An Analysis of the Data Dependency Graphs
of k-Means”

Francesc Gispert

9th September 2014

Abstract

High-performance computing applications have to carefully adapt their behavior to the
underlying architecture. We present some graph partitioning techniques which can be ap-
plied to the data dependency graphs of parallel applications in order to map each task to
the computing nodes. We analyze and compare experimental results on graphs produced
by a concrete application, k-means, in order to show that the use of this partitioning step
may have a significant impact on performance due to the heavy decrease in communication

volume.

“This work was supported by BSC.

Contents

1 Introduction 3
2 k-Means 4
3 Graph Partitioning 7

3.1 Subgraph Partitioning Techniques 7

3.2 Matching Schemes L 8
4 Experimental Results 11
5 Conclusions 15
References 16

1 Introduction

Ever larger and more complex problems arise in many domains of research. Thus, these prob-
lems need to be addressed with parallel computers. However, parallelism adds a lot of extra
complexity and performance depends on a vast number of interacting components.

For instance, the different tasks which an application is divided in can be mapped to the
underlying architecture using several approaches, and the way this mapping is carried out has
a huge impact on the load balance of the cores and the communication between them. That is
to say, a bad mapping policy might lead to lots of idle cores during computation or excessive
data movement between computing nodes, slowing down the execution.

Therefore, the multiple tasks have to be placed carefully on the various nodes: tasks which
share a great amount of data should be executed in cores close to each other in order to share
as many levels of the memory hierarchy as possible.

A parallel application can be represented with a data dependency weighted directed graph
whose nodes are the tasks and whose edges represent the data dependencies between tasks.
Hence, this graph could be partitioned in as many parts as available computing nodes, mini-
mizing the edge-cut of the partition, in order to simplify the mapping phase. In other words, a
much smaller graph, whose nodes correspond to the computed parts of the original graph, can
be constructed, and all that is left is to map each node of this new graph to a computing node.

The aim of this paper is to show that this strategy can reduce significantly the amount of
data transferred with respect to task mapping techniques which are currently used. For this
purpose, we analyze the volume of communication obtained applying various graph parti-
tioning methodologies to data dependency graphs obtained from different executions of an
implementation of k-means in OmpSs.

The remainder of this paper is organized as follows. Section 2 gives an overview of the
structure of the studied code. Section 3 describes the different approaches used to partition the
data dependency graphs in order to take advantage of locality. Section 4 presents an experi-
mental evaluation of the different partitioning techniques and compares the obtained results.

Finally, section 5 concludes this paper.

2 k-Means

k-means clustering is a method of cluster analysis which aims to partition n observations into k
clusters in which each observation belongs to the cluster with the nearest mean. More precisely,
given n points x1, ..., xn € R%, k-means clustering aims to partition this set of points into k sets

Sq,...,Sk so as to minimize the sum

k
SN y—my?

i=1 XjESi

where m; is the mean of the points in S; for all i.

To this end, the algorithm first initializes k centers and then runs a number of iterations to
assign the points to a cluster. In each iteration, the closest center to each point is determined
and a new clustering results from this. Then, the positions of the centers are updated to be the
means of the points in each cluster. The procedure is repeated for a number of iterations or
until the ratio of points movement across clusters is sufficiently small. Figure 1 shows a small
example of the subgraph generated by a single iteration.

The parallel code in OmpSs includes four kinds of tasks. The main tasks (CALC) calculate
the closest centers to some of the points and store these results in auxiliary vectors. Then,
those partial results need to be unified after a barrier to ensure that they have actually been
computed. This is done by means of tasks (SUM1 and SUM2) which sum the mentioned auxiliary
vectors using a tree sum algorithm and another task (NPOS) which computes the new positions
of centers using the previous results. At the beginning of the next iteration, all the auxiliary
vectors are reset to zero using another kind of tasks (ZERO1 and ZERO2).

Taking this into account, the amount of data transferred between each pair of tasks (that is,
the edge weights) can easily be inferred from the code. This is due to the fact that the data is
always assigned to the various tasks in the same manner.

Since the used algorithm has such a simple structure, an execution of this application yields
a graph divided in almost equal layers, corresponding to the various iterations. This pattern
allows for incorporating additional information into the graph for further analysis; for example,
implicit data dependencies hidden by barriers in the code.

The structure of such layers is shown in figure 2. The number of available SPUs determines
the degree of parallelism, that is, the number of ZERO1, ZER0O2, SUM1 and SUM2 tasks (and so the
width of the graph). The number of CALC tasks (which form rows of nodes, as can be seen in
the figure) depends entirely on the dimensions of the input of k-means.

Figure 1: Example subgraph corresponding to an iteration of k-means.

3 Graph Partitioning

A broad spectrum of methodologies have been applied to the produced graphs. However, gen-
eral partitioning of the whole graph yields bad partitions. In particular, the produced partitions
tend to be very sequential as they tend to match the barriers (therefore, the nodes in one part
need to be executed after the nodes in another part), so parallelism is wasted.

A better approach is to consider appropriate parts of the original graph and partition the
corresponding subgraphs. Given the structure of the studied graphs, the subgraphs comprised
of the nodes corresponding to each iteration (or, equivalently, the nodes between two barriers)
seem to be a wise choice.

Nevertheless, this scheme poses two challenges. On the one hand, a partitioning scheme
which avoids the aforementioned inconvenient partitions has to be used. On the other hand, the
fact that the partitioning of the subgraph does not take into account the implicit dependencies
between different subgraphs can not be ignored.

Next, we present four different techniques to partition every subgraph and three schemes

to match these partitions resulting in a partition of the original graph.

3.1 Subgraph Partitioning Techniques

Once a graph has been divided into several subgraphs, each of these subgraphs has to be par-
titioned independently. Furthermore, to obtain a partition of the original graph with small
edge-cut, the partitions of the subgraphs should also have small edge-cut. This is achieved by
applying general graph partitioning techniques to every subgraph.

METIS Partitioning (MP). One of the most widely used graph partitioner is METIS [1]. METIS
can efficiently obtain a balanced partition of a graph with small edge-cut, as desired.

Greedy Partitioning (GP). As explained in section 2, the studied graphs have a particular
structure which can be exploited to obtain close to optimal partitions.

This greedy algorithm is based on the observation that, ideally, nodes should be on the same
part as most of their neighbors. Hence, the algorithm assigns groups of nodes which have no
predecessors to the parts in a balanced way. Then, the rest of the nodes are assigned to the part
which most of their predecessors belong to, achieving thus a small edge-cut.

Specifically, SUM1 and SUM2 nodes which have no predecessors (nodes 1-4 and 6-9 in figure 2)
are divided nearly evenly into the desired number of parts. Moreover, nodes which access
related data are assigned to the same part if possible (for example, in figure 2, nodes 1 and 6
would be assigned to the same part as long as the number of parts is sufficiently small). Each

of the other nodes is assigned to a part in a way as to minimize the edge-cut of the subgraph

composed of that node and its predecessors. However, such a partition would not be balanced
in general, because all CALC nodes have the NPOS node as their predecessor (in figure 2, there is
an edge from node 11 to each of the nodes 20-51). That is why the algorithm actually ignores this
node when taking into consideration the predecessors of each node. Furthermore, some CALC
nodes have exactly one predecessor of type ZERO1 and one predecessor of type ZERO2 (such as
nodes 20-35 in figure 2), apart from the NPOS node. Therefore, such nodes are assigned to the
same part as one of these two predecessors randomly in order to keep balance in the partition
(that is, to avoid the imbalance produced by the possible difference of weights between edges
from ZERO1 nodes to CALC nodes and edges from ZERO2 nodes to CALC nodes).

With this algorithm, due to the regularity of the graphs, the whole partition is expected to

be well balanced and the obtained edge-cut is close to optimal.

Random Partitioning (RP). Another way to compute a partition is to assign each node to a
part in a random manner.
The resulting partition is expected to be balanced, even though the edge-cut is not taken

into consideration.

Ordered Partitioning (OP). In many architectures, tasks are mapped to nodes in a round-robin
fashion. That is, tasks are ordered chronologically and then mapped to computing nodes as
these become available. The ordered partitioning technique is intended to imitate this mapping
scheme. Thus, the tasks are ordered sequentially and the corresponding nodes are assigned to
parts alternately.

Again, the resulting partition is expected to be balanced but the edge-cut is not taken into
consideration.

However, in this application, CALC nodes are organized in a matrix form with column-wise
dependencies only (see figure 2). Therefore, if the number of parts in which the graph is parti-
tioned divides the number of nodes per row, very few edges will cross the partition in this part
of the graph, contributing thus to reducing the overall ratio of edge-cut.

3.2 Matching Schemes

Several ways to partition the subgraphs which form the original graph have been proposed.
However, distinct subgraphs are partitioned independently. Therefore, were these partitioned

subgraphs merged carelessly, data locality between subgraphs would be of no avail.

Propagating Partitions (PP). Each iteration of k-means executes the same kind of tasks with
the same distribution of data. Hence, the subgraphs between barriers are all analogous. There-

fore, there is no actual need to partition every subgraph independently. It is possible to partition

Wt

2 o e I —< 2

oo
(a) MP
(b) GP
(c) RP

=
O

L

2

JA

VR
o ’f
R -:/‘== a

7
TS~ =
N A

o

N

L

N

Pty

=

O
96(
=

N VY

a0
CO

S
00600 @

< ()

(@

X

-‘\ 2

glv

7/

VY

e)._‘4‘)«.

<

"af" "’0" i .r "6 Y

—~e

(d) op
RP and OP to the subgraph between two barriers. This subgraph is obtained from the data dependency

graph corresponding to an execution of k-means with 65536 points in IR?, 8 clusters and 64 SPUs and is partitioned in 4 parts, each represented by a different

color.

GP,

7

Figure 3: Sample partitions obtained applying MP

only one subgraph and replicate the exact same partition to all other subgraphs. If the parti-
tioning method is good, the edge-cut crossing through barriers will also be small because of the

graph regular structure.

Best Permutation Matching (BPM). Another possibility consists in partitioning every sub-
graph independently and finding the best possible permutation in order to minimize the edge-
cut through barriers. More precisely, after two contiguous subgraphs (separated by a barrier)
have been partitioned, every possible bijection between the sets of parts of each subgraph might
result in a different edge-cut, so the minimum is chosen. However, this scheme is very expen-

sive, both in terms of time and memory.
Worst Permutation Matching (WPM). The worst permutation could also be chosen in order

to compare the variability of the edge-cut. This serves the purpose of evaluating the possible
trade-off between edge-cut and computation time dedicated to this phase.

10

4 Experimental Results

We analyze the obtained edge-cut with the various partitioning techniques described in sec-
tion 3.

Since the used algorithms are randomized, all the experiments were carried out 100 times.
All figures in this section show the ratio between the edge-cut of the partitioning and the
amount of data transferred. Both the mean of the obtained results and the sample standard
deviation are represented.

Despite partitioning techniques being applied to subgraphs between barriers, the edge-cut
through barriers depends greatly on the partitioning technique because of the regularity of the
studied graphs. That is to say, if the partition of the different subgraphs has a homogeneous
structure, a good matching of the subgraphs is more likely to exist. For instance, in figure 4,
we observe that MP and GP yield a lot of variability in the edge-cut through barriers and, on
combining them with PP or BPM, the results are close to optimal. In addition, PP produces
slightly better results than BPM in these cases, as it makes better use of the structure of the graph.
On the contrary, when combined with the less refined methods, RP and OP, the impact of the
matching scheme is practically zero. However, the obtained results are quite bad on average,

having most of the data crossing between different parts of the graph.

PP ——— BPM ol WPM

100

80

-
=
Y
<)
<t
@ 60
S
o
[
50
<
8
=1
g 40
(5

B

b

ey

MP GP RP or MP GP RP or
Edge-cut through barriers Total edge-cut

Figure 4: Edge-cut of partitions obtained using PP, BPM and WPM in combination with MP, GP, RP and OP. The parti-
tioned graph is the data dependency graph corresponding to an execution of k-means with 65536 points in R*, 8
clusters and 64 SPUs. The graph is partitioned in 4 parts. Error bars represent the sample standard deviation.

11

The differences can be further appreciated in figure 5. MP and GP produce similar results and
significantly outperform RP and OP, when used both with PP and with BPM. Although METIS
implements partitioning algorithms of general purpose, the results achieved by MP are almost as

good as the ones obtained by GP, which is designed taking into account the particular structure

of the studied graphs.
T T T T T
MP GP xxxx

100 rH

80
£ 5
e S]
Q60 [R g
B
) 5]
&
- 5%
g
S 40
P~ 5

20 -< .

5 .‘
:23
PP BPM WPM PP BPM WPM PP BPM WPM
Edge-cut between barriers Edge-cut through barriers Total edge-cut

Figure 5: Edge-cut of partitions obtained using MP, GP, RP and OP in combination with PP, BPM and WPM. The parti-
tioned graph is the data dependency graph corresponding to an execution of k-means with 65536 points in R?, 8
clusters and 64 SPUs. The graph is partitioned in 4 parts. Error bars represent the sample standard deviation.

The results shown so far correspond to only one representative graph. Therefore, figures 6
and 7 show how the edge-cut scales according to the sizes of graphs for four and seven parts,
respectively.

Nevertheless, PP has already proven to be comparable to (or even better than) BPM in terms of
edge-cut, and BPM requires significantly more time and becomes practically infeasible for larger
graphs. Hence, only the results obtained combining PP with the four partitioning techniques
are shown.

The relative edge-cut produced with RP roughly remains constant, as expected. In contrast,
as the input size grows, the data dependency graphs have more vertices and more edges con-
necting these new vertices to other vertices of the graph (in particular, as the size increases,
there are more rows of CALC nodes, which are all connected to the NPOS node, and most of these
edges contribute to the edge-cut). That is why the relative edge-cut slightly increases for both
MP and GP and also for OP when the graph is partitioned in 7 parts. However, the relative edge-

12

100 T T T T
GP —=— RP —eo— OoP ——

80

&
y\i\ 1
60

40

2 e

>
B
161

Percentage of edge-cut

O 1 1 L 1 L L L 1
32768 65536 131072 262144

Size of k-means input (number of points)

Figure 6: Edge-cut of partitions obtained using MP, GP, RP and OP in combination with PP on graphs of different
sizes. All graphs are partitioned in 4 parts. The x axis is in logarithmic scale. Error bars represent the sample
standard deviation.

cut obtained when OP is used to partition the graphs in 4 parts appears to decrease with the size
of the graph, even though it remains worse than both MP and GP. The reason for this seemingly
unexpected behavior is that, as graphs grow larger, they become more and more regular (that
is, more rows of CALC nodes are added) and OP can take greater advantage of their structure
(since the number of nodes per row is a multiple of 4), producing partitions which are ever
more similar to those produced by GP.

The orders of the subgraphs between barriers produced by the studied graphs range from
150 to 600 nodes roughly. That is why the graphs have been partitioned in few parts in the
previous analysis. Nonetheless, the comparison can be further extended to different numbers
of parts as well. Hence, figure 8 shows the evolution of the relative edge-cut of a graph (with
approximately 200 nodes per subgraph) relative to the number of parts.

As it is to be expected, the relative edge-cut of every partitioning algorithm worsens as
the number of parts increases, while the relative performances remain the same. However,
turther differences in the behavior of these techniques can be appreciated. For instance, the
edge-cut produced by RP and OP becomes stabilized because it approximates the total amount
of data. In contrast, the increase in the edge-cut when passing from 16 to 32 parts is much more
accentuated for MP and GP. This is due to the the number of parts approaching the number of
nodes in each subgraph. Therefore, sophisticated algorithms can not achieve such good results.

13

100 T T T T
MP GP —e— RP —e— OoP ——
1/?—/_:’/:
I hd b4 —9
80
.
o]
Y
)
S 60
D)
“—
o
]
&0
8
g v .
- 3
(]
@ w
20
O 1 1 1 1

32768 65536 131072 262144

Size of k-means input (number of points)

Figure 7: Edge-cut of partitions obtained using MP, GP, RP and OP in combination with PP on graphs of different

sizes. All graphs are partitioned in 7 parts. The x axis is in logarithmic scale. Error bars represent the sample
standard deviation.

- MP —x— GP —s— RP —o— OP —a—

80 %/

o
=}

bt

<
Z

v 60
Y

o

)

<19)

o]

g

- /
9 40

=

v
[al

20
0 1 1 1 1

4 8 16 32

Partition size (number of parts)
Figure 8: Edge-cut of partitions of different sizes obtained using MP, GP, RP and OP in combination with PP. The

partitioned graph is the data dependency graph corresponding to an execution of k-means with 65536 points in
R*, 8 clusters and 64 SPUs. The x axis is in logarithmic scale. Error bars represent the sample standard deviation.

14

5 Conclusions

In this work, we investigated the impact of partitioning data dependency graphs of applications
previous to executing them on the amount of data which needs to be reallocated.

We analyzed the edge-cut produced by several graph partitioning techniques applied to
graphs corresponding to executions of k-means in order to compare them. This analysis shows
that communication between computing nodes can be effectively reduced with some prepro-
cessing. Indeed, the amount of data which needs to be transferred between different parts of a
randomly partitioned graph is up to four times more than the communication volume using a
more sophisticated partitioning of the graph.

In particular, partitioning the subgraphs between barriers with METIS and propagating the
obtained partition to all such subgraphs produced very good results. In spite of the greedy
heuristic performing slightly better, this heuristic was especially devised for k-means. Thus, a
huge effort is expected to be needed to adapt the same ideas for every application, while METIS
is a much more general approach which can be applied to every application.

In conclusion, we proposed a strategy to partition data dependency graphs which is likely
to reduce dramatically communication costs in many parallel applications with little additional
effort, as METIS is already efficiently implemented in many platforms and data dependency
graphs tend to be small. We support this claim with evident improvement over currently used

strategies in an OmpSs implementation of k-means.

15

References

[1] KARYPIS, G., AND KUMAR, V. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing 20, 1 (1998), 359-392.

16

	Introduction
	k-Means
	Graph Partitioning
	Subgraph Partitioning Techniques
	Matching Schemes

	Experimental Results
	Conclusions
	References

