,C,,(FL) s M0 x (V)0

J/{'r'}//l

>Cp

|
{."},//Z,Iwi

v

+ +
Brig,Cp (FL) X Brig,Cp (FL)

be commutative.

Remark. Givenm € .#%1=%and g € (.#")¥7=Y, the condition

({m, g}, A) = {m,A(g)} forallA € Bl c (T1)
does uniquely determine {m, g}{,, by proposition 189.
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Also, as we saw in the proof of corollary 193, {m, A(g)} = {1(A)(m), g} and so
we could define {m, g}{., equivalently by the condition

({m, ¥ A) = {(A) (m), g} forall A € Bl (1.

Proposition 195. Let .2/ € Ob((¢4,I'L)-Modgt ). The pairing

rig,Cp’
=0 = t
{'/ '}iw: AP0 % ('//v)lpq O%Brig,Cp(rL)
induces an isomorphism

(Y )¥r=0 = Homg:

rig ,C 14

) (AP, B;rig,cp (Te))',

where the superscript 1 means that the action of B;rig c, (T'p) is twisted by 1.

Proof. The isomorphism of proposition 185 restricts to an isomorphism

(aV)P=0 = Homi™ (.¥=",C))"
rig,Cp
by the “adjointness” between ¢, and ¢, with respect to { -, - } and the decompos-
itions A = @g(M) & MV and 4" = @ (") & (4" )¥7=0. Then the pairing
{-, -}, induces
A¥=0 =~ HomS™ (. #,Cp)" «— Homp:

+
Brig,C p rig,Cp

gog < 18

(T'L) (A, B:ig,Cp (Tz))"

by definition. This morphism is in fact an isomorphism by proposition 2.45 of
Schneider—Venjakob’s preprint [35]. O

In our study of Iwasawa cohomology of a representation, we do not need to
consider the whole (¢, = 0)—part of (¢4, I'r)—-modules, but only the image of the
(¢ = 1)—-part under 1 — %(pq. That is why we introduce the following pairing.
Definition 196. Let.# € Ob((¢;,I'L)-Modg: . ). The Iwasawa pairing for .4 is

rig,C p’

the pairing

Pg=

i
pq (71) — Bt (FL)

o dw=1{" }(///,Iw: AV % (%\/) rig,C,
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that makes the diagram

_ ¢q:% < Hw
M= (V) v ) _i___}_l__> BIig,Cp(FL)

gl [ |

M= (V) $a=0 {—}IW> BIig,Cp(rL)

commutative.

Remark. Givenm € .#%=1and g € (.a")¥=7 91" ") {1, ¢}p, € Bjig,o:p(rL) is

characterized by

uss

({m, g}rw, A) = {(1 = 7%) (m), A((1 - (pq)(g))} forall A € Bl (T1).

We claim that

({m, ghw, ) = (1 —@g)({m,u(g)}) forally € D(TL,Cp).

By a density argument, it suffices to prove it for Dirac distributions ¢, € D(I'z,Cp)
(that act as y € 'L and so commute with ¢, and ;). Then, using proposition 186,

({m, &}w,07) = {m, v (1 = 94)(8)) } — % @q(m), v((1—94)(8)) }

= {m (= 9@} = For({m v (a0 (1= 90)(2))})

= {m,v(8)} — {m, ¢s(v(8))} = {m,v()} — ¢q ({¢g(m),7(g)})
= {m,v(8)} — ¢s({m, v(2)})-

In the non-relative Lubin-Tate situation, where ¢, is the identity on C,, we see
that ({m, g} 1w, - ) factors through B;rig,c,, (T1)/D(Ty,Cp) and, by proposition 189,
we deduce that {m, ¢}, € D(I't, C;). I do not know how to obtain an Iwasawa

pairing with values in D(I';, C;) in general. ..

Proposition 197. Let .# € Ob((¢,, Tr)-Mody} ) and consider the BY,, - ~linear

rig,Cp’ rlg’CP
map

mr—— m® ty
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(which is not Bjig’CP(FL)—linear). More generally, for i € Z >, define wafp = (TWX¢)i

-1 . .
and TWX;‘ = <TWX§)> ) . For every i € Z, the diagram

_ 9
qu_(ﬂ‘;l(nL) {'/'}Iw

M () By, (T1)

Tw ; Tw _; )
q

i \pg= PN e v SR PRy s
() x (Y (o) e L g ()

is commutative.

Proof. See lemma 2.62 of Schneider—Venjakob’s preprint [35], whose proof works

verbatim in the relative Lubin-Tate situation. O]

Proposition 198. Let D be a ¢ —module over L (e.g., D € Ob((Fil, ¢,)-Mod )). Con-
sider M = B;rig,cp ®r D € Ob((¢,T'L)-Mo %?ig,Cp’fr)’ so that

MY =Homys (M,Qy ) ZBlc @D, where D* = Homy (D, L).

rig,Cp rig,Cp ng,

The natural (evaluation) pairing between D and D* makes the diagram

(Biigc, (') ®L.D) x (B¢, (I'L) ®p D*) —---mmmoo- » Bligc, (L)
’ylomol®idDJ JmX(p@ldD*

-0 0
<(B;rig,(2p)% ®r D) X ((Qllﬁig,cp)% o1 D*)
N N
@1 D) x (af, @ D7)

rig,C p

{'r'}iw B-]-

(B+ rig,Cp (FL)

rig,Cp

commutative.

Proof. A direct calculation using corollary 193 yields this result; see lemma 2.66 of
Schneider—Venjakob's preprint [35] for the details. O

9.4 Cohomology from (¢, I')-modules

Finally, we can put together the results of the previous subsections to compute
different kinds of cohomology groups of a representation in terms of its associated
(¢q,I'r)—modules.
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9.4.1 Iwasawa cohomology groups as duals

In this subsection we explain the main technical result of Schneider—Venjakob’s
article [34] adapted to the relative Lubin-Tate situation.

Lemma 199. Let T € Ob(Rep ﬁK,tor(GL))' The long exact sequence of cohomology of
Hj associated with the short exact sequence

-1
0— T —A®, T 2 A%y T —— 0

is

0 — 5 HY(Leo, T) —— D(T) 2" D(T) —— H'(Lao, T) — 0.
Proof. The short exact sequence in the statement arises from lemma 69 after apply-
ing - ®g, T (and is again exact because A is flat over k). Then, as in lemma 5.2
of Schneider-Venjakob’s article [34], by taking generators of T it suffices to prove
that H' (Leo, A/ T A) = 0 for all i,n > 1. An induction argument on 7 reduces the
claim to the case n = 1; that s, to Hi(H L, E) = 0foralli > 1, which is clear thanks
to the isomorphism H; = Gal(E/Ep). O

Theorem 200 (Schneider-Venjakob). Let T € Ob(Rep,, (GL)) and consider the
character T = Xcye X;l- There is an exact sequence

g1
—

0 — H}, (Leo/L,T) — D(T(t71)) D(T(t™")) — H2, (Lo/L, T) — 0

that is functorial in T. Furthermore, Hi (Leo/L,T) =0 foralli € Z\ {1,2}.

Proof. The proof for the relative Lubin-Tate situation is very similar to the proofs
of lemma 5.12 and theorem 5.13 of Schneider and Venjakob’s article [34]. Here we
just summarize the general strategy.

Forevery n € Z>1,set T, = T/} T. Applying lemma 199 to T,/ (1) and taking
Pontryagin duals (see the next paragraphs for some subtleties) yields an exact
sequence

v @7 oy (-1
) ———

0 H' (L, T (1)) = D(TY (1) D(T) (1))’ = H%(Le, TY (1))" + 0.

Technically, we should take Pontryagin duals over 0k everywhere and get
(PE;/ — 1 in the middle arrow. However, lemma 5.3 of Schneider—Venjakob’s article
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[34] gives an isomorphism Hom™( -, K/ k) = Homg™ (-, L/ 1) and then we
have to add the composition with ¢ ! to preserve ¢ -linearity. Tracing through
the isomorphisms in the paragraph immediately preceding loc. cit., we check next
that q)q*l o 4’;( -) — 1is the correct dual of ¢, — 1 over Oy:

* Let D be an 67 -module whose two Pontryagin duals we want to compare.

¢ Since L/K is separable (characteristic 0),

tI'L/KZ LxL —K
(x,y) —— trr/k(xy)
is a perfect pairing. If
DilK = {x €L: tI'L/K(XﬁL) - ﬁ}(} = ﬂESﬁL,

L/

then we get a perfect pairing

tI‘L/K(TCES-)Z Op X O —— Ok

(x,y) ——— trp k(e xy)

which induces an isomorphism of ¢;-modules &1, = Homy, (0y, Ok).
* Taking ®4, (K/Ok) we obtain

L/ﬁL = HomﬁK(ﬁL/ ﬁK) ®ﬁ]< (K/ﬁK) = HomﬁK(ﬁL/K/ﬁK)

X > trp g (mx-)

(all isomorphims of &7 -modules).
e But Homg, (0}, - ) is right adjoint to restriction of scalars from &7}, to Ok via

the following isomorphisms:

Homy, (D, K/ 0k) = Homg, (D,Homg, (€1, K/ Ok))
f ! 5 [d l—>f(d)]
g(-)(1) < '8

¢ Combining everything, we obtain the isomorphism

HOl’l’lﬁL(D,L/ﬁL) = HomﬁL (D,Homﬁk(ﬁL, K/ﬁ}()) %“HomﬁK(D, K/ﬁ}()
f r (g f())
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of Ox—modules. If, moreover, D is a ((pq, I'1)-module over A, then (p;
makes sense on Homg, (D, K/ Ok) but not on Homy, (D, L/ 0r), where we
have to use (¢,) ?" instead.
Via the identifications provided by corollary 169 and by proposition 182 applied
to T/ (1), the previous exact sequence can be rewritten as

g1

0— HL (Leo/L, Ty) — D(Ty(t71)) == D(Tu (1)) — HZ, (Leo /L, Ty) — 0

and so one only needs to prove using general results that the projective limit of
these sequences for n € Z> is exact. O

9.4.2 Analytic cohomology

Consider a finite extension L of L contained in L (e.g., L' = Lor L' = L, for some
n>1)and set Ty = Gal(Lo/L'). Let V € Rep?(Gy). We can identify H' (L', V)
with Ext%{epK( Gy) (K, V). Then we define the analytic and the overconvergent (first)
cohomology subgroups to be the subgroups of the usual (continuous) cohomology
that classify analytic and overconvergent extensions, respectively. That is to say,

we define H., (L/, V) and H}(L’, V) to make the diagram

1 ~ 1
HY(L', V) = Extg, () (K V)

Ul Ul
/77 ~ 1
Hi(L, V) = Exty o o ) (KV)
Ul Ul

H! (L', V) ExtlgepaKn(GL/) (K, V)

commutative.

By theorem 91, one should be able to compute H! (L, V) by means of the
(@q,T)-module DIig
in sections 2.1 and 2.2 of Berger-Fourquaux’s article [7] (cf. section 5 of Colmez’s

(V). To do that, we use the theory of analytic cohomology as

article [17] and section 4 of Fourquaux—Xie’s article [22]).

Definition 201. Let G be a locally K-analytic semigroup and let

M = lig‘er = ligﬂ'&nMrls
reR reR ses,

be an LF space with a K—proanalytic action of G. We write C*(G, M) for the
inhomogeneous continuous cochain complex of G with coefficients in M and

Can(G, M) for the subcomplex of locally K-analytic cochains. More precisely,
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Ci.(G, M) is the subspace of C'(G, M) of locally analytic functions in the sense
that they locally have values in some M, and then the compositions with the
projection to M, s are analytic for all s € S,. We define

H*(G,M) = H*(C*(G,M)) and H:,(G, M) = H*(C2%(G, M)).

Remark. We want to work with M = .# € Ob((¢4,T'1)-Mo Bt fr) and G =T7,,

rig,L”
O xTI'yorY xI'py, where

= (py) = { g} i1 €Zso}

" op' () RGO
y= (¥ ¢q>:{( L) :neZ>0}
are discrete semigroups and the K-analytic structure comes from I'z. In particular,
we want to study HZ, (G, M) = Z1.(G, M)/B},(G, M), where
e 7! (G, M) is the subset of f € C}, (G, M) such that f(¢h) = f(g) +g(f(h))
forall g,h € G and
e BL.(G, M) is the subset of f € CL,(G, M) of the form g — (g — 1)(m) for
some m € M.
Theorem 202 (Berger-Fourquaux). Let .# € Ob((¢4,T1)-Mo %?ig,yff)' Fori=0
orl,
H (O x Ty, #)=H (¥ xTpy,H#).

Proof. See theorem 2.2.2 and corollary 2.2.3 of Berger-Fourquaux’s article [7],
whose proofs work in the same way in the relative Lubin-Tate situation (taking
into account that ¢, is normalized in a different way and so the (i; = 1)-parts of

modules in loc. cit. correspond to (5 = g/ Pq (71))—parts in our notation). [

Proposition 203. Let V € Ob(Rep¥(Gy)). There are natural isomorphisms
Han(L', V) = Hop (@ x Ty, Dfig (V) = Han (¥ x Ty, D (V).
Proof. See proposition 2.2.1 of Berger—Fourquaux’s article [7]. O

9.4.3 The operator ®;, and construction of cocycles

Choose n € Z>; large enough so that £, = 7" logoyx, defines an isomorph-
ism I'y, = Ok (cf. section 8.5.2). Let b = (by,...,b;) be a Z,-basis of I';,. In

153



section 8.5.5 we defined an operator

—n 4 N
®, = g g(log(m(bj))bj_vl)

on Ok—-analytic (¢4, 't )-modules using the operator Ny from lemma 90. Our goal
in this subsection is to use the operator @, to construct cocycles in Z}, (T, , M) for
certain spaces M.

For eachi € Z, write Ny ; = Ny — i.

Lemma 204. Let f(Z) € (B )%:O. For every h € Z>1,

rig,L

log,(Z) )hB+

(Nyn-10--Ny100yp)(f)(Z) € ( 1(2) rig, L

Proof. This result is analogous to lemma 2.4.2 of Berger—Fourquaux’s article [7].
We explain its proof here for the relative Lubin-Tate situation for the convenience
of the reader.

We can prove the lemma by induction on h. For the base case h = 1, pick
a sequence of vy, € Fpm \ Spm—1 for m € Z1 with the compatibility condition
Om = ¢ N (¢(v41)) (e.g., by picking a generator (zy)m>1 € Ty Ty and setting
Um = @f (zm))-

We claim that ®(f)(v,,) = 0 for all m > n. Indeed, lemma 2.4.1 of Berger—
Fourquaux’s article [7] implies that

Oy () (0m) = qimTer/Ln (f(om))

and it suffices to prove that the last trace is 0. But the Gal(L,,/L,,—1)—conjugates
of vy, are the elements of g, \ §¢,m—1, which can be expressed as T¢(vm, w1) with
w1 € Fg¢,1- Thus,

Tre,, L, (f(om)) = ) f(8p(omw1)) = 71(@q 0 q) (f) (vm) =0

w1EFp1

because y;(f) = 0 by hypothesis.
The previous claim implies that @, (f)(Z) vanishes at all the torsion points in

Sg,m for m > n and so it must be divisible by log,(Z)/(¢5(Z)) in Br+ig,L'
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Now suppose that the result has been proved for h and write

(Nyp_10---0Ny100)(f) = 10g¢(Z)hM for some fj, € B

(94(2))" nel

We can compute

o -0 Ny, 0O,)(f) = (log,(Z)3y — ) (1og,(2)" LHZ)L

(oo +++0 e 200) (1) = g, (205 1) (1o, (2 L5
9 (fn(2)) (9§ (2))" — fu(2)9 (5 (2))")

= log (" G R

B log(p(Z) h+1

_(¢3<Z)> i
where

firer = 09(fu(2)) 94 (2) = hfin(2)99(95(2)) € By ;. O

Proposition 205. Let .2/ € Ob((¢g,T'r)-Modg: ) andletb = (by,...,b,) bea
rig,L”

Zy—basis of I',, as above. For every y € A Vo=1/07" (1) there exists a unique cocycle
co(y) € Z (T, 2%~ 90" V)Y such that

lo b)) (b —1) r 10 i
) =g (EOINE ) st

b — 1 | b —1

i=1
i#]
forallje{1,...,r}andall k € Z>(. Moreover,

, ) () —a(y)(1)
cp(y) (1) = lim log]()(q;(b;.())

= Op(y).

Proof. See proposition 2.5.1 of Berger-Fourquaux’s article [7], whose proof works

verbatim in the relative Lubin-Tate situation. O

Lemma 206. In the situation of proposition 205, if b’ = (b}, ..., b)) is another Z ,~basis
of 'y, then the cocycles cy,(y) and cy (y) are cohomologous.

Proof. See lemma 2.5.3 of Berger—Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin-Tate situation. O
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Lemma 207. In the situation of proposition 205, take m > n and let a = (ay, ..., a,) be
a Z,~basis of I'y,,. Then

cor([ca(y)]) = [ep(y)] in H;n(l“Ln,%%:q/%*l(nL))/
where cor denotes the corestriction from 'y, toIp .

Proof. See lemma 2.5.4 of Berger—Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin—Tate situation. O
9.4.4 Construction of analytic cohomology classes

Definition 208. Let V € Ob(Rep¥'(G)) and consider an integer n >> 0 and a
Z ,-basis b = (b1,...,b) of ' asin section 9.4.3. We define the map

P
hln,V: D;rig(v) T Hyn (L, V)

to be the composition of the map
D (V)#570/90' (50— Bl (T, DY (v) et/ )
y— lan(y)]
from proposition 205 with the maps

— -1
Hyp (T, Dfig (V)= U)) 5 1L (¥ X Tp,,, D (V) 2 Hyn(Ly, V)

(see proposition 203 for the last isomorphism).

Remark. Given m > n, lemma 207 implies that cor o h}w v = hin v+ Therefore, we
may extend the definition of himv toalln € Z>1 and even to hi,v by requiring
that these maps be compatible with corestriction.

9.5 (Generalized) Herr complexes

Following section 3.2 of Schneider—Venjakob’s preprint [35], we can reinterpret
the constructions of the previous subsection by means of (a generalized version

of) Herr complexes.
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9.5.1 Some constructions in homological algebra

We use the notation introduced in section 9.4.2. In the following, we use the
symbol ? for either an (analytic) or nothing. Let G be either ® or ¥ and let g be
the generator of the semigroup G. Consider a finite extension L’ of L contained in
Lo and set I';; = Gal(Loo/L’). Let M be an LF space with a K—proanalytic action
of I';/ that commutes with g (e.g., if M = .# is an Ok—analytic (¢4, I'1)-module
over Bj‘-ig, 1)- We define 7,°(G x I'r/, M) to be the total (cohomological) complex of
the double complex

A A

concentrated horizontally in degrees 0 and 1. That is, if we write (C*®,d°®) for the
complex C3(I'r/, M), the complex T,*(G x I'1/, M) is given by

TH(GxTy,M)=CaC!

with differentials

di 0 i i—1 i+1 i
| g CecT —ctec
g—1 -

foralli € Z.
The first filtration (i.e., the one obtained by looking at pieces with horizontal

degree < m for varying m € Z) gives rise to a spectral sequence

(Ey = H'(G,H) (T, M)) = H™(T*(G x Ty, M))
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that degenerates to the short exact sequences

H YT, M)

o) H (7Gx Ty, M) — Hy(Ty, MJETT — 0.

0—

Remark. Like Schneider and Venjakob, we follow the sign conventions from
Nekovai’s book [29]. Namely, given two complexes (X*,d%) and (Y*,d}) of
R—-modules, we define
e the shifted complex X[n]® given by X[n]' = X*" and dé([n] = (—1)"dxitn
(forn € Z),
e the complex Hom} (X, Y) given by

Homk(X,Y) = I Hompg (X", Y™ )
nez

and
dilom(f: X" — Yn+i) = ((—1)i_1fod§l{1,d1§+i o f)

(if Y is concentrated in degree 0, then Homk (X®,Y) = Homg (X!, Y) and
g R

Aom () = (1)1 f o dy'™T),
e the complex (X ®g Y)*® given by

(XerY) = P X"@rY™")
nez

and
dyoy(x®@y) =dy(x) @y + (-1)"x@d; " (y) ifxe X"andy € Y,

and
¢ for a morphism of complexes f*: X* — Y*, the mapping cone complex
Cone(f)* given by Cone(f)' = X'*1 @ Y’ and

di — _dl)?_l 0
Cone(f) _fi+1 dﬁ, :

T7(G x Ty, M) = Cone(C3 (', M) £ C3 (I, M) ) [-1].

In particular, we can express
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9.5.2 Cohomology of Herr complexes

Keep the notation of section 9.5.1 (here and in the following subsections). Next we
give some examples of cohomology groups that appeared earlier and which can
be computed using complexes of the form 7;*(G x I'r,, M).

Theorem 209 (Thomas). Let .# € Ob((goq,FL)—Mo %ﬂ‘ fr). For every i € Z, there

rig,L”
are canonical isomorphisms

Hin(® X Ty, ) = H (T (® X Ty, M)

and
H (¥ x Ty, ) 2 H (T (Y x T, ).

Proof. See theorem 11.6 of Thomas’s article [40]. O
Corollary 210. Let V € Ob(Rep¥'(Gy)). There is a canonical isomorphism

Han (L', V) = HY(T5(® x T, Dig (V).
Proof. This is a combination of proposition 203 and theorem 209. O

Remark. Using these results, we can reinterpret definition 208 as follows. Let
V € Ob(Rep¥*(Gr)) and take an integer n > 0 and a Z,-basis b = (by, ..., b;) of
I'p,. Write # = D;Lig(V). Then himv is the composition of

Pyl —
e Hl(ﬂ;(‘f’ x Ty, H)) = H! (Tan(® x T, )

y > [(en(y), 0)] ——— [(co(y), myy)]
with the isomorphism in corollary 210, where
myy = Ep(@q —1)(y)
is the unique element in . %1~ such that

(9g = Dep(y)(v) = (v —1)my, forally €Ty,

(cf. proposition 205).
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On the other hand, given T € Ob(Rep,, (G1)), V = K®g, T and an integer
n > 0, theorem 200 induces a “projection” morphism

pr, y: D(V(t )= = H (Lo/L, V) — H'(L,, V),
where the last arrow is induced by the natural projection
Hiy (Leo/L, T) = Lim H' (L, T) — H' (L, V).
m>1

One might hope to express pr; ., similarly in terms of, say, the cohomology of
the complex 7*(¥ xI', D;rig(V(Tfl))) if V(77!) is K-analytic. But this is not so
easy because the isomorphism deduced from theorem 200 was defined by local
Tate duality. At least we have the following result:

Proposition 211. Let V € Ob(Repk(GL)). There is a natural isomorphism
H! (T*(® x Ty, Dy, (V))) = HY(L, V).
Proof. See theorem 3.6 and lemma 3.7 of Schneider—Venjakob’s preprint [35]. [

9.5.3 Duality in terms of Herr complexes

Let W € Ob(Rep¥*(GL)) and set # = Djig(W). LetT =T =T*(®xTp, #)
and 7* = Hom{™ (T, K) (this is the dual complex, as introduced in the remark of
section 9.5.1). More generally, we use the notation - * for the topological dual of

any topological K—vector space. For every i € Z, there is a canonical morphism

i Ker(d7l)  Ker((diF)") C(Ker(dp)\" o
H (T)_Im(d;;—l) ~ Im((di)¥) (Im(dér—l)) =S
given by Ker(di)
i , er(dy) f
(f: T" = K) — (Im(difl) eK).

By lemma 3.10 and remark 3.11 of Schneider—Venjakob’s preprint [35], this map is
surjective in general and even an isomorphism if H'*!(7T) is finite-dimensional

over K. In particular, we obtain a morphism
HY(T"[-2]) = H~Y(T") - HY(T)"
that is an isomorphism whenever H?(7") has finite dimension over K.

160



By proposition 211, we know that H(7) = H}(L/, W) ¢ HY(L/,W). In addi-
tion, theorem 171 gives a perfect pairing

(+, )mawe: HY(L, W) x HY(L', W*(1)) = K

that we can use to identify the dual H}(L/, W)* with a quotient H}, (L, W*(1)) of
Hi(L',W*(1)). Therefore, we obtain a canonical morphism

H(T7[=2]) = HY(T)" = H) (L, W*(1))
making the diagram

HY(T) x HY(T*[-2]) ———— K

o] |

Hi (L', W) x Hyy (L', W*(1)) RIRIING §

commutative, where the upper pairing is induced by evaluation at the level of
cochains.

To understand the morphism H!(7*[—2]) — H}JF(L’ ,W*(1)), we will need to
study the complex 7 *[—2]. But there is a duality of complexes that is very explicit:
the “self-duality” of Koszul complexes.

9.54 Koszul complexes

Now assume that L' = L, for n > 0 and pick a Z,-basis b = (by,...,b;) of
T, .

n

Keep the rest of the notation as in section 9.5.3. Let R = Z,[I',] and
consider the free R—-module N = R" with standard basis ey, . .., ¢,. The elements
[b1] —1,...,[bs] — 1 € R give rise to a (homological) Koszul complex

m+1 d m i m—1
Ke(0): -+ —— AN "% AN 25 AN — -

with differentials given by

m
dm(ey Ao Nep) = Y (=D ([by] = Deyy A A& A Ay,
k=1

(where the hat over ¢; means that this element is omitted). Write K*(b) for the
(cohomological) Koszul complex defined by K" (b) = K_,,(b) and d" = d_,, and
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consider the dual complex K**(b) = Homj(Ke(b), R) (i.e., the complex given
by K*™ = Homg (K (), R) and d*™ = (—1)"*1d% ). There is a “self-duality”

m
isomorphism of complexes

K*(b) = K**(b)[r]

that can be described explicitly as follows: the basis ey, ...,e, of N induces an

identification
r
R= AN
l—=egNea A+ Ney
that we can use to define isomorphisms

m

AN » Hompg (7\le /T\ N) >~ Homg ( 7\mN, R)

N---Nej —— (ejl/\---/\ejdim»—>ei1/\~--/\eim/\e]-1/\---/\e]~d7m>

61'1

forallm € Z.
Given an Ok—analytic (¢4, I't)-module .# over Bjig’L), we define
Ke(b, #) = Ko(b) @R A,
K*(b, #)=K*(b) @R A,

K** (b, .4) = K**(b) @ M.

Section 4.2 of Colmez and Niziot’s article [18] explains that K, () is a projective
resolution of Z in the category of topological R-modules, like the completed
standard complex X, given by X,, = R®("+1) that can be used to compute con-
tinuous group cohomology via homogeneous cochains, and so there is a unique
(up to homotopy) quasi-isomorphism X, — Ke(b). In this way, we obtain a

quasi-isomorphism
K**(b, #) =~ Homg(Ke(b), #) — Hom@"(Xe, . #) — C*(Ty,, M).

Therefore, we can replace the Herr complex

T(PxTL, )= Cone(C'(TLn,///) kit C.(an////)) [—1]
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with the complex
*,0 *,0 q)qil *,0
K**(® x Ty, A) = Cone(K *(b, #) — K" (b,//))[_l]

in our study of the cohomology of (K—analytic) representations because we have
an induced quasi-isomorphism

K*’.(q) X FLW,%) — T.(CI) X FLH,%).

Since we wanted to study the dual of the latter complex, we will need the following
result:

Proposition 212. In the situation above, the “self-duality” of Koszul complexes induces
a natural isomorphism

(K**(b,#))" = K**(b, .4 )[r].

Proof. As mentioned in the proof of theorem 200, the paragraph before lemma
5.3 of Schneider—Venjakob’s article [34] shows that we can use the trace pairing
to identify L = Homg(L, K) and then we can identify L-duals and K-duals of

L—vector spaces. Therefore,

(K**(b, . #))" = Hom§™ (K**(b) ®g .#,L)
>~ Hompg (Hompg (K« (b), R), Hom{™ (.7, L))
>~ Homj (Hompg (Ke(b), R), R) @g Hom§{*™ (.7, L).

Now, by paragraph 1.2.8 of Nekovéi’s book [29], there is a biduality isomorphism
K*®(b) = Homg (Hompg (Ke(b),R), R)

given by x — (—1)9¢8(*)x**_ In addition, by proposition 185, the residue pairing

induces an isomorphism

Hom{*"(.#,L) =~ Homg: (A4, Qll3+ ) ="

rig,L rig,L

Combining these two isomorphisms with the previous ones, we deduce that

(K**(b, ) = K*(b) = .4".
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Finally, we can use the “self-duality” K*®(b) = K**(b)|r] to express

(K**(b, )" =2 K**(b)[r] @ " = K**(b, .4 )[r]. 0

9.5.5 Duality in terms of Herr complexes, revisited

In this subsection, take V € Ob(Repy(Gp)) such that W = V(71) is K-analytic.
Continue with the notation from section 9.5.3. As mentioned above, we may

replace the Herr complex 7 with
Kf=K"*=K"*(®xTIy, #),
which computes the same cohomology, and our goal is to describe the map
HY((K**)*[~2)) — Hy (Lo, W*(1))
induced by local Tate duality. But, by proposition 212, we have an isomorphism

« 9 tor(-)—1 (
SAENE LR

(K**)*[~2] = Cone((K*”(b,,///)) K*/'(b,.///))*> (—1]

= Cone (K" (b, 4")[r] ¥ K**(b,.")1]) [1].

TODO: Apparently, Schneider and Venjakob can prove that the complex appear-
ing in the last line (or something very similar) computes exactly H) (L, W*(1))
and they use Tate duality again to obtain a factorization of pr; : .Z Y=l
H!(L,, V) through a very simple map to the cohomology of a complex of this kind.
This part is not written at all in the version that I have of their preprint [35], but
they told me that the final version will have it.

Proposition 213. Let V € Ob(Repy(Gy)) such that V(1) is K-analytic. For every
i € Z, the diagram

D(V(t1))¥=! x DL (V*(1))¢ :m RSN IUN

.l.
rig Brig Cp (FL)
prL,V(x(; i OTWX(; ’l lhiv* (D(xy) OTWXfP _ﬁlevx(; i
H'(L,V(x,) x H'(L, V*(1)(x}) —™ 1 cc,

is commutative, where ev o is the map given by evaluation of distributions at X;i. (Here,

the maps TWXZP and Tw i are defined as in proposition 197.)
9
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Proof. TODO: the proof depends on the part that is not written in the preprint [35].
The final version shouldn’t change much in any case. O
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10 The regulator

This section contains the most important results of this part. The main result of
Schneider and Venjakob’s preprint [35] is the construction of a regulator map with
an interpolation formula analogous to those of Lei-Loeffler—Zerbes for cyclotomic
extensions. The regulator map will be essentially “dual” to the big logarithm map
introduced in Berger-Fourquaux’s article [7], and the interpolation formula for
the regulator is a consequence of the interpolation formula for the big logarithm
and that “duality”. All the constructions introduced so far are the necessary pieces

to prove such results, that we generalize here to the relative Lubin-Tate setting.

10.1 The definition of the regulator map

Recall that we defined T = xcyc )((;1. The Lubin-Tate character ), is Ox—analytic
with (non-trivial) Hodge-Tate weight 1. In contrast, the base change k(1) of the
cyclotomic character xcyc has all its Hodge-Tate weights equal to 1, so it cannot be

Ox—analytic unless K = Q.

crys

Definition 214. Let T € Ob(Rep,; . (G1)) and consider V = K ®g, T. Suppose
that T(t~!) € Ob (Repgzlsf’fn’zo(GL)) and that Derys k (V(771))#1=1 = 0. We define
the p-adic regulator

Lr: H, (Le/L, T) — D(T'1,Cp) @1 Derys (V(t™1))

to be the composition of the following maps:
(1) the isomorphism H}, (Leo/L, T) = D(T(7~1))%=! from theorem 200;
(2) the equality D(T(t—1))¥=! = N(T(r~1))¥~! from proposition 132;
(3) the map

1- %q)q: N(T(T1))¥=t — N (v (1)) =0

(well-defined thanks to the relation

and because N(T (7~ 1)) € N (V(7~1)) by lemma 123);
(4) the inclusion N(®) (V(7=1))¥1=0 —; (B;{g,L)%:O @1 Derys k (V(T71)) given
by the last part of proposition 127;
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(5) the inclusion

(B

rlg,L)lpqzo L Dcrys,K(V(Til)) - (BJF )quo XL Dcrys,K(V(Til))

rig,Cp

: + +
induced by B;, ; Brig,C,,'

(6) the isomorphism

and

(B

rlg,cp)quo ®L Dcrys,K(V(T_l)) = D(FL/ Cp) ®L Dcrys,K(V(T_l))

induced by the Mellin transform 9M: D(T;,Cp) = (B . )¥7~0 (see defini-

rig,Cp
tion 151).

10.2 The big exponential map

crys,an

Lemma 215. Let V € Ob(Repy’ " (Gr)) and take h € Z >4 such that the Hodge-Tate
weights of V are < h or, equivalently, Fil ™" Derys k(V) = Derys x(V). There is an exact
sequerice

\ __ 1
- Y= 1-¢
0 —— EBt{;chrYS,K(V)‘PG (L PN (Bjig,L XL DcryS/K(V)> K :

1)
k=0
h
_ Derys k (V
N (B:irg,L)qufO QL DcryS,K(V) __ 4 @ 1crYS ; ) s 0,
k=0 + 7 TLPq
where the morphism A is given by
k k
f(2) @6 — (3(£)(0) -8 mod (1 - 7f @y) Derysx (V) _ .

Proof. See lemma 3.5.1 of Berger-Fourquaux’s article [7], whose proof works
verbatim in the relative Lubin-Tate situation. O

Remark. For every f € ((B;gg,L)%:O ®r Dcrys,K(V))A:O, lemma 215 shows that

— -1
thereisy € (B, ; ®r Dcrys,K(V))%_q/(P[’ ") such that f = (1 — ¢,)(y). Observe
that (Ny 51 0--- 0 Nyp)(y) is independent of the choice of such a preimage y if
Derys x (V) P77 " = 0 because

h—1

— -k
Ny j—1 0 - -+ o Ny annihilates @ t’j,Dcryle(V)%*"L )
k=0
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Moreover, (Ny -1 0---0Nyy)(y) € logg) B;;g,L ®L Derys,x (V) (cf. the proof of
lemma 204).

Definition 216. Let V € Ob(Repy’ """ (G.)) and take h € Zx; such that the

Hodge-Tate weights of V are < h and Deyys g (V) %7771 "= 0. By the diagram at

the end of section 7.5.3, we can identify D;fig(V) with B;rig L @pt M (Derysx(V))
4 rig,L

and then view logg) Bjig,L ®L Derys (V) C D;rig(V) (cf. the proof of lemma 125).

The big exponential map

__q
)¢q=0 QL DCrys,K(V))A:O _)D'l' (V) @q (1)

QV,h: ((B+ rig

rig,L

is defined by
Quu(f) = (Nypu_10---oNy10Nyp)(y),
where vy is an element of (BJr

_ -1
gL OL Dcrys,K(V))%_q/(Pf’ (71) with the property that
f = (1-¢4)(y) (see lemma 215 and the remark after it).

10.3 Interpolation of exponentials and duals
Definition 217. Let D be a ¢;—module over L (e.g., an object in (Fil, ¢;)-Modp).
(1) For each n € Z~1, we define the morphism

q)—n: B+

7"t Brigullog, ] @1 D — Lu((ty)) @1 D

f(Z) ) . 1 —n (p_” q)—n .
10g¢(z)h ® 0 — tglnf(/’q <S¢‘7 <zn,exP¢‘7 (t¢n)>> ® @ (%)

where
_ by
oq " (1) -+ @p ' (711)
(2) Wedefinedp: L,((typ)) ®1 D — L, ®r D to be the map that takes the constant

coefficient of a formal series in te.

t(l),n

Lemma 218. Let D be a ¢;—module over L and let m,n € Z>o with m > n. For every
-1 =q/ ¢y (L)
y € (Bsi_g,L[loggb = D)‘/’q 47¢q 7TL)

9 —n ifn>1,
quer/Ln<aD<qoqm<y>>){" oleg"w) - ym2

(1—q ¢, Yop(y) ifn=0.
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Proof. This result is analogous to lemma 2.4.3 of Berger-Fourquaux's article [7].
We adapt the proof to the relative Lubin-Tate situation for the convenience of the

reader.
Write -
k .
y=——— 7" ®a, witha, € D forallk >0,
log, (2"
so that

—m —h > (pq_m q)q k —m
07" () =ty 3 (35 (zmrexpy’ (tom)) © 9™ (ap):
k=0
Write vy, = @' (zm). Observe that

—m —m

Sy (zmexpy’ (tom)) = 07" (Sp(om expylty)))  in Lu((ty))-

If m > 2, the Gal(Ly,/ L;,—1)—conjugates of vy, are the (v, w1) for wy € Fp,1.
Therefore,

Trr, /1, (O0(9y " ()))
k
= aD( Z t‘Pm 2 Pq (3(;5 3’4) (Om, w1), eXP4>(t4>))> ®§0qm(ak))

w1E€Spa

—3p (qo;’”(m(qvq Oqu)(}D)) =9p <‘P (”quq(ﬁy)))
= (99, (v))-

Similarly, if m = 1, the Gal(L;/L)-conjugates of v; are the §y(vq1,w;) for
w1 € Fp1 \{0}. An analogous calculation summing over all w; € y,1 and
subtracting the summand for w; = 0 shows that

Trr /L (90(9; () = 9p(qy — 95 ' (v)). 0

Lemma 219. Let V € Ob(Repy” ™" (GL)). By the diagram at the end of section 7.5.3,

. -l- . . .
we can identify Dng( ) with By, 1 ®BIg,L M (Derys x (V') and we obtain an inclusion

DI, (V)90 () C B [log, ] ©1 Derysx(V):

Proof. See theorem 3.1.1 of Berger—-Fourquaux’s article [7], whose proof works
almost verbatim in the relative Lubin—Tate situation. O

Let V € Ob(Rep¥'(Gr)) and let L' be a finite extension of L contained in Le.

169



We write expy, 1, (Bar/ Bl ®x V)CU — H!(L', V) for Bloch-Kato’s exponential
map for V regarded as a representation of G;,. By proposition A.1 in the appendix
of Schneider—Venjakob'’s article [34], this map can also be constructed more directly
from the fundamental exact sequence

0 —— K —— B\ —— Byr/Bj — 0.
Let expj, . 1) HY (L', V) — (Bgr @k V)C denote Bloch-Kato’s dual exponential
map for V regarded as a representation of Gy, (i.e., the dual of exp;, . (4) using
local Tate duality on cohomology and the natural duality on Dy k).

Theorem 220 (Berger-Fourquaux). Let V € Ob(Repy’ """ (GL)) and let n € Z .
Write Oy for the map dp,__, . (v) from definition 217. For every y € D;rig(V)lp":q/Wl(nL),

q "oy (e, " (v)) ifn>1,

expy, 1) (L, v () = o .
W (1—q 9, Hov(y) ifn=0.

Proof. See theorem 3.3.1 of Berger—Fourquaux’s article [7], whose proof works
exactly in the same way for the relative Lubin-Tate situation (now using proposi-
tion 205 and lemma 218). O

crys,an

Theorem 221 (Berger-Fourquaux). Let V € Ob(Repy” ™" (GL)) and let n € Z>y.
Take h € Z > such that Fil =" Derys k(V) = Derys x (V) (ie., the Hodge-Tate weights of
V are < h) and write dy for the map dp__, (v) from definition 217. Identifying Djig(V)
with BY, | gy, M (Derys (V) we view logy BJi | @1 Derys (V) C D, (V) (cf
the proof of lemma 125). Then, for every y & (B;irg’L XL DCrYS,K(V))%:q/ Pq 1(7TL),
— -1
yn = (Ng 10+ Ny 0 Nyo)(y) € Dfg (V)= )
and

(D" (h=1)lexp, (g "0v(p,"(v)  ifn>1,

hy =
L (V) {(1)h1 (h—1)! expL,V((l — q_l(Pq_l)aV(y)) ifn=0.

Proof. See theorem 3.3.2 of Berger—Fourquaux’s article [7], whose proof works
exactly in the same way for the relative Lubin-Tate situation (now using proposi-
tion 205 and lemma 218). ]
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10.4 Interpolation formula for the big exponential

Let V € Ob(Repy” """ (GL)) and take h € Z>1 such that the Hodge-Tate weights
of V are < h. For every i € Z, the twist V ( Xip) has Hodge-Tate weights < h + i
and we can identify

Dcrys,K(V(Xfp)) = Dcrys,K(V) L Dcrys,K(K(Xfp)) = Dcrys,K(V) ® (t;i & té))

and
Di,(V(xy) = Dfy(V) @5 Dl (K())) = £ Dhs(V) @,

where ) is a generator of K(x).

Theorem 222 (Berger-Fourquaux). With the notations and assumptions introduced
=gq/¢!
above, lety € (B, | ®1 Derys (V) V77791 ") and = (1 9q)(y). Let n € Zs.

(1) Ifh+i>1, then
hin,V(XjP) (Quu(f) @ th) = ()" (h+i-1)-
exXpL, yiui) (1 ") (9" @y @ (] 1)) ifn =1,
XPL (i) ((1 - q_l(P;l)av%)(agi}/ ® (' ® tg») ifn = 0.
(2) Ifh+i <0, then

* 1 i) 1
XL,y (aty- 1) (ML (v ©1) ) = =57

T "0y (07" Oy @ (1 @ 1) ifn>1,
(1=, v Oy 'y @ (t, @ 1) ifn=0.
Proof. This result is an application of theorems 220 and 221. For the details, see

theorem 3.5.3 of Berger-Fourquaux's article [7], whose proof works verbatim in
the relative Lubin-Tate situation. O]

10.5 The abstract reciprocity formula

Consider T € Ob (Repgzsf (Gp)) such that T(t~!) € Ob (Repgzsf’fn(GL)). Write

V = K®g, T. By the large diagram of functors in section 7.5.3, we obtain

M =D c (V(t)) =Bt

- 0,an
rig,Cp rig,Cp ®Az- N(T(T 1)) € ()b(((pq,FL)—I\/[Od.Bf;Jl ¢ ),

rig,C p’ r
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which is a base change of # (Drys x(V(771))). The goal of this subsection is to
interpret the pairings of section 9.3.7 in terms of D¢ys k, following section 2.3.5 of
Schneider-Venjakob’s preprint [35].

Write D = Dgys x(V(77')) and identify it with D (B} vig L ®Af N(T(t™1))) as
in section 7.5.5. The map ¢: D — (B}, ;| Ray N(T(t71)))[A7!] from lemma 101

rig,
induces an isomorphism

. pt -1 -1
1®¢: Brg e, [log, ] @ D — . [log, "]
(observe that, over BIig,Cp' inverting log,, is the same as inverting A). Let

comp - %[logal] r1gC [log(p ] ®LD

denote the inverse of 1 ® ¢.
Observe that the actions of I';, ¢4 and ¢; on .# extend to .# [log;l]: for every
m e A and k € Z>,

= fory eI'p,
k k
log,, log,
—k
m 7T q(m)
08 08
mo\ 9 () (m)
Vi <lo K)o log® '
8¢ 8¢
Also, (. [log;l])%: VAl [log,] and the continuous action of BrlgC (L)
on ./ ¥1=0 extends to a continuous action on (A log, p 1]) (see lemma 2.63 of
Schneider-Venjakob’s preprint [35]).
On the other hand, as Q; leg c, (X¢), we can identify

rig,C P

~ —1\\*
% HomB;g Cp (j/ Q ng Cp) Drlg CP(V(T )) (XQD)

= Dy c, (V¥ (7)) (Xg) = Dfig e, (VF(1)) = Bligc, R N(T*(1)).
This suggests that we have to work with

Dcrys,K(V*(l)) = Dcrys,K(V* (X¢T)) = Dcrys,K(K(X(p)) QL Dcryle(V(Til)*)

and we set D* = Dgys x(V(771)*) and Dy = Deys k(K(xp)) for convenience.

172



Then we can express
comp v - MY [10g¢1] - BrlgC [logal] ®L Do ®1 D*

as the composition

//V[log(gl] = Homg; logsy ] (///[log(;l], o1 [logal])

rig,Cp rig Cp

l-OCOmp:/}
-1
HomB;ng[log;l]( tig.C, [log¢ J@LD, QL By, [log,,"])
112
-1 *
Qs ) [log, "] @ D
rig,Cp

comp ) ®idp«
Brig Cp

rlgC [logq) ]®L Dy ®LD

where
compg ) : Qllﬂigc [10g¢1] — BngC [1qu;1] ®r Do
BisCp
Ciog? — 1@ (t,' @ to)
is obtained from the identification Qllg-rrig,Cp = Brlg c, (Xx¢) (see lemma 173).

Let [+, “]ays = [/ IDrys: D X D* — Deysk(K) = L denote the natural
(evaluation) pairing or, by abuse of notation, any base change of it.
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Lemma 223. The diagram

{"’ {w

A (%v)¢q:0

VR

MV log,"] x (4V)¥0llog,

~

BIig,Cp (FL )

comp | 1R Zl\l- o comp;f}

((Biig,cp)%zo[longl] L D> X <(Q]13Jr )%Zo[log;l] ®r D*)

rig,Cp

15=0 ;=0 {Yw . pt
<(B;rig,Cp) = 2 D) X ((Q}3+ )" D*) — Bl (I'L)

AN

Y_10Moridp | IR

(B-rrig,Cp

['/'}crys

(Te) @1 D) x (Bl ¢, (T1) @1 D¥) Bl c, (L)

is commutative on the vertical intersections.

Proof. For the upper half of the diagram, see lemma 2.65 of Schneider—Venjakob’s
preprint [35] (wWhose proof works verbatim in the relative Lubin—Tate situation).
The lower half of the diagram is proposition 198. O

Recall that

comp ,y = (come]l3+ ®idp+) o (- ocomp )
rig,Cp

and lemma 223 uses - o Comp;/}, which is why the term Dy does not appear. But

Dy = L(t;1 ® ty), so we can use the fixed basis element tqjl ® to to account for Dy

if we use comp .

Lemma 224. The diagram

Aod =A@ (t, @) 0d*

+ * N T *
Brigc, (ML) ©LD = » Blige,(TL) @ Do®L D
I
: N .
9)17(4, ®1dD*J: C0mp01 ® ldD* i ﬁvm@)ldDO@D*
+ e

B!
QL )*"llog, @ D* — =" (B,

rig,C p

))h? [log,, '] @1 Dy @1 D*

18 commutative.
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Proof. Knowing that M, (1) = M (Twy, (1)) dlog, and that the bottom arrow
maps dlog, to log ®(t471 ® tp), a straight-forward computation shows that the
dashed arrow is defined by

A @ (t,1 @ tg) ©d* = log,(Z)M(Twy, (M) @ (t,' @ to) @ d*.

But, by definition 161,
d
M(Twy, (1)) = é’sm(A).
The lemma follows from this and from the fact that Ny acts on Bjig,Cp as log " (Z)0y
(cf. lemma 90). O

Theorem 225 (Schneider—Venjakob). With the notation introduced in section 10.5,
the diagram

=0 ¢ (V)= Lo b

, Rt
7 Brlg,Cp (FL)

ComP;/// Ymp//z\/
A | ®(t, ®to)
+ ;=0 -1 + =0 -1
((Brig,c,,) " llog, ] @1 D) X ((Brig,c,,) " flogy ] @1 Do ®1 D*)
7_1093101@101,3] ]%th@id%@m
[ e ]cr S -

(Bligc,(TL) ®1 D) x (Bf, ¢ (I1) @1 Do ®1, D*) ~— Bl ¢ (1) ®1 Do
is commutative on the vertical intersections.
Proof. This theorem is a combination of lemmata 223 and 224. O

10.6 Relation between the regulator and the big exponential

The regulator map introduced in definition 214 and the big exponential map
from definition 216 are essentially adjoint via the abstract reciprocity map. More
precisely:

Theorem 226 (Schneider—Venjakob). Let T € Ob (Rep;Z;r(GL)) and consider the
crystalline representation V = K @4, T. Suppose that

(i) V(t~1) is K—analytic with Hodge-Tate weights > 0 and

(ii) Derysx(V(T71))#1=1 =0
and that

(i) V*(1) is K—analytic with Hodge—Tate weights < 1,

(ii") Derysx(V*(1))#=71" = 0and
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(iii’) Derysx (V*(1))97=0 = 0.
(Observe that conditions (i) and (ii) are equivalent to conditions (i’) and (ii’), respectively.)
We use the same notation as in section 10.5, namely:
© M =D, (V(r7h),
« M= D;rig,cp(v*(l))/
D= DcryS,K(V(T_ ))/
D* = Dy x(V*(1)) and

DO - Dcrys,K (K(qu) )

Then, the diagram
-1 vV ¥9= _167(7:) {w +
M= (V) » Bloc,(TL)
U I . U
Vo=—1—

D(T(r))#=  Df e (Vi(1) = D(T,C,)

I ~
Hi, (Le/L,T)

Qy+ 1)1
ot a| - @ty ot)

(D(Tr,Cp) ®1, D) ((Bjig,cp)%zo ®r, Do @1 D*)
Zl\l’)/—ll ZlITmT@idDO@D*

% [‘/']crs
(D(T1,Cp) ®. D) x (D(T'1,Cp) ® Dy ®, D*) —— D(T1,C,) @1 Dy

is commutative.

Proof. This is analogous to corollary 3.3 of Schneider—Venjakob’s preprint [35] (but
note that the normalizations of the lower pairing and some vertical maps are not
the same there!).

On the one hand, by definition 214, the diagram

D(T(r )t s e

11
Hl (Le/L,T) ~ 9
lLT H¥a=0
D(FL,CP) ®r D comp ,,
11 +
(Bjigc, )"~ ®LD C (Bl ¢ )¥r=" log,'] @1 D
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is commutative. On the other hand, by definition 216, the diagram

Yo=——g—
(%v) @q (L)
1*<qu
(e
COmp//[\/\[
+ =0 + =0
(Brig,CpW ®1 Do @ D N (Brigch)lpq ®1, Do ®1, D*

D(T1,Cp) ® Dy @ D*

is also commutative. But the abstract reciprocity formula (see theorem 225) and

the definition of the Iwasawa pairing (see definition 196) yield the commutative

diagram
¥y=1 v wq:tflq(ﬂL) U dw t
M= (V) 0 ; Brig,cp(rL)
S |
= = {- }/w
M0 ()00 : * Brige, (T1)

Compf/ Y"mp/ﬂ
2

((Bjig,Cp)%:O [log, "] @1 D) x ((Bjig,Cp)%:O [log, '] @1 Dy @1, D*>

|| @(ty @)

7109)?01@1(311)] ]\I\(])VD:R@ldDO@D*
Bt (T D) x (Bf . (T Dy ; D)l gt r D
(Brig, (T't) @1 D) x (B¢, (Tr) ®1 Do @1 D) —— By ¢, (T'1) @1 Do

U U U
% ['/'}CI‘S
(D(T';,C,p) ®. D) x (D(T'1,Cp) ®, Dy ®, D*) —— D(I';,C,) @1, Dy

(commutative only on vertical intersections). The theorem follows by comparing
these three diagrams. O

10.7 Interpolation formula for the regulator

We are are finally in a position to prove an interpolation formula for the regulator
map with the ingredients introduced in the previous sections. In analogy to the
regulator maps for cyclotomic extensions, the interpolation formula will be given
in terms of Bloch-Kato dual exponentials and logarithms. Since that duality is
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defined in terms of x.yc instead of xy, we will need to introduce some notation.
Choose a compatible system ¢ of primitive p"—th roots of unity for n € Z>
and consider the usual period

te = t = log([e]) € Berys.

Let t; be a basis of K(1) (i.e., K(1) = K® t; and G, acts on t; by xcyc). We can
identify Deyys x (K(1)) and Deys  (K(xg)) with L using the bases t;! ® t; and
t;l ® to, respectively. We define t_. 1 = t‘et‘;1 ® tl_1 Rty € Dcrys,K(K(T_l)), so that
the diagram

Darys k(K(1)) = L(t' @ 1) = L

Dearys k(K(xp)) = L(t,' @ to) = L

12

is commutative.

Given T € Ob(Rep,, (Gr)), x € Hj,(Lw/L, T) and i € Z, we set as usual
V = K®g, T and define Xy c HY(L, V(Xy')) to be the image of x under the
composition

HY, (Loo/L,T) % Hl, (Le/L, T(x, ) <5 HY(L, T(x,") — H'(L,V(x,").

Theorem 227 (Schneider—Venjakob). Let T € Ob (Repgz,sfr(GL)) and consider the
crystalline representation V. = K ® 4, T. Suppose that
(i) V(t=1) is K-analytic with Hodge-Tate weights > 0 and

(i) Derysx(V(T71))#1=1 =0
and that

(i) V*(1) is K—analytic with Hodge—Tate weights < 1,

(ii") Derys (V*(1))9=71" = 0 and
(iii’) Derysx (V*(1))#1=0 = 0.
(Observe that conditions (i) and (ii) are equivalent to conditions (i’) and (ii’), respectively.)
Let x e D(T(t V)Y~ and leti € Z.

(1) Ifi > 0, then

Lr(x)(xy) = —itQ"-

_ i —1\—1 T ¥
(1= g (m e ) T (1 7L<"q> (s &Py 1)) (i)

(where we abuse notation and write exp; .

D)0 for the composition of this dual
¢
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exponential with the projection to the identity component).
(2) Ifi < —1, then

LT(x)(Xfp) = NEEE

— j —1\—1 7T,
(11— P4 1(7-[1L+1)% D) <1 — 7goq> (fr logL,V(X;")(qu;"»

TODO: these formulas are *wrong* for the relative LT case because the period () does not
commute with operators like (1 — ¢4). Moreover, I should really check what I wrote in
step 5 below.

Proof. The theorem will be a consequence of theorems 222 and 226. The idea to

prove it is to use that the pairing [ -, - |crys is non-degenerate and check that both

sides of the equalities give the same result when paired with an arbitrary element.
¢ Step 1. Observe that

((y-100 OLT) (%)) (x5") = Q(8y_, - t(L1(%))) (x5")
= Ox, (7-0)Lr(x) (xg) = (=1)'OLz(x)(x}p),

as y_1 € I'y is defined by x¢(v-1) = —1.
* Step2. Lety € D(I'L,Cp) ®1 Derys,x(V*(1)). To prove the theorem, it suffices
to show that

(=D OLr(x) (x§) Y (Xg )] crys = [TODO, Y (X leys.

Indeed, since the distribution y € D(I't, Cp) ®1 Derys x (V*(1)) is arbitrary,
so is its value y( qui) € Cp ®1 Derys x(V*(1)); the result will follow by the
non-degeneracy of [ -, - ]crys. Now, by step 1 and theorem 226, we can express
(=D OLr(x) (x§) Y (Xg )] rys = [(7-100 OLT) (%), ¥] 1 (5
= {% (Qu-qy10 (M 1))(y)}1w(?(<;i) ® (t,' ® to).

Then we can use proposition 213 to compute
-1 y
ﬁ{x, (Qv*(1),1 o(M® 1))(y)}1w(7(¢ ) =
—i 1 i
= <prle(X4;i) (x ® to )/ hL/V*(l)(Xfp) (QV*(l),l((m ® 1) (y)) ® tO) >Tate'
e Step 3. The interpolation formula for (Qy: (1)1 0 (M ® 1))(y) ® £ from
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theorem 222 (with n = 0) contains the term

Cly,1) = 9yu(1)i) (aq;i((l — @) o (Me1)(y) @ (1, ® t6)>

that can be computed as follows. By the definition of dy (1),

Cly,i) = y-qry (9, (1= p) o (M@ 1) (1))

and this quantity is the term inside the large parentheses evaluated at Z = 0,

which under 91 corresponds to the trivial character xiyy. But

: (0p\ " J
E)qjl =0 (%) and ﬁfp corresponds to Tw,,, under 90,
so we will be able to express C(y, i) in terms of y( )(qji) if we can “swap the
positions of 8; and (1 — ¢;)"!”. We know that 9y o ¢, = 7@, 0 dp by
lemma 65. Thus, working formally,

agio(l—(pq)_lowﬁ@l)(y) = O(Pq (M@1)(y)

L%
5

7 g)" 09, o (M@ 1)(y)

(7)™ 0 Q™ i(%@l)(TwX;iy)

3

>0

1- gy (07 e ) (Tw,.. y))-

~—~

All in all,
Cly,i) = (1— . '0) 1 (Q7y(x,"))-

Step 4. Recall that Bloch-Kato’s exponential and dual exponential maps are
related by means of local Tate duality and a crystalline pairing that uses the

cyclotomic character xyc (instead of x as in [+, - ]Crys above). Observe that
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the diagram

g * i ['/']ér s
Dcrys,K(V(X¢Z)) X Dcrys,K(V (1)(?(4;)) S Dcrys,K(K(l))
[l

L(t; '@ t)
ety Lt @) : (f§1®t1)_1(t;1®f0)le

L(t," @to)

~ ]

Dcrys,K(V(T_l)(qui)) X Dcrys,K(V*U)(Xfp)) [;]Cry; DcrYS/K(K(Xq?))

is commutative. Here, we use the prime symbol in the first row just to
distinguish it from the map in the last row, as both are the usual duality
pairings.
(1) Ifi > 0, take ¢ € Hl(L,V(X;i)) and § € Dcryle(V*(l)(Xéb)). We can
express

/

<C, eXerV*(l)(Xip) (5)>Tate = [eszrV*(l)(Xép) (C),é} crys . (tg_l X tl)_l

= [tety” exply(g) ) () © 1y @ fo, 0]

1 1

crys ’ (
(2) Ifi < —1, take c € H'(L, V*(1)(x})) and 6 € Derys x(V (x,")). We can
express

* / _ _
<eXpL/V(X;i)(5)’ C>Tate - [(5’ eXpL,V(X;i)(Cﬂcrys ) (ts ! ® tl) !

1 —1 -1 -1
= [t€t¢ IRt ®t0'esz/V(7<¢7i)(C)Lrys'(tgb ®tg) .

From now on, write t_—1 = tgtqjl ® i 1 ® ty to simplify the notation.

e Step 5. If we compose the non-degenerate L-bilinear pairing [ -, - ]erys (resp.
(-, )Tate) with the map Tr; /x: L — K, we obtain again a non-degenerate
(K-bilinear) pairing because L/K is a finite separable extension. In what
follows, we work implicitly with the new pairings obtained after composing
with Try s k. One checks easily that, under [ -, - Jcrys,

— the adjoint of 1 — 71, ‘g is 1 — q)q_l(nL_i_l)(pq_l and

— the adjointof 1 — g, is 1 — 7107 @y
TODO: I don’t think the adjointness part is so easy once we consider the
pairing tensored with C,. I guess that the periods must become uglier (at
least in the relative case, when ¢, has non-trivial action!).
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¢ Step 6.1. Suppose that i > 0. Combining step 2 with the (first) interpolation
formula from theorem 222 and steps 3, 4.1 and 5, we obtain that

[(=1)'OLT(0) (Xp) Y (Xg )] crys =
= —Q<xx(;», (—1)ki! eXPL Y- (1)(x}) (1- q—l(Pq—l)C(y,i))>Tate ® (tq;l ® to)
= (=)™ Q [t exp; . D6 (xX(;i), (1= 3797 NCW1)] s
— ()"0 [(1 — %q)q> (t1 eXP}i,w(l)(X;,) (qu;i)),

(1= 70 (O]

Crys
= (-1l
1 1 -1 ! 1 T ; .
| ! m% ( - 7%> (tr XPLVv(1)(x)) (xXt;i))’
y(Xy i)]
CryS

and the first part of the theorem follows by the non-degeneracy of the pairing

[ e ]crys-
e Step 6.2. Now suppose that i < —1. Combining step 2 with the (second)
interpolation formula from theorem 222 and steps 3, 4.2 and 5, we obtain

that

hi,v*u)(xgp) (O (M@ 1) () @ 1) e @ (5" @ t0)
S -1 -1 ,
N (—i — 1)! [tTﬂ logLrV(Xai) (x)((;i)’ (1 —q P )C(y’l)]crys
— T 4 '
- (—i—1)! [(1 - 7%) (trl IOgL,V(X;’) (qugl))'

(-7 0) " (O ()|

crys
_Qlfi
= m .
— i —1\—1 7T
. [(1 — 0, (r ey Y) (1 - 7L¢q> (ko log, v ) (qu:i)),
—i
y(X¢ ] rys
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and the second part of the theorem follows by the non-degeneracy of the

pairing | -, - ]Crys. O

TODO: what happens for characters of finite order?
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Part I11
Application

TODO!

11 The representation associated with a Hida family

11.1 Berthelot’s functor

In this subsection we recall Berthelot’s functor from formal schemes (satisfying
some extra conditions) to rigid analytic spaces in a concrete setting. The construc-
tion of this functor is described in full generality in paragraph 0.2.6 of Berthelot’s
unpublished article [9].

Let R be a noetherian adic Z,-algebra with an ideal of definition I. Assume
that R/ is of finite type over IF,. Fix a set of generators fy,.. ., fr of the ideal I.

For every n € Z>1, we define

o/ N n n
Ry = R<?,...,?> = R(Tu1,- o, Tue)/ (F = pTut -, f* — pTus).

By the hypothesis on R/,

Ru/pRy = (R/(p, fi1 - ) [ Tup, o Ty

is of finite type over IF, and so R is topologically of finite type over Z,. Thus,
An = Ry ®z, Qp is an affinoid Q,-algebra. Write X, = Spm(A;) for the corres-
ponding rigid space.
For m > n > 1, there is a canonical morphism of topological R-algebras
Ry — Ry given by
i _

m—n _ fm—n
= m,z'_>fl' Tn,z—fl‘

f
p
All these morphisms are compatible and induce a projective system of affinoid

Qp—algebras (A;),>1. We obtain in this way a rigid analytic space

X = ligqé\,’n
n>1

with an admissible covering (X} ),>1 by affinoids.
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Remark. This construction can be globalized to a functor that attaches a rigid ana-
lytic space X' to each locally noetherian formal scheme & over Spf(Z,) equipped
with an ideal sheaf of definition .# with the property that the closed subscheme
So defined by .# is locally of finite type over Spec(IF,).

Example 228. Let us apply this construction to the Iwasawa algebra R = Z,[T]
with the ideal of definition I = (p, T). For every n > 1 we get
Ti’l
Ry = Zp[TI{T)/ (T" — pTy) = Zp<T, 7>.
The affinoid &, should be thought of as a p—adic closed disc of radius p~/" (at
least when regarding its C,—points). Then A" can be interpreted as the open disc

of radius 1, as it is the union of the X, for n > 1.

Our main purpose is to use the p-adic Hodge theory on arithmetic families of
representations over a rigid analytic space to construct a Perrin-Riou logarithm
map as in Castella’s article [12] but without using the results of Ochiai’s article
[30].

To this aim, we apply Berthelot’s construction to the ring R = I of coefficients
of the Hida family with its maximal ideal as ideal of definition. Consider also the
representation T (or a twist T of it), which is a free I-module of rank 2 with a

continuous action of the Galois group Gg. For every n € Z-1, we define

The V}, for n > 1 together form a locally free &xy—module ¥ = Ox Q1) T[p~]
of rank 2. The T, for n > 1 provide a formal model .7 of #. These sheaves come
equipped with a continuous action of Gg and we will want to study Hi,, (Gg, 7).
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