
Modularity lifting and
the Taylor–Wiles method

Course taught by: Patrick Allen

Notes taken by: Francesc Gispert

4th December 2020

Contents

1 Overview 3
1.1 Rough plan of the course . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Galois representations valued in Hecke algebras 6

3 Deformations of Galois representations 12
3.1 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The tangent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Deformation conditions . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Examples of deformation conditions . . . . . . . . . . . . . . . . . . 21

3.4.1 Minimally ramified lifts . . . . . . . . . . . . . . . . . . . . . 24
3.5 A computation of a local deformation ring . . . . . . . . . . . . . . . 25

3.5.1 Two preliminary results . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 The form of Rord . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3 Computing g . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.4 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Global deformation problems . . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 Tangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Taylor–Wiles primes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



4 Modularity lifting 48
4.1 Taylor–Wiles primes and Hecke algebras . . . . . . . . . . . . . . . 49
4.2 Local-global compatibility . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 The minimal case . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 The non-minimal case . . . . . . . . . . . . . . . . . . . . . . 68

4.4 A result over totally real fields . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Taylor’s Ihara avoidance trick . . . . . . . . . . . . . . . . . . 76

4.5 More general number fields . . . . . . . . . . . . . . . . . . . . . . . 78

2



1 Overview

Let f ∈ Sk(Γ1(N), C) for some weight k ≥ 1 and some level N ≥ 1. Suppose that
f is an eigenform for all Hecke operators T` and 〈`〉 for `

∣∣- N. Write T` f = a` · f
and 〈`〉 f = χ(`) · f , so that a` ∈ Q and χ :

(
Z/NZ

)× → Q
×

.
We implicitly fix embeddings Q ↪→ C and Q ↪→ Qp.

Theorem 1 (Shimura–Deligne, Deligne–Serre, Ribet). There exists a continuous
irreducible representation

ρ f ,p : Gal(Q/Q)→ GL2(Qp)

satisfying that
(i) ρ f ,p is unramified at every `

∣∣- Np and the characteristic polynomial of ρ f ,p(Frob`)

is X2 − a`X + χ(`)`k−1.
(ii) ρ f ,p is potentially semistable at p.

Remark. The first property determines uniquely ρ f ,p, by Chebotarev’s density
theorem.

This course is about the study of a converse to this theorem (and some general-
izations).

Conjecture 2 (Fontaine–Mazur). Let ρ : Gal(Q/Q) → GL2(Qp) be a continuous
irreducible representation that is

(i) unramified outside a finite set of primes and
(ii) potentially semistable at p.

If there is no i ∈ Z making the twist ρ⊗ εi
p (where εp denotes the p–adic cyclotomic

character) an even representation with finite image, then ρ ∼= ρ f ,p⊗ ε
j
p for some eigenform

f and some j ∈ Z.

Remarks.
(1) By Chebotarev’s density theorem, det(ρ f ,p) = χε1−k

p . In particular, one
checks that ρ f ,p is odd, which justifies the need of the hypothesis on ρ⊗ εi

p

in the conjecture. That is, the conjecture states that the only obstructions for
a representation to arise from an eigenform are the known ones.

(2) Nowadays the conjecture in this form is almost completely proved. For
example, it is known for regular weights.

Conjecture 3 (Fontaine–Mazur–Langlands). Let F be a number field. Every continu-
ous irreducible representation ρ : Gal(F/F)→ GLn(Qp) that is
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(i) unramified outside a finite set of primes and
(ii) is potentially semistable at p

arises (in some sense) from a cuspidal automorphic representation of GLn(AF).

Why do we care?
(1) Philosophically, this theory is a non-abelian form of class field theory (in the

sense that it relates some Galois groups to some groups of adèles).
(2) Currently, it is the only way to study analytic properties of certain arithmetic

L–functions (e.g., analytic continuation). For example, there are arithmet-
ically defined L–functions (like the L–function of an elliptic curve), which
converge on some half-plane, that are only known to have analytic continu-
ation by means of automorphic tools.

Example 4. The conjecture implies the modularity of elliptic curves.
• Over Q the modularity theorem is already known by the work of Wiles,

Taylor–Wiles, . . . , Breuil–Conrad–Diamond–Taylor.
• If F is a totally real number field, it is known that all but finitely many elliptic

curves over F are modular, even all in the case that F is a real quadratic field
by the work of Freitas–Le Hung–Siksek.

• Over a quadratic imaginary field F, all we can say is that at least a positive
proportion of elliptic curves are modular.

• For more general fields, like F = Q( 3
√

2), the situation is hopeless with the
current tools.

How do we prove these conjectures? We can assume that ρ takes values in
GL2(Zp) and so we can consider its reduction ρ (with values in GL2(Fp)). Then a
potential proof can follow these two steps:

(1) Prove that ρ ∼= ρg,p for some modular form g (residual modularity or Serre’s
conjecture).

(2) Prove that, if ρ ∼= ρg,p for a modular form g, then ρ ∼= ρ f ,p for some (possibly
different) modular form f (modularity/automorphy lifting).

This course is about the techniques for this second step. Often step 1 is more
difficult than step 2 and, in fact, is based on some kind of induction argument
using the latter.

The strategy for the modularity lifting.
• One can construct Zp–algebras R and T representing functors related to

representations and to eigenforms, respectively. More precisely,
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(i) HomZp–Alg(T, Qp) corresponds to the set of systems of Hecke eigen-
values on a certain space M of modular forms (whence ρ should arise)
and

(ii) HomZp–Alg(R, Qp) corresponds to the set of Galois representations that
conjecturally arise from the modular forms in M.

• One constructs a morphism R→ T.
• One has to prove that the morphism R→ T is an isomorphism or, at least,

induces an isomorphism Rred ∼= Tred.

1.1 Rough plan of the course

• We want to introduce deformation theory and minimal modularity lifting
for GL2(Q) (4 or 5 weeks).

• We want to study the theory for GL2(F) with F a totally real number field
and explain non-minimal modularity lifting (which involves base changes)
and maybe higher rank conjugate self-duals (4 or 5 weeks).

• We might study the theory for GL2(F) with F a CM field and maybe other
topics (2 to 4 weeks).
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2 Galois representations valued in Hecke algebras

Fix a prime number p and a finite extension E/Qp. Let O denote the ring of
integers of E and fix a uniformizer v of E. Write F = O/(v) for the residue field,
which is a finite field with q = p f elements. We fix algebraic closures Q of Q and
Qp of Qp.

Fix also a weight k ∈ Z≥2 and a level N ∈ Z≥4. We are going to work with the
congruence subgroup Γ = Γ1(N).

Let S be a finite set of places of Q containing p, the primes dividing N and
the archimedean place ∞. Write QS for the maximal algebraic extension of Q

that is unramified outside S and let GQ,S = Gal(QS/Q). We fix also an abstract
isomorphism ι : Qp → C, which induces an isomorphism Sk(Γ, Qp) ∼= Sk(Γ, C).
We are going to obtain an integral structure for this space of cusp forms from the
Eichler–Shimura isomorphism. (In this setting, one could use Katz’s geometric
interpretation of modular forms to obtain an integral structure, but that strategy
does not extend well to other settings that we will study later.)

Definition 5. Let TS,univ be the Z–algebra generated by the Hecke operators T`

and S` (formal variables) for all primes ` 6∈ S. For any commutative ring A, we
define

T
S,univ
A = TS,univ ⊗Z A.

For a T
S,univ
A –module M, we define

TS
A(M) = TS(M) = Im

(
T

S,univ
A → EndA(M)

)
.

Example 6. The algebra T
S,univ
C

acts on the space of cusp forms Sk(Γ, C) by double
coset operators:

T` =

[
Γ
(
` 0
0 1

)
Γ
]

and S` =
[

Γ
(
` 0
0 `

)
Γ
]
= `k−2〈`〉.

Since S contains all primes in the level, Sk(Γ, C) is a semisimple T
S,univ
C

–module
(the Petersson inner product shows that each T` is normal) and so we obtain a
decomposition

TS(Sk(Γ, C)) ∼= ∏
eigen.

C,

where the product is over the Hecke eigensystems (i.e., the eigenforms in Sk(Γ, C)).
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This decomposition transforms under ι into

TS(Sk(Γ, Qp)) ∼= ∏
eigen.

Qp.

Every eigensystem
λ : TS(Sk(Γ, Qp))→ Qp

(corresponding to an eigenform) gives rise to a Galois representation

ρλ : GQ,S → GL2(Qp)

such that, for every prime ` 6∈ S,

CharPoly(ρλ(Frob`)) = X2 − λ(T`)X + `λ(S`).

Thus, putting everything together, we obtain

ρ = ∏
λ eigen.

ρλ : GQ,S → GL2
(
TS(Sk(Γ, Qp))

)
with the property that, for every prime ` 6∈ S,

CharPoly(ρ(Frob`)) = X2 − T` X + ` S` .

Our goal is to obtain an integral version of this representation. That is, we want to
replace Qp with Zp (or even O for a suitable E/Qp).

Theorem 7 (Eichler–Shimura). There is an isomorphism of T
S,univ
C

–modules

Mk(Γ, C)⊕ Sk(Γ, C) ∼= H1(Γ, Symk−2(C2)).

The action of a double coset operator [ΓαΓ] with α ∈ GL2(Q) on Hi(Γ, Symk−2(C2)) is
given by the composition

Hi(Γ, Symk−2(C2)) Hi(Γ ∩ α−1Γα, Symk−2(C2))

Hi(Γ, Symk−2(C2)) Hi(αΓα−1 ∩ Γ, Symk−2(C2))

res

[ΓαΓ] α∗

cor

(where res and cor denote the obvious restriction and corestriction in group cohomology).
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Remark. This cohomology can also be seen geometrically. Indeed, assuming that
k = 2 for simplicity, one can identify H1(Γ, C) ∼= H1(Y(Γ), C) for Y(Γ) = Γ\H
(with integral coefficients this holds only under the assumption that N ≥ 4;
otherwise there might be torsion and the right-hand side has to be modified) and
then the action of [ΓαΓ] is given by

Y(Γ ∩ α−1Γα) Y(αΓα−1 ∩ Γ)

Y(Γ) Y(Γ)

π1

α

π2

(or rather, by π2,∗ ◦ α∗ ◦ π∗1 ).

Then H1(Γ, Symk−2(C2)) ∼= H1(Γ, Symk−2(Z2)) ⊗Z C has a natural integral
structure. In addition, H1(Γ, Symk−2(Z2)) is a finitely generated abelian group,
which implies that H1(Γ, Symk−2(O2)) ∼= H1(Γ, Symk−2(Z2))⊗Z O is a finitely
generated O–module. This is the object that we want to study. All in all, we obtain
isomorphisms

H1(Γ, Symk−2(O2))⊗O Qp H1(Γ, Symk−2(Q
2
p)) H1(Γ, Symk−2(C2))

Sk(Γ, Qp) Sk(Γ, C)

∼= ∼=

(where we used the fixed isomorphism ι : Qp
∼= C and the restriction of the Eichler–

Shimura isomorphism).
Choose a Hecke eigenform g ∈ Sk(Γ, C) ∼= Sk(Γ, Qp) and consider the cor-

responding Hecke eigensystem λg : TS(H1(Γ, Symk−2(Q
2
p)) → Qp. Enlarging O

if necessary (for this g), we obtain an integral version of λg and we can form a
“reduction” λg making the diagram

λg : TS(H1(Γ, Symk−2(Q
2
p))
)

TS(Sk(Γ, Qp)
)

Qp

TS(H1(Γ, Symk−2(O2))
)

O

F

λg

λg
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commutative. Now m = Ker(λg) is a maximal ideal of

TS(Γ, k) = TS(H1(Γ, Symk−2(O2))
)

and we can attach a continuous representation

ρm : GQ,S → GL2(F)

to m and λg. By construction, this representation satisfies that

CharPoly(ρm(Frob`)) = X2 − λgX + `λg(S`) = X2 − T` X + ` S` mod m

for all primes ` 6∈ S.

Definition 8. We say that the maximal ideal m of TS(Γ, k) is non-Eisenstein if the
representation ρm is absolutely irreducible.

Proposition 9. If m is a non-Eisenstein maximal ideal of TS(Γ, k), then the localization
H1(Γ, Symk−2(O2))m is a finite free O–module.

Since TS(Γ, k)m ⊂ EndO

(
H1(Γ, Symk−2(O2))m

)
, we deduce the following:

Corollary 10. If m is a non-Eisenstein maximal ideal of TS(Γ, k), then TS(Γ, k)m is flat
over O (i.e., torsion-free).

Proof of proposition 9. We assume that k = 2 to simplify the notation. Since we
already know that H1(Γ, O)m is finitely generated over O , we just need to show
that it is p–torsion-free. Taking cohomology of the short exact sequence

0 O O F 0v

and localizing at m, we obtain an exact sequence

H0(Γ, F)m H1(Γ, O)m H1(Γ, O)m.v

Thus, it suffices to prove that

H0(Γ, F)m = 0.

A double coset [ΓαΓ] with α ∈ GL2(Q) acts on H0(Γ, F) by

H0(Γ, F) H0(Γ ∩ α−1Γα, F) H0(αΓα−1 ∩ Γ, F) H0(Γ, F)

F F F F

res α cor

idF idF [Γ:αΓα−1∩Γ]
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(i.e., simply by multiplication by [Γ : αΓα−1 ∩ Γ]). Therefore, for every prime ` 6∈ S,
T` acts by `+ 1 and S` acts by 1. That is, if H0(Γ, F)m 6= 0, we would have that

T` ≡ 1 + ` mod m and S` ≡ 1 mod m

and we would obtain an explicit description of CharPoly(ρm(Frob`)). But then
ρm would have to be 1⊕ εp (where εp is the cyclotomic character modulo p) by
Chebotarev’s density theorem, contradicting the fact that m is non-Eisenstein.

Remark. This proof is much more complicated than necessary in this setting (one
does not even need to localize at m to get the p–torsion-free result), but it will be
better for generalizations.

We have
TS(Γ, k)m ↪→ TS(Γ, k)m ⊗O Qp = ∏

eigen.
Qp,

where the product is over the eigensystems lying over m. Therefore, we have a
representation

ρ = ∏ ρi : GQ,S → GL2
(
TS(Γ, k)m ⊗O Qp

)
satisfying that

CharPoly(ρ(Frob`)) = X2 − T` X + ` S` ∈ TS(Γ, k)m[X]

for all ` 6∈ S. That is, the values of ρ lie in a much smaller (and integral) subspace
corresponding to m. More precisely, the representation ρ descends to

ρm : GQ,S → GL2
(
TS(Γ, k)m

)
by the following result:

Theorem 11 (Carayol). Consider a local ring A with residue field F and let R be an
A–algebra (e.g., A = TS(Γ, k)m and R = A[GQ,S]). Let A′/A be a semilocal extension
with a decomposition

A′ = ∏
i∈I

A′i

where each A′i is local with maximal ideal m′i and residue field F′i (e.g., continuing with
the A above, A′ = TS(Γ, k)m ⊗O Zp). If there is an A–algebra representation

ρ′ = ∏
i∈I

ρ′i : R⊗A A′ → Mn(A′) = ∏
i∈I

Mn(A′i)
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satisfying that
(1) tr

(
ρ(r⊗ 1)

)
∈ A for all r ∈ R and

(2) the reductions ρi : R⊗A F′i → Mn(F′i ) are all absolutely irreducible and have equal
tr
(
ρ′i(r⊗ 1)

)
∈ F for all r ∈ R (i.e., tr

(
ρ′i(r⊗ 1)

)
is independent of i ∈ I),

then ρ′ is conjugate to the scalar extension · ⊗A A′ of a representation ρ : R→ Mn(A).
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3 Deformations of Galois representations

Let Γ be a profinite group and let p be a prime number.

Definition 12. We say that Γ satisfies condition Φp if, for every open subgroup H
of Γ, the set Homcont(H, Fp) is finite or, equivalently, the maximal pro-p quotient
H(p) of H is topologically finitely generated.

Example 13. The condition Φp is satisfied by
(1) the Galois group GF,S = Gal(FS/F), where F is a number field, S is a finite

set of places of F and FS is the maximal extension of F that is unramified
outside S, and

(2) the absolute Galois group GK = Gal(K/K) of a finite extension K/Q` with `

prime.

Let F be a finite field of characteristic p. Let CNL denote the category of
complete noetherian local rings (A,mA) with a fixed isomorphism A/mA

∼= F.
Let Ar denote the full subcategory of CNL consisting of artinian objects. Given
Λ ∈ Ob(CNL), we define CNLΛ (resp. ArΛ) to be the full subcategory of CNL
(resp. Ar) whose objects are Λ–algebras. In particular, the ring of Witt vectors
W(F) is an initial object in CNL and so CNL = CNLW(F).

Fix a continuous homomorphism

ρ : Γ→ GLn(F).

Definition 14.
(1) A lift or lifting or framed deformation of ρ to A ∈ Ob(CNL) is a continuous

homomorphism
ρ : Γ→ GLn(A)

such that ρ mod mA = ρ.
(2) We say that two lifts ρ and ρ′ to A are strictly equivalent if they are conjugate

by an element of 1 + Mn(mA) = Ker
(
GLn(A)→ GLn(F)

)
.

(3) A deformation of ρ to A is a strict equivalence class of lifts of ρ to A.

Remark. By abuse of notation, we will often identify deformations with some
representative lift. The reason to consider deformations instead of lifts is that
modular forms give rise to Galois representations without a distinguished basis.
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Example 15. Let g ∈ Sk(Γ, Zp) be a Hecke eigenform with Galois representation
modulo p

ρg : GQ,S → GL2(F).

Then any Hecke eigenform f ∈ Sk(Γ, Zp) congruent to g yields a deformation ρ f

of ρg.

3.1 Representability

Definition 16. We define the functors

D = Dρ : CNL −→ Set

A 7−→ {Deformations of ρ to A }

and

D� = D�
ρ : CNL −→ Set

A 7−→ {Lifts of ρ to A }

Remark. The two functors Dρ and D�
ρ are continuous in the sense that, for every

A ∈ Ob(CNL), the natural maps

D(A)→ lim←−
i≥1

D(A/mi
A) and D�(A)→ lim←−

i≥1
D�(A/mi

A)

are bijections. Therefore, both functors Dρ and D�
ρ are completely determined by

their restriction to Ar.

We next want to study when these functors are representable (i.e., under what
hypotheses we have Dρ

∼= HomCNL(R, · ) and D�
ρ
∼= HomCNL(R�, · ) for some

R, R� ∈ Ob(CNL)).

Proposition 17. If Γ satisfies the condition Φp, then D�
ρ is representable.

Proof. Let H = Ker(ρ), which is an open subgroup of Γ. By hypothesis, the
maximal pro-p quotient H(p) of H is topologically finitely generated.

Let N = Ker
(

H → H(p)). Since N is fixed by automorphisms of H, N is a
normal subgroup of Γ. By the definition of N and condition Φp, the quotient Γ/N
is also topologically finitely generated. Fix topological generators γ1, . . . , γg of
Γ/N. We can define a continuous function

ρ : Γ→ GLn
(
W(F)[[Xs,i,j : 1 ≤ s ≤ g and 1 ≤ i, j ≤ n]]

)
13



by
γs 7→ [ρ(γs)] ·

(
1 + (Xs,i,j)i,j

)
,

where [ · ] denotes the Teichmüller lift and 1 denotes the identity matrix. Then D�
ρ

is represented by the quotient of W(F)[[{Xs,i,j }s,i,j]] by the ideal generated by all
matrix entries of ρ(r)− 1 as r ranges over all relations satisfied by γ1, . . . , γg.

Theorem 18 (Mazur). If Γ satisfies the condition Φp and EndF[Γ](ρ) = F, then Dρ is
representable.

Remark. One way to prove Mazur’s theorem is to take the quotient of D�
ρ by the

free action of the formal group scheme P̂GLn.

Next we explain the ingredients that appear in the classical proof of theorem 18.
Suppose that a functor F : CNL→ Set is represented by an object R and consider
two morphisms A→ C and B→ C in CNL. Then

F(A×C B) = HomCNL(R, A×C B)

= HomCNL(R, A)×HomCNL(R,C) HomCNL(R, B)

= F(A)×F(C) F(B).

Write F[ε] = F[X]/(X2).

Theorem 19 (Grothendieck). Let F : CNL → Set be a continuous functor such that
F(F) is a singleton. The functor F is representable if and only if

(1) the restriction of F to Ar preserves fibre products and
(2) dimF F(F[ε]) < ∞.

Remark. The structure of F–vector space on F(F[ε]) is not obvious. Multiplication
by an element α ∈ F on F(F[ε]) is obtained by applying F to the F–algebra
morphism

a + bε 7→ a + αbε.

For the addition, we use the identification

F(F[ε])× F(F[ε]) = F(F[ε]×F F[ε])

and apply F to the F–algebra morphism

(a + bε, a + cε) 7→ a + (b + c)ε.

14



The condition that dimF F(F[ε]) be finite allows us to obtain noetherianness of the
ring representing F.

Condition (1) of theorem 19 can be very hard to check, so we explain an
alternative characterization of representability of the functors we are interested in.

We say that a morphism A→ C in the category Ar is small if it is surjective and
its kernel is a principal ideal annihilated by mA. Consider morphisms α : A→ C
and β : B→ C in Ar and the natural map

F(A×C B)→ F(A)×F(C) F(B).

Theorem 20 (Schlessinger). Let F : CNL → Set be a continuous functor such that
F(F) is a singleton. The functor F is representable if and only if

(1) for every α and β as above, the natural map

F(A×C B)→ F(A)×F(C) F(B)

is surjective whenever α is small,
(2) for every α as above (and taking β = α), the natural map

F(A×C A)→ F(A)×F(C) F(A)

is bijective whenever α is small,
(3) taking C = F, α as above and B = F[ε], the natural map

F(A×F F[ε])→ F(A)× F(F[ε])

is bijective and
(4) dimF F(F[ε]) < ∞.

Remark. Grothendieck’s criterion looks simpler but it is much more difficult to
check in practice than Schlessinger’s more technical conditions.

Lemma 21. If EndF[Γ](ρ) = F, then EndC[Γ](ρ) = C for every C ∈ Ob(CNL) and
every lift ρ : Γ→ GLn(C) of ρ to C.

Idea of the proof. The lemma can be proved by reducing to the artinian case and
using an induction argument on the length of C.

Now we are in a position to prove (most of) theorem 18, that we recall here:
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Theorem 18 (Mazur). If Γ satisfies the condition Φp and EndF[Γ](ρ) = F, then Dρ is
representable.

Proof. We use Schlessinger’s criterion (i.e., theorem 20).
(1) Take lifts ρA and ρB of ρ to A and B, respectively, such that α ◦ ρA and β ◦ ρB

are (1 + Mn(mC))–conjugate. Thus, we may take g ∈ 1 + Mn(mC) such that
g(α ◦ ρA)g−1 = β ◦ ρB. Since α is surjective, we can lift g to h ∈ 1 + Mn(mA).
Then (hρAh−1, ρB) defines a lift of ρ to A×C B and is a preimage of (ρA, ρB).

(2) We are going to use lemma 21. Let α : A → C be a small morphism in the
category Ar. By the previous part, we only have to prove that the natural
map

Φ : Dρ(A×C A)→ Dρ(A)×Dρ(C) Dρ(A)

is injective. Take ρ, r ∈ D�
ρ (A×C A) such that Φ(ρ) = Φ(r) (regarded as

deformations). Write (ρ1, ρ2) (resp. (r1, r2)) for the image of ρ (resp. r) in
D�

ρ (A)×D�
ρ (C) D�

ρ (A). By assumption, we can express ρi = girig−1
i for some

gi ∈ 1 + Mn(mA). But α ◦ ρ1 = α ◦ ρ2 and α ◦ r1 = α ◦ r2 as lifts (not just as
deformations). Therefore,

α ◦ ρ1 = α(g1)(α ◦ r1)α(g1)
−1 = α(g1)(α ◦ r2)α(g1)

−1

= α(g1g−1
2 )(α ◦ ρ2)α(g1g−1

2 )−1 = α(g1g−1
2 )(α ◦ ρ1)α(g1g−1

2 )−1,

which means that α(g1g−1
2 ) commutes with α ◦ ρ1. By lemma 21, we deduce

that α(g1g−1
2 ) ∈ C ∩Mn(1 +mC) = 1 +mC. We can take a lift a1 ∈ 1 +mA of

α(g1g−1
2 ) and, replacing g1 with a−1

1 g1, we may assume that α(g1) = α(g2).
All in all, we obtain g = (g1, g2) ∈ 1 + Mn(mA×C A) such that ρ = grg−1,
which means that ρ and r define the same deformation.

(3) We skip the proof of this part.
(4) We are going to check that Dρ(F[ε]) is finite later (see corollary 24).

Lemma 22. Suppose that Γ satisfies the condition Φp and that EndF[Γ](ρ) = F. Let
R be the ring that represents the functor Dρ : CNL → Set. For every Λ ∈ CNL, the
restriction of Dρ to CNLΛ is represented by R ⊗̂W(F) Λ.

Remark. If R� represents the functor D�
ρ , then there is a universal object ρ� ∈ D�

ρ

corresponding to idR� . Thus, for every A ∈ Ob(CNL) and every ρ ∈ D�
ρ , there

exists a unique α : R� → A such that ρ = α ◦ ρ�. Sometimes the existence of the
universal object is useful.
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3.2 The tangent space

Let ad(ρ) = Mn(F) with adjoint Γ–action. That is, given σ ∈ Γ and X ∈ ad(ρ),

σ · X = ρ(σ)Xρ(σ)−1.

Remark. We may view ad(ρ) = gln and that is the right way to interpret this object
for generalizations. That is, if we replace GLn with another group scheme, then
the role of ad(ρ) is played by a Lie algebra over F.

Take a lift ρ : Γ→ GLn(F[ε]) of ρ. For every σ ∈ Γ, we can express

ρ(σ) =
(
1 + εc(σ)

)
ρ(σ) with c(σ) ∈ Mn(F).

For σ, τ ∈ Γ, we rewrite the relation ρ(στ) = ρ(σ)ρ(τ) as

(
1 + εc(στ)

)
ρ(στ) =

(
1 + εc(σ)

)
ρ(σ)

(
1 + εc(τ)

)
ρ(τ),

whence
c(στ)ρ(στ) = c(σ)ρ(σ)ρ(τ) + ρ(σ)c(τ)ρ(τ)

or, equivalently,
c(στ) = c(σ) + ρ(σ)c(τ)ρ(σ)−1.

That is, c ∈ Z1(Γ, ad(ρ)).
In this way, we obtain a bijection D�

ρ (F[ε])
∼= Z1(Γ, ad(ρ)). One can check

that the F–vector space structures on D�
ρ (F[ε]) and on Z1(Γ, ad(ρ)) agree. If R�

represents D�
ρ , then this also agrees with HomF

(
mR�/(m2

R� , p), F
)
.

Two lifts ρ1 = (1 + εc1)ρ and ρ2 = (1 + εc2)ρ of ρ to F[ε] define the same
deformation if and only if there exists some X ∈ Mn(F) with the property that
ρ1 = (1 + εX)ρ2(1− εX). But this is equivalent to

c1ρ = Xρ + c2ρ− ρX.

Therefore, ρ1 and ρ2 define the same deformation if and only if there exists some
X ∈ Mn(F)

c1(σ) = c2(σ) + X− ρ(σ)Xρ(σ)−1 = c2(σ)− (σ− 1)X for all σ ∈ Γ,

which happens precisely when c1 and c2 define the same class in H1(Γ, ad(ρ)).
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Proposition 23. There are isomorphisms of F–vector spaces

D�
ρ (F[ε])

∼= Z1(Γ, ad(ρ)) and Dρ(F[ε]) ∼= H1(Γ, ad(ρ))

Corollary 24. If Γ satisfies the condition Φp, then Dρ(F[ε]) is finite-dimensional over F.

Proof. Let H = Ker(ρ). In the inflation-restriction exact sequence

0 H1(Γ/H, ad(ρ)) H1(Γ, ad(ρ)) H1(H, ad(ρ)),

we see that H1(Γ/H, ad(ρ)) is finite because Γ/H is a finite group and the con-
dition Φp implies that H1(H, ad(ρ)) ∼= Homcont(H, Fn2

) is finite. In conclusion,
H1(Γ, ad(ρ)) is finite too.

Remark. Assume that Γ satisfies the condition Φp and that EndF[Γ](ρ) = F and
consider the ring R that represents Dρ. One can find a presentation of the form

R ∼= W(F)[[X1, . . . , Xg]]/( f1, . . . , fr),

where g = dimF H1(Γ, ad(ρ)) and r = dimF H2(Γ, ad(ρ)).

Conjecture 25 (Mazur). Take Γ = GF,S for a number field F and a finite set S of places
of F containing the archimedean places and the primes over p. If ρ is absolutely irreducible
and R is the ring representing Dρ, then

dim(R) = 1 + h1 − h2, where hi = dimF Hi(GF,S, ad(ρ)).

Remark. For n = 1 (i.e., in the case of deformations of characters), this conjecture
is equivalent to Leopoldt’s conjecture.

3.3 Deformation conditions

Fix ρ : Γ→ GLn(F) as before. We want to study subfunctors of D�
ρ or Dρ (in par-

ticular, subfunctors with arithmetic properties). Fix Λ ∈ Ob(CNL). We often take
Λ to be the ring of integers O of a finite totally ramified extension of W(F)[p−1].

Example 26 (fixed determinant deformations). Fix a continuous morphism

ψ : Γ→ O× such that ψ mod mO = det(ρ).

Let D�,ψ
ρ : CNLO → Set be the subfunctor of D�

ρ of lifts ρ : Γ → GLn(A) with
det(ρ) = ψ (to be precise, in the right hand side we should compose ψ with the
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structure morphism O → A). This condition is invariant under conjugation and
so defines also a subfunctor Dψ

ρ of Dρ of deformations with determinant ψ.

Proposition 27.
(1) The functor D�,ψ

ρ is represented by a quotient of the universal lifting ring R� (which
represents D�

ρ ).

(2) If EndF[Γ](ρ) = F, then Dψ
ρ is represented by a quotient of the universal deforma-

tion ring Runiv (which represents Dρ).

Proof. Let ρ� : Γ → GLn(R�) be the universal lift of ρ. Let J be the ideal of R�

generated by
{det(ρ�(σ))− ψ(σ) : σ ∈ Γ }.

For every lift ρ : Γ → GLn(A) of ρ to A ∈ Ob(CNLO), there exists a unique
morphism φ : R� → A in CNLO with the property that ρ = φ ◦ ρ�. It is easy to
see that det(ρ) = ψ if and only if φ(J) = 0. Therefore, R�,ψ = R�/J represents
D�,ψ

ρ . The proof for deformations is essentially the same.

Let ad0(ρ) denote the subspace of matrices in ad(ρ) = Mn(F) (i.e., with adjoint
Γ–action) that have trace 0.

Proposition 28.
(1) D�,ψ

ρ (F[ε]) ∼= Z1(Γ, ad0(ρ)).

(2) Dψ
ρ (F[ε])

∼= Im
(
H1(Γ, ad0(ρ)) → H1(Γ, ad(ρ))

)
(and the right-hand side is

∼= H1(Γ, ad0(ρ)) if p
∣∣- n).

Proof. Take a lift ρ : Γ→ GLn(F[ε]). Write ρ = (1+ εc)ρ with c ∈ Z1(Γ, ad(ρ)). We
can check that det(ρ) = ψ = det(ρ) if and only if 1 + ε tr(c) = 1, which happens
precisely when c ∈ Z1(Γ, ad0(ρ)).

The statement for deformations now follows using that coboundaries have
coefficients in ad0(ρ).

Remark. We can identify ad(ρ) ∼= gln and ad0(ρ) ∼= sln.

Definition 29. A deformation condition or deformation problem D on CNLΛ is a col-
lection of lifts ρ of ρ to objects A of CNLΛ satisfying the following properties:

(1) (F, ρ) ∈ D ;
(2) if (A, ρ) ∈ D and φ : A→ B is a morphism in CNLΛ, then (B, φ ◦ ρ) ∈ D ;
(3) if (A, ρA), (B, ρB) ∈ D and we have two morphisms A → C and B → C in

ArΛ, then (A×C B, ρA × ρB) ∈ D ;

19



(4) if (Ai, ρi)i∈I is an inverse system in D and lim←− Ai ∈ Ob(CNLΛ), then(
lim←−
i∈I

Ai, lim←−
i∈I

ρi

)
∈ D ;

(5) D is stable under strict equivalence, and
(6) if φ : A → B is an injective morphism in CNLΛ and (A, ρ) is a lift with the

property that (B, φ ◦ ρ) ∈ D , then (A, ρ) ∈ D .

Proposition 30. Let R� be the universal lifting ring on CNLΛ and let R� →→ R be a
quotient morphism in CNLΛ with the following property: for every lift ρ : Γ→ GLn(A)

of ρ to A ∈ Ob(CNLΛ) and every g ∈ 1 + Mn(mA), the morphism R� → A cor-
responding to ρ factors through R if and only if the morphism corresponding to gρg−1

does. The collection of lifts whose associated morphisms R� → · factor through R form a
deformation problem. Moreover, every deformation problem arises in this way.

Proof. The first claim is easy to verify. For the second claim, let D be a deformation
problem. Let I be the set of all ideals I of R� such that (R�/I, ρI) ∈ D , where ρI

is the composition of ρ� with the canonical morphism GLn(R�) → GLn(R�/I).
From the definition of a deformation problem:

• I 6= ∅ by condition (1) (as mR� ∈ I );
• a lift (A, ρ) is in D if and only if Ker(R� → A) ∈ I by conditions (2) and

(6) (where the morphism R� → A classifies ρ);
• I is closed under nested intersections by condition (4) and the previous

property;
• I is closed under finite intersections by conditions (3) and (4), and
• I contains a minimal element J that is contained in every I ∈ I by the

previous properties and Zorn’s lemma.
All in all, we can use R = R�/J with the quotient map R� →→ R to recover D .

Consider a quotient map R� →→ R = R�/J corresponding to a deformation
problem D . There is a subspace LD ⊂ Z1(Γ, ad(ρ)) given by the image of the map
that makes the diagram

HomF

(
mR/(m2

R,mΛ), F
)

HomF

(
mR�/(m2

R� , J,mΛ), F
)

Z1(Γ, ad(ρ)) HomF

(
mR�/(m2

R� ,mΛ), F
)

∼=

∼=

commutative. Let LD denote the image of LD in H1(Γ, ad(ρ)), so that we obtain a
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surjective map LD →→ LD and

dimF(LD ) = dimF(LD ) + n2 − dimF

(
H0(Γ, ad(ρ))

)
.

Example 31. Let ρ : Γ→ GL2(F) be a representation of the form

ρ =

(
χ1 ∗
0 χ2

)
and suppose that there is a normal subgroup I of Γ such that

ρ|I 6= 1 and χ1|I = 1.

Let ψ : I → O× be a lift of χ2|I . The collection of lifts ρ of ρ that are conjugate to a
representation of the form (

χ1 ∗
0 χ2

)
with χ1|I = 1 and χ2|I = ψ is a deformation problem.

Example 32. Let ρ : Γ→ GL2(F) be the trivial representation. The condition from
example 31 (that lifts be conjugate to upper triangular representations with a fixed
diagonal on I) is not a deformation problem. In particular, if Γ = Ẑ = 〈γ〉, we can
consider ρ1, ρ2 : Γ→ GL2(F[ε]) defined by

ρ1(γ) =

(
1 ε

0 1

)
and ρ2(γ) =

(
1 0
ε 1

)
and it is impossible to conjugate ρ1 × ρ2 : Γ→ GL2(F[ε]×F F[ε]) to make it upper
triangular.

3.4 Examples of deformation conditions

Let Γ be a profinite group satisfying the condition Φp and let I be a normal
subgroup of Γ. Let O denote the ring of integers of some finite extension of Qp

with residue field F. We consider a continuous homomorphism ρ : Γ → GL2(F)

(for the examples, we want n = 2).

Example 33 (ordinary deformations). Suppose that we can express

ρ =

(
χ1 ∗
0 χ2

)
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and that χ1|I = 1 but ρ|I 6= 1. Fix a continuous character ψ : I → O×. We consider
the functor Dord : CNLO → Set which sends A to the set of lifts ρ of ρ to A that are
strictly equivalent to a representation of the form(

χ1 ∗
0 χ2

)
with χ1|I = 1 and χ2|I = ψ.

We claim that Dord is a deformation problem. Indeed, recall that one way to think
about deformation problems is as quotients of the universal lifting ring R� that
has a certain conjugacy invariance property (see proposition 30). But observe
that, if Dord were represented by a quotient of R�, then it would automatically
satisfy the condition in proposition 30. Therefore, it suffices to prove that Dord is
represented by a ring Rord ∈ Ob

(
CNLO

)
that is a quotient of R�.

First suppose that Dord is represented by some Rord ∈ Ob
(
CNLO

)
and let

us see that in this case Rord must be a quotient of R�. Indeed, the inclusion
Dord(F[ε]) ⊂ D�(F[ε]) can be expressed as

HomF

(
mRord/(m2

Rord ,mO), F
)
↪→ HomF

(
mR�/(m2

R� ,mO), F
)

and taking duals we obtain

mR�/(m2
R� ,mO)→→ mRord/(m2

Rord ,mO).

By Nakayama’s lemma, we conclude that the natural map R� → Rord correspond-
ing to the universal lift in Dord(Rord) ⊂ D�(Rord) must be surjective.

It only remains to prove that Dord is represented by some ring in CNLO . To do
so, consider the subfunctor DBor : CNLO → Set which sends A to the set of lifts ρ

of ρ to A of the form

ρ =

(
χ1 ∗
0 χ2

)
with χ1|I = 1 and χ2|I = ψ.

Consider also the functor L : CNLO → Set which sends A to the set of lifts ρ of ρ

to A of the form (
1 0
x 1

)
with x ∈ mA.

There is a natural transformation φ : L× DBor → Dord given by

(u, ρ) 7→ uρu−1.
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We claim that φ is an isomorphism. But one can prove that DBor is represented by
a ring RBor ∈ Ob

(
CNLO

)
(the proof is similar to that of proposition 17) and L is

represented by O [[z]]. Therefore, the last claim implies that Dord is represented by

Rord = RBor ⊗̂O O [[z]] ∼= RBor[[z]].

Next we want to prove that, for every A ∈ Ob
(
CNLO

)
, the map

φA : L(A)× DBor(A) −→ Dord(A)

(u, ρ) 7−→ uρu−1

is a bijection. For the surjectivity, observe that every g ∈ 1 + M2(mA) can be
expressed as

g =

(
1 0
x 1

)(
a b
0 d

)
with x, b, 1− a, 1− d ∈ mA.

Thus, if ρ ∈ Dord(A) satisfies that

gρg−1 =

(
χ1 ∗
0 χ2

)
∈ DBor(A),

then ((
1 0
x 1

)
,
(

a b
0 d

)
ρ

(
a b
0 d

)−1)
∈ L(A)× DBor(A)

is a preimage of ρ. As for the injectivity, suppose that u1ρ1u−1
1 = u2ρ2u−1

2 . Then
uρ1u−1 = ρ2, where u = u−1

2 u1 ∈ L(A). To prove that u = 1, it suffices to prove
that u is upper triangular. This is a consequence of the following more general
fact.

Given ρ ∈ DBor(A) and g ∈ 1 + M2(mA), if gρg−1 ∈ DBor(A), then g must be
upper triangular. Indeed, we can reduce to the case in which A is artinian and
then argue by induction on the length of A. Write

ρ(σ) =

(
χ1(σ) b(σ)

0 χ2(σ)

)
for all σ ∈ Γ.

Using the decomposition

g =

(
1 0
x 1

)(
a b
0 d

)
with x, b, 1− a, 1− d ∈ mA,
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we may conjugate ρ by the second matrix and assume that

g =

(
1 0
x 1

)
.

Moreover, by induction, we may assume that mi+1
A = 0 and that x ∈ mi

A. Then we
compute for σ ∈ I

gρ(σ)g−1 =

(
1 0
x 1

)(
1 b(σ)
0 ψ(σ)

)(
1 0
−x 1

)
=

(
1− b(σ)x ∗
(1− ψ(σ))x ∗

)
=

(
1 ∗
0 ∗

)
,

where the last equality follows from the assumption that gρg−1 ∈ DBor(A). Since
ρ|I 6= 1, we can find σ ∈ I such that

either ρ(σ) =

(
1 α

0 1

)
with α 6= 0 or ρ(σ) =

(
1 ∗
0 β

)
with β 6= 1.

That is, either b(σ) ∈ A× or 1− ψ(σ) ∈ A×. In both cases, x = 0 and so g is upper
triangular.

A particular case of interest is the following: one might take Γ = GK for some
finite extension K/Qp, I = IK (the inertia subgroup) and ψ = ε1−k

p for some k ≥ 2.
This is the kind of situation that we encounter when working with representations
associated with p–ordinary eigenforms of weight k.

Another variant can be obtained by setting Λ = O [[O×K (p)]], where O×K (p) is
the maximal pro-p quotient of O×K . Then one might consider Dord

Λ : CNLΛ → Set
defined analogously to the Dord from above but replacing ψ : IK → O× with
the universal character Ψ : IK → Λ× provided by the local class field theory
isomorphism Iab

K
∼= O×K . In this way, one can consider deformation problems

associated with Hida families.

3.4.1 Minimally ramified lifts

Other cases of interest come up from taking Γ = GK for some finite extension
K/Q` with ` 6= p and I = IK.

Example 34. Suppose that

1 6= ρ(IK) ⊆
{(

1 ∗
0 1

)
∈ GL2(F)

}
.
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Taking ψ = 1, we obtain the deformation problem Dmin : CNLO → Set that sends
A to the set of lifts ρ of ρ to A such that ρ(IK) is strictly equivalent to a subgroup of{(

1 ∗
0 1

)
∈ GL2(A)

}
,

called minimally ramified lifts of ρ.

Example 35. Suppose that

ρ =

(
χ1 0
0 χ2

)
with χ1|IK = 1 but χ2|IK 6= 1.

There is a deformation problem Dmin : CNLO → Set that sends A to the set of lift
ρ of ρ to A which are strictly equivalent to(

χ1 0
0 χ2

)
with χ1|IK = 1 and χ2|IK = IK

χ2−→ F× → O× → A×,

called minimally ramified lifts of ρ. To see that Dmin is indeed a deformation problem,
one can use example 33 with ψ the composition of the Teichmüller character and
χ2|IK together with some facts about the structure of GK (especially the tame and
wild ramification).

More generally, if ρ : GK → GL2(F) satisfies that ρ(IK) has order prime to p,
then there is a deformation condition Dmin : CNLO → Set that sends A to the set
of lifts ρ of ρ to A such that the reduction modulo mA induces an isomorphism
ρ(IK) ∼= ρ(IK), called minimally ramified lifts of ρ.

3.5 A computation of a local deformation ring

Take a finite extension K of Qp and Γ = GK. Fix a continuous homomorphism

ρ : GK → GL2(F)

of the form
ρ =

(
χ1 ∗
0 χ2

)
such that ρ|IK 6= 1 but χ1|IK = 1. Choose some continuous character

ψ : IK → O×
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and let Dord : CNLO → Set be the functor that sends A to the set of lifts ρ of ρ to A
that are strictly equivalent to a representation of the form(

χ1 ∗
0 χ2

)
with χ1|IK = 1 and χ2|IK = ψ.

This functor is represented by a ring Rord in CNLO (cf. example 33).
Assume further that χ1χ−1

2 6= 1 or εp. Under these assumptions, we want to
prove that Rord ∼= O [[x1, . . . , xg]], where g = 4 + [K : Qp].

3.5.1 Two preliminary results

Let ` be a prime number and consider a finite extension L/Q`. Let V be a finite
F–vector space with a continuous GL–action. Write V∗ for the dual representation
to V and V∗(1) = V∗ ⊗F εp.

Theorem 36 (local Tate duality). For i ∈ { 0, 1, 2 }, we have canonical isomorphisms

Hi(GL, V) ∼= H2−i(GL, V∗(1))∗

Theorem 37 (local Euler characteristic). The Euler characteristic of V is

2

∑
i=0

(−1)i dimF Hi(GL, V) =

{
0 if ` 6= p,

−[L : Q`]dimF(V) if ` = p.

Combining these results, we can compute the dimensions of all the cohomology
spaces as long as we can find the dimension of H0, which is comparatively easier.

Also, when V = ad(ρ), the pairing

(X, Y) 7→ tr(XY)

is perfect and Γ–equivariant. In particular, (ad(ρ))∗(1) = ad(ρ)(1).

3.5.2 The form of Rord

Proposition 38. Under our assumptions for ρ, the functor Dord is formally smooth in
the sense that, for every A ∈ Ob(ArO) and every ideal I of A such that I2 = 0, the
canonical map

Dord(A)→ Dord(A/I)

is surjective.
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Proof. Arguing by induction on the length of I, we can reduce the proof to the case
in which I = ( f ), mA I = 0 and I ∼= F as O–modules.

Fix ρ′ ∈ Dord(A/I) and assume (up to taking a strict equivalent representation)
that

ρ′ =

(
χ′1 b′

0 χ′2

)
with χ′1|IK = 1 and χ′2|IK = ψ

and b′ ∈ Z1(GK, (A/I)(χ′1(χ
′
2)
−1)
)
. We can lift χ′i to χi : GK → A× by lifting

χ′i(FrobK) (as the action on IK is determined by the definition of Dord). Then, we
just need to lift b′ to a cocycle b ∈ Z1(GK, A(χ1χ−1

2 )) and

ρ =

(
χ1 b
0 χ2

)
∈ Dord(A)

will be a preimage of ρ′.
We can lift any coboundary easily, so it suffices to show that the natural map

H1(GK, A(χ1χ−1
2 ))→ H1(GK, (A/I)(χ1χ−1

2 ))

is surjective. But the cokernel of this map injects into

H2(GK, I(χ1χ−1
2 )) ∼= H2(GK, F(χ1χ−1

2 )) ∼= H0(GK, F(χ−1
1 χ2εp)) = 0

as χ1χ−1
2 6= εp. (For the first isomorphism, we use the assumption that I ∼= F; for

the second isomorphism, we use local Tate duality.)

Using general results of commutative algebra applied to CNLO (namely, the
fact that a ring that represents a formally smooth functor is formally smooth
itself and the structure of formally smooth algebras), this proposition implies the
following:

Corollary 39. The ring Rord is of the form

Rord ∼= O [[x1, . . . , xg]]

for some g ∈ Z≥1.

It remains to compute the value of g.
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3.5.3 Computing g

Observe that

g = dimF

(
mRord/(m2

Rord ,mO)
)
= dimF

(
mRord/(m2

Rord ,mO)
)∗

= dimF Dord(F[ε]).

But Dord is a subfunctor of D� and we can define

Dord(F[ε]) D�(F[ε])

Z1
ord(GK, ad(ρ)) Z1(GK, ad(ρ))

H1
ord(GK, ad(ρ)) H1(GK, ad(ρ))

⊆

∼= ∼=
⊆

⊆

and so

g = dimF H1
ord(GK, ad(ρ)) + dimF B1(GK, ad(ρ))

= dimF H1
ord(GK, ad(ρ)) + 4− dimF H0(GK, ad(ρ))

= dimF H1
ord(GK, ad(ρ)) +

{
3 if ρ is non-split,

2 if ρ is split.

It remains to compute dimF H1
ord(GK, ad(ρ)).

Let b be the space of upper triangular matrices in ad(ρ) and let n be the space of
nilpotent matrices in b. Both of these subsets are stable under the (adjoint) action
of GK. Observe that, under the trace pairing,

n∗ ∼= ad(ρ)/b.

Consider the composition

φ : H1(GK, b) H1(GK, b/n) H1(IK, b/n).res

Proposition 40. In the situation above,

H1
ord(GK, ad(ρ)) = Im

(
Ker(φ) ⊆ H1(GK, b)→ H1(GK, ad(ρ))

)
.

Proof. Left as an exercise. The idea is that Dord is defined by requiring that rep-
resentations be (conjugate to) upper triangular, so the cocycles in H1

ord(GK, ad(ρ))
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should come from H1(GK, b). On the other hand, the constraints on the restriction
to IK correspond to mapping to 0 in H1(IK, b/n).

Now observe that

H0(GK, ad(ρ)/b) = H0(GK, F(χ−1
1 χ2)) = 0

because χ1 6= χ2, whence we obtain

H1(GK, b) ↪→ H1(GK, ad(ρ))

from the long exact sequence of cohomology. Therefore,

H1
ord(GK, ad(ρ)) ∼= Ker

(
φ : H1(GK, b)→ H1(IK, b/n)

)
.

Taking cohomology of the short exact sequence

0 n b b/n 0

we obtain

H1(GK, b) H1(GK, b/n) H2(GK, n)

Homcont(GK, b/n) H0(GK, (ad(ρ)/b)(1))

Homcont(K×, F)2 H0(GK, F(χ−1
1 χ2εp)) = 0

∼= ∼=

∼= ∼=

(where in the last column we have used local Tate duality and that χ1χ−1
2 6= εp).

All in all, φ factors as

φ : H1(GK, b) H1(GK, b/n) H1(IK, b/n)

Homcont(πZ
K ×O×K , F)2 Homcont(O×K , F)2

res

∼= ∼=

res

and so

dimF Ker(φ) = dimF Ker
(
res : H1(GK, b/n)→ H1(IK, b/n)

)
+

+ dimF Ker
(
H1(GK, b)→ H1(GK, b/n)

)
= 2 + dimF Im

(
H1(GK, n)→ H1(GK, b)

)
= 2 + dimF H1(GK, n)− dimF Ker

(
H1(GK, n)→ H1(GK, b)

)
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= 2 + dimF H1(GK, n)− dimF H0(GK, b/n) +

+ dimF Im
(
H0(GK, b)→ H0(GK, b/n)

)
= dimF H1(GK, n) + dimF Im

(
H0(GK, b)→ H0(GK, b/n)

)
= dimF H1(GK, n) +

{
1 if ρ is non-split,

2 if ρ is split,

where we have used the exact sequence

H0(GK, n) H0(GK, b) H0(GK, b/n) H1(GK, n) H1(GK, b) H1(GK, b/n)

0 F or F2 F2

∼= ∼=

(the dimension of the second term depends on whether ρ is non-split or split).
We can evaluate the dimension of the remaining term using the Euler charac-

teristic formula:

dimF H1(GK, n) = [K : Qp] + dimF H0(GK, n) + dimF H2(GK, n) = [K : Qp].

Combining everything, we finally conclude that

g = dimF Z1
ord(GK, ad(ρ)) = 4 + [K : Qp].

3.5.4 Variants

Proposition 41. Let L be a finite extension of Q` with ` 6= p. Consider a continuous
homomorphism

ρ : GL → GL2(F)

satisfying that
(1) either

1 6= ρ(IL) ⊆
{(

1 ∗
0 1

)
∈ GL2(F)

}
(2) or ρ = χ1 ⊕ χ2 with χ1|IL = 1 but χ2|IL 6= 1.

The minimal deformation problem Dmin : CNLO → Set introduced either in example 34
or in example 35 is represented by Rmin ∼= O [[x1, x2, x3, x4]].

Proof. Left as an exercise. It is similar to the previous case that we worked out, but
somewhat simpler.
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3.6 Global deformation problems

Fix a number field F and a prime number p. Fix a finite set S of finite places of F
containing all primes above p and let FS be the maximal extension of F unramified
outside S and outside the archimedean places. Write GF,S = Gal(FS/F).

Let O be the ring of integers of a finite extension of Qp and let F be its residue
field. Fix a continuous homomorphism ρ : GF,S → GLn(F) (for some n ∈ Z≥1).
We assume that p

∣∣- 2n.
We consider the deformation functor Dρ : CNLO → Set, which is represented

by a ring Runiv
ρ in CNLO if EndF[GF,S]

(ρ) = F (see theorem 18).
Next we want to impose additional conditions. Given a place v of F, there is a

localization map Dρ → Dρ|GFv
given by restriction from GF to GFv . Fix a continuous

character ψ : GF,S → O× and, for each v ∈ S, a deformation problem Dv ⊆ D�,ψ
ρ|GFv

.

We will refer to the tuple

S = (ρ, S, ψ, O , (Dv)v∈S)

as a global deformation problem.

Definition 42. We say that a lift ρ of ρ to A ∈ Ob(CNLO) is of type S if
(1) ρ is unramified outside S,
(2) det(ρ) = ψ and
(3) ρ|GFv

∈ Dv(A) for every v ∈ S.
Similarly, we say that a deformation is of type S if one lift (or, equivalently, all lifts)
in the corresponding equivalence class is of type S .

Thus, we can define a functor DS : CNLO → Set that sends A to the set of
deformations of ρ to A of type S .

Proposition 43. Let S be as above. If EndF[GF,S]
(ρ) = F, then DS is represented by a

quotient RS of Runiv
ρ .

Proof. By proposition 27, the deformation problem obtained after fixing determin-
ants is still representable by a quotient Rψ

ρ of Runiv
ρ .

Choose a lift ρ in the class of the universal Rψ
ρ –deformation. For every v ∈ S,

the restriction ρ|GFv
corresponds to a morphism R�

ρ|GFv
→ Rψ

ρ .

On the other hand, let Rv be the quotient of R�
ρ|GFv

representing Dv (see propos-

ition 30). Set
R�

S =
⊗

v∈S,O

R�
ρ|GFv

and Rloc
S =

⊗
v∈S,O

Rv.
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Then, the functor DS is represented by

RS = Rψ
ρ ⊗̂R�

S
Rloc

S .

This quotient of Rψ
ρ is independent of the choice of the lift ρ in the class of the

universal Rψ
ρ –deformation, as the quotients

R�
ρ|GFv

→→ Rv

are invariant under strict equivalence classes.

Remark. With the notation in the proof, observe that RS is an algebra over Rloc
S

but not canonically (because of the choice of ρ). It is useful to have a variant of RS

that is canonically an algebra over Rloc
S .

Fix a subset T ⊆ S.

Definition 44. A T–framed lift of ρ to A ∈ Ob(CNLO) is a tuple
(
ρ, (βv)v∈T

)
, where

ρ is a lift of ρ to A and βv ∈ 1 + Mn(mA) for all v ∈ T. We say that
(
ρ, (βv)v∈T

)
is

of type S if ρ is.

Definition 45. We say that two T–framed lifts
(
ρ, (βv)v∈T

)
and

(
ρ′, (β′v)v∈T

)
of

ρ to A ∈ Ob(CNLO) are strictly equivalent if there exists g ∈ 1 + Mn(mA) such
that ρ′ = gρg−1 and β′v = gβv for all v ∈ T. A T–framed deformation of ρ to
A ∈ Ob(CNLO) is a strict equivalence class of T–framed lifts of ρ to A. We say
that a T–framed deformation is of type S if one lift (equivalently, all lifts) in the
corresponding equivalence class is of type S .

Proposition 46.
(1) If EndF[GF,S]

(ρ) = F or T 6= ∅, then the functor DT
S : CNLO → Set that sends

A to the set of T–framed deformations of ρ to A of type S is represented by a ring
RT

S ∈ Ob(CNLO).
(2) If EndF[GF,S]

(ρ) = F and T 6= ∅, the choice of a lift in the universal deformation of
type S gives rise to an isomorphism

RT
S
∼= RS [[x1, . . . , xn2|T|−1]].

Proof. Left as an exercise. The idea for the second part is that n2|T| is the dimension
of the space of choices of (βv)v∈T and the −1 comes from scaling each βv by the
same element in 1 +mA, which stabilizes ρ.
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3.6.1 Tangent spaces

Assume for simplicity that EndF[GF,S]
(ρ) = F, so that DT

S is represented by a ring
RT

S . Observe that, for every T–framed lift
(
ρ, (βv)v∈T

)
in the universal T–framed

deformation and every v ∈ T, we have a local lift

β−1
v ρ|GFv

βv : GFv → GLn(RT
S )

that is independent of the choice in the strict equivalence class. Thus, we get a
canonical morphism Rv → RT

S for every v ∈ T. Putting these together, we obtain
a morphism

RT−loc
S → RT

S with RT−loc
S =

⊗
v∈T,O

Rv.

Next, we want to describe the relative tangent space

mS /(m2
S ,mT−loc),

where mS and mT−loc are the maximal ideal of RT
S and of RT−loc

S , respectively.
Let M be an F[GF,S]–module of finite dimension over F. We write C•(FS/F, M)

for the complex of inhomogeneous cochains computing the GF,S–cohomology
with coefficients in M and C•(Fv, M) for the complex of inhomogeneous cochains
computing the GFv–cohomology with coefficients in M. We want to consider these
complexes for M = ad(ρ) or ad0(ρ).

Recall that, for every v ∈ S, we have a deformation problem Dv ⊆ D�,ψ
ρ|GFv

which

has a corresponding subspace

Lv ⊆ H1(Fv, ad0(ρ)).

Namely, Dv(F[ε]) corresponds to a subspace Lv ⊆ Z1(Fv, ad0(ρ)) whose image
under Z1(Fv, ad0(ρ)) →→ H1(Fv, ad0(ρ)) is Lv. Define a complex C•S ,T(ad0(ρ)) as

33



follows:

Ci
S ,T(ad0(ρ)) =



C0(FS/F, ad(ρ)) if i = 0,

C1(FS/F, ad0(ρ))⊕
(⊕

v∈T
C0(Fv, ad(ρ))

)
if i = 1,

C2(FS/F, ad0(ρ))⊕
(⊕

v∈T
C1(Fv, ad0(ρ))

)
⊕

⊕
( ⊕

v∈S\T
C1(Fv, ad0(ρ))/Lv

)
if i = 2,

Ci(FS/F, ad0(ρ))⊕
(⊕

v∈S
Ci−1(Fv, ad0(ρ))

)
if i > 2.

with boundary map

(
f , (gv)v∈S

)
7−→

(
∂ f , ( f |GFv

− ∂gv)v∈S
)
.

We write Hi
S ,T(ad0(ρ)) for the corresponding cohomology groups. Also, write

hi
S ,T(ad0(ρ)) for the dimension of Hi

S ,T(ad0(ρ)) (and define hi(FS/F, ad0(ρ)) and
hi(Fv, ad0(ρ)) similarly).

Since we assumed that p
∣∣- n, there is a GF,S–equivariant decomposition

ad(ρ) = ad0(ρ)⊕F

and the pairing
(X, Y) 7→ tr(XY)

on ad0(ρ) is perfect and defines an isomorphism (ad0(ρ))∗ ∼= ad0(ρ).

Proposition 47. There is a canonical isomorphism

HomF

(
mS /(m2

S ,mT−loc), F
) ∼= H1

S ,T(ad0(ρ)).

Proof. Take a T–framed lift (ρ, (βv)v∈T) of ρ to F[ε]. For this lift to arise from an
element of HomF

(
mS /(m2

S ,mT−loc), F
)
, we want it to be of type S and to have

trivial restriction at each v ∈ T. More precisely, we want
(i) det(ρ) = ψ = det(ρ),

(ii) ρ|GFv
= βvρ|GFv

β−1
v for every v ∈ T and

(iii) ρ|GFv
∈ Dv(F[ε]) for every v ∈ S \ T.

We can express ρ = (1 + εφ)ρ with φ ∈ Z1(FS/F, ad(ρ)) and βv = 1 + εαv

with αv ∈ ad(ρ) = C0(Fv, ad(ρ)) for every v ∈ T. The previous conditions can be
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reformulated as follows:
(i) φ ∈ Z1(FS/F, ad0(ρ)),

(ii) for every v ∈ T,

φ|GFv
=
(
σ 7→ αv − σαvσ−1) = ∂αv,

and
(iii) φ|GFv

∈ Lv for all v ∈ S \ T.
But by construction of C•S ,T(ad0(ρ)),

∂
(
(φ, (αv)v∈T)

)
=
(
∂φ, (φ|GFv

− ∂αv)v∈T
)
.

Therefore, the conditions (i), (ii) and (iii) hold if and only if ∂
(
(φ, (αv)v∈T)

)
= 0.

Furthermore, two such cocycles (φ, (αv)v∈T) and (φ′, (α′v)v∈T) give strictly
equivalent lifts if and only if there exists g = 1 + εα satisfying that{

φ′ = φ + ∂α,

α′v = αv + α for every v ∈ T.

This happens precisely when(
φ′ − φ, (α′v − αv)v∈T

)
= ∂α in C•S ,T(ad0(ρ)).

Since the complex C•S ,T(ad0(ρ)) is defined almost as a cone of two other com-
plexes, a diagram chase gives an exact sequence

0 −→ H0
S ,T(ad0(ρ)) −→ H0(FS/F, ad(ρ)) −→

⊕
v∈T

H0(Fv, ad(ρ)) –

→ H1
S ,T(ad0(ρ)) −→ H1(FS/F, ad0(ρ)) –

→
(⊕

v∈T
H1(Fv, ad0(ρ))

)
⊕
( ⊕

v∈S\T
H1(Fv, ad0(ρ))/Lv

)
–

→ H2
S ,T(ad0(ρ)) −→ H2(FS/F, ad0(ρ)) –

→
⊕
v∈S

H2(Fv, ad0(ρ)) −→ H3
S ,T(ad0(ρ)) −→ 0

If we wanted to allow p = 2, then the local terms would be more complicated
because the archimedean places could appear in the corresponding sequence.

We want to give some formula for h1
S ,T(ad0(ρ)). First, we can use the previous
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exact sequence to compare Euler characteristics:

χS ,T(ad0(ρ)) = 1− |T|+ χ(FS/F, ad0(ρ))−
− ∑

v∈S
χ(Fv, ad0(ρ)) + ∑

v∈S\T

(
h0(Fv, ad0(ρ))− dimF(Lv)

)
.

Here, the term 1− |T| comes from the fact that the H0 groups have coefficients in
ad(ρ) ∼= ad0(ρ)⊕F instead of in ad0(ρ).

We will be able to obtain formulae for the Euler characteristics χ(Fv, ad0(ρ))

using theorems 36 and 37. Analogously, for χ(FS/F, ad0(ρ)), we can use the
following general results:

Theorem 48 (Poitou–Tate). Let M be a finite F–vector space endowed with a continu-
ous GF,S–action and let M∗ denote the dual representation. There is an exact sequence

0 −→ H0(FS/F, M) −→
⊕

v∈S or v|∞
H0(Fv, M) −→ H2(FS/F, M∗(1))∗ –

→H1(FS/F, M) −→
⊕
v∈S

H1(Fv, M) −→ H1(FS/F, M∗(1))∗

→H2(FS/F, M) −→
⊕
v∈S

H2(Fv, M) −→ H0(FS/F, M∗(1))∗ −→ 0.

(In general, we should include the infinite places everywhere, but with the assumption
p 6= 2 only the corresponding H0 groups are non-trivial.)

Theorem 49 (global Euler characteristic). With the same notation as in theorem 48,
we have

χ(FS/F, M) = −[F : Q]dimF(M) + ∑
v|∞

h0(Fv, M).

We will apply the previous theorems to M = ad0(ρ), noting that M∗ = M in
this case.

Let L⊥v be the orthogonal complement of Lv in H1(Fv, ad0(ρ)(1)) under local
Tate duality (see theorem 36) and define

H1
S ⊥,T(ad0(ρ)(1)) = Ker

(
H1(FS/F, ad0(ρ)(1))→

⊕
v∈S\T

H1(Fv, ad0(ρ)(1))/L⊥v
)

.

By theorem 48, we obtain an exact sequence

H1(FS/F, ad0(ρ)) −→
(⊕

v∈T
H1(Fv, ad0(ρ))

)
⊕
( ⊕

v∈S\T
H1(Fv, ad0(ρ))/Lv

)
–
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→ H1
S ⊥,T(ad0(ρ)(1))∗ −→ H2(FS/F, ad0(ρ)) −→

⊕
v∈S

H2(Fv, ad0(ρ)) –

→ H0(FS/F, ad0(ρ)(1)) −→ 0

that we can compare to the original exact sequence to deduce that

h2
S ,T(ad0(ρ)) = h1

S ⊥,T(ad0(ρ)(1))

and
h3

S ,T(ad0(ρ)) = h0(FS/F, ad0(ρ)(1)).

Now we can use the local and the global Euler characteristic formulae (see theor-
ems 37 and 49) and the fact that S contains all primes above p to compute

χS ,T(ad0(ρ)) = 1− |T|+ ∑
v|∞

h0(Fv, ad0(ρ)) + ∑
v∈S\T

(
h0(Fv, ad0(ρ))− dimF(Lv)

)
.

In conclusion, knowing h2
S ,T, h3

S ,T and χS ,T, we can compute h0
S ,T (easy) and

obtain the following result:

Theorem 50 (Greenberg–Wiles formula). In the situation above, we have

h1
S ,T(ad0(ρ)) = h1

S ⊥,T(ad0(ρ)(1)) + ∑
v∈S\T

(
dimF(Lv)− h0(Fv, ad0(ρ))

)
−

− ∑
v|∞

h0(Fv, ad0(ρ))− h0(FS/F, ad0(ρ)(1)) +

+

{
|T| − 1 if T 6= ∅,

0 if T = ∅.

3.7 Taylor–Wiles primes

Fix again a global deformation problem

S = (ρ, S, ψ, O , (Dv)v∈S),

where ρ : GF,S → GL2(F) (with the same notation as in section 3.6). Assume, for
simplicity, that p > 2.

Definition 51. A Taylor–Wiles prime (for S ) is a (finite) prime v of F such that
(1) v 6∈ S,
(2) qv = N(v) ≡ 1 mod p and
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(3) ρ(Frobv) has distinct F–rational eigenvalues.
We say that a Taylor–Wiles prime v has level N ∈ Z≥1 if, moreover,

qv ≡ 1 mod pN.

Remarks.
(1) Up to enlarging F, we can (and do) assume that all eigenvalues of all the

elements in ρ(GF,S) are defined over F.
(2) In ranks higher than 2, the generalization of condition (3) varies depending

on the context.

Proposition 52. Let v be a Taylor–Wiles prime. For every A ∈ Ob(CNLO), every lift
ρ : GFv → GL2(A) of ρ|GFv

is strictly equivalent to a diagonal lift(
χ1 0
0 χ2

)
.

Proof. We can reduce to the case where A is artinian by taking the limit of quotients
by powers of mA. Then, fix a lift φ ∈ GFv of Frobv ∈ GFv /IFv . Since ρ(Frobv) has
distinct eigenvalues in F×, we can find a basis for ρ such that

ρ(φ) =

(
α 0
0 β

)
for some α, β ∈ A.

Since ρ(IFv) = 1, we have ρ(IFv) ⊆ 1 + M2(mA). In particular, ρ(IFv) is a pro-p
group and ρ|IFv

must factor through the tame inertia quotient. Fix a topological
generator t for the tame inertia. It suffices to prove that, in the basis fixed above,
ρ(t) is also diagonal.

We argue by induction on the length of A. The base case is trivial because ρ is
unramified outside S. For the inductive step, we can assume that mn+1

A = 0 and

ρ(t) = 1 + X ∈ 1 + M2(mA) with X =

(
a b
c d

)
and b, c ∈ mn

A.

It is easy to check that Xk is diagonal for all k ∈ Z≥2. But we know that φ−1tφ = tqv

and we can compute

0 = ρ(φ)−1ρ(t)ρ(φ)− ρ(t)qv

=

[
1 +

(
a α−1βb

αβ−1c d

)]
−
[

1 + qv

(
a b
c d

)
+

(∗ 0
0 ∗

)]
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=

(
0 (α−1β− 1)b

(αβ−1 − 1)c 0

)
+

(∗ 0
0 ∗

)
,

where in the last equality we used that (qv − 1)b = 0 = (qv − 1)c because, by
the assumptions on v, p

∣∣ (qv − 1) and so (qv − 1) ∈ mA. But (αβ−1 − 1) and
(α−1β− 1) are units in A, as α 6≡ β mod mA. Therefore, b = c = 0.

Let v be a Taylor–Wiles prime for S and let R�,ψ
v denote the universal lifting

ring for ρ|GFv
with fixed determinant ψ. Let ρψ be the universal lift corresponding

to the identity on R�,ψ
v . By proposition 52, the lift ρψ is strictly equivalent to a lift

of the form(
χ1 0
0 χ2

)
with χ1, χ2 : GFv → (R�,ψ

v )× such that χ1χ2 = ψ.

In particular, since ψ is unramified at v,

χ1|IFv
= χ−1

2 |IFv
.

But ρ is unramified at v, so χ1|IFv
must be a pro-p character of

Iab
Fv
∼= O×Fv

∼= κ×v ×Zd
s × Gv,

where κv is the residue field of F at v, s is the characteristic of κv and Gv is a finite
s–group. Therefore, χ1|IFv

must factor through κ×v (as p
∣∣- v). Let ∆v be the maximal

p–power quotient of κ×v and write O [∆v] for the associated group algebra over O

and av for the augmentation ideal of O [∆v]. The character χ1|IFv
determines an

O [∆v]–algebra structure on R�,ψ
v . Moreover, there exists a natural surjection

R�,ψ
v →→ Rur,ψ

v ,

where Rur,ψ
v represents the lifts of ρ|GFv

that are unramified at v and with determ-

inant ψ, whose kernel is precisely avR�,ψ
v because a lift ρ : GF,S → GL2(A) is

unramified if and only if the corresponding map φ : R�,ψ
v → A satisfies that the

composition

IFv

(
R�,ψ

v
)× A×

∆v

χ1 φ

is trivial (or, equivalently, φ factors through R�,ψ
v /avR�,ψ

v ). All in all, we obtain an
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isomorphism
R�,ψ

v /avR�,ψ
v
∼= Rur,ψ

v .

Let Q be a finite set of Taylor–Wiles primes. Define

∆Q = ∏
v∈Q

∆v

and consider the group algebra O [∆Q] and its augmentation ideal aQ. We define
the global deformation problem

SQ =
(
ρ, S ∪Q, ψ, O , (Dv)v∈S ∪ (Dψ

v )v∈Q
)
,

where, for each v ∈ Q, Dψ
v is the deformation condition of all lifts of ρ|GFv

with
determinant ψ|GFv

. (The idea is that sometimes we want to enlarge S.) Assume that
EndF[GF,S]

(ρ) = F, so that there exist universal rings RSQ and RS representing the
deformation problems SQ and S . For every T ⊆ S, we also have rings RT

SQ
and

RT
S representing the corresponding T–framed problems. Observe that, applying

the construction of the previous paragraph to each v ∈ Q, the ring RT
SQ

has the
structure of an O [∆Q]–algebra and the natural surjection RT

SQ
→→ RT

S has kernel
aQRT

SQ
.

Recall that, for every (possibly empty) T ⊆ S, the tangent space of RT
S (relative

to RT−loc
S ) is given by a cohomology group H1

S ,T(ad0(ρ)) whose dimension is

h1
S ,T(ad0(ρ)) = h1

S ⊥,T(ad0(ρ)(1)) + ∑
v∈S\T

(
dimF(Lv)− h0(Fv, ad0(ρ))

)
−

− ∑
v|∞

h0(Fv, ad0(ρ))− h0(FS/F, ad0(ρ)(1)) +

+

{
|T| − 1 if T 6= ∅,

0 if T = ∅,

by theorem 50 (see section 3.6.1 for all the notation). Now add the following
assumptions:

(1) ρ|GF(ζp)
is absolutely irreducible, which implies that there are no non-scalar

GF,S–equivariant morphisms ρ→ ρ(1) and so H0(FS/F, ad0(ρ)(1)) = 0;
(2) F is totally real and det(ρ(cv)) = −1 for all places v

∣∣ ∞, where cv denotes
the complex conjugation at v, which implies that h0(Fv, ad0(ρ)) = 1;

(3) • for every v ∈ S \ T such that v
∣∣ p,

dimF(Lv)− h0(Fv, ad0(ρ)) = [Fv : Qp]
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(e.g., this holds if

ρ|GFv
∼=
(

χ1 ∗
0 χ2

)
with χ1|IFv

= 1 and χ2|IFv
6= 1

and Dv = Dord,ψ
v is analogous to example 33 adding the condition of

fixed determinant ψ);
• for every v ∈ T such that v

∣∣ p, the ring Rv is O–flat of relative dimen-
sion 3 + [Fv : Qp] over O (so that dim(Rv) = 4 + [Fv : Qp]);

(4) • for every v ∈ S \ T such that v
∣∣- p,

dimF(Lv)− h0(Fv, ad0(ρ)) = 0

(e.g., this holds if

ρ|IFv
=

(
1 ∗
0 1

)
6= 1

or
ρ|GFv

=

(
χ1 0
0 χ2

)
with χ1|IFv

= 1 and χ2|IFv
6= 1

and Dv = Dmin,ψ
v is analogous to examples 34 and 35, respectively,

adding the condition of fixed determinant ψ), and
• for every v ∈ T such that v

∣∣- p, the ring Rv is O–flat of relative dimen-
sion 3 over O (so that dim(Rv) = 4).

Remark. In applications, the conditions appearing in (3) and (4) for the places
v ∈ T are essentially always true, while the conditions for the places v ∈ S \ T
hold if and only if Dv (equivalently Rv) is formally smooth over O .

Under these additional assumptions, the formula becomes simpler:

h1
S ,T(ad0(ρ)) = h1

S ⊥,T(ad0(ρ)(1))− ∑
v∈T
v|p

[Fv : Qp] +

{
|T| − 1 if T 6= ∅,

0 if T = ∅.

In particular, if T = ∅, then

h1
S (ad0(ρ)) = h1

S ⊥(ad0(ρ)(1)).

Similarly, if T contains all the primes of F lying over p,

h1
S ,T(ad0(ρ)) = |T| − 1− [F : Q] + h1

S ⊥,T(ad0(ρ)(1)).
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One can show that dim(RT−loc
S ) = 1 + 3|T|+ [F : Q] and so

dim(RT−loc
S ) + h1

S ,T(ad0(ρ)) = h1
S ⊥,T(ad0(ρ)(1)) + 4|T|.

(One should interpret this 4|T| as the sum of 4|T| − 1, the relative dimension of
RT

S over RS , and 1, coming from O .)
Now let Q be a finite set of Taylor–Wiles primes for S . Recall that we defined

a global deformation problem

SQ =
(
ρ, S ∪Q, ψ, (Dv)v∈S ∪ (Dψ

v )v∈Q
)
.

We want to study how the formulae for h1
S ,T(ad0(ρ)) in the two cases T = ∅ or

T ⊇ { v
∣∣ p } changes if we replace S with SQ.

• Observe that h1
S ⊥,T(ad0(ρ)(1)) gets replaced by h1

S ⊥Q ,T
(ad0(ρ)(1)). But, for

v ∈ Q, Dψ
v contains all lifts with determinant ψ|GFv

and so

Lv = H1(Fv, ad0(ρ)) and L⊥v = 0.

Therefore,

H1
S ⊥Q ,T(ad0(ρ)) = Ker

(
H1(FS∪Q/F, ad0(ρ)(1)) —–

→
( ⊕

v∈S\T
H1(Fv, ad0(ρ)(1))/L⊥v

)
⊕
(⊕

v∈Q
H1(Fv, ad0(ρ)(1))

))

= Ker

(
H1

S ⊥,T(ad0(ρ)(1)) −→
⊕
v∈Q

H1(Fv, ad0(ρ)(1))

)
.

• We have to add

∑
v∈Q

(
dimF(Lv)− h0(Fv, ad0(ρ))

)
= ∑

v∈Q

(
h1(Fv, ad0(ρ))− h0(Fv, ad0(ρ))

)
= ∑

v∈Q
h2(Fv, ad0(ρ))

= ∑
v∈Q

h0(Fv, ad0(ρ)(1))

= ∑
v∈Q

h0(Fv, ad0(ρ)) = |Q|,

where we have used theorems 36 and 37 and then at the end the defining
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properties of Taylor–Wiles primes, namely that qv ≡ 1 mod p and that
ρ(Frobv) has distinct eigenvalues.

Our next goal is to get h1
S ⊥Q ,T

(ad0(ρ)(1)) = 0 by adding (at least) h1
S ⊥,T(ad0(ρ)(1))

Taylor–Wiles primes. But this number (of primes) depends only on the original
data. In that case, we will be able to obtain a formula for h1

SQ,T(ad0(ρ)) depending
only on S .

Definition 53. Let Γ be a subgroup of GL2(F) acting absolutely irreducibly on
F2 and such that all the eigenvalues of elements of Γ are defined over F. Let ad0

denote the space of matrices of trace 0 in M2(F) with adjoint Γ–action. We say that
Γ is adequate or big or enormous if

(1) Γ has no quotient of order p,
(2) H0(Γ, ad0) = 0 = H1(Γ, ad0) and
(3) for every simple F[Γ]–submodule W of ad0, there exists γ ∈ Γ with distinct

eigenvalues such that Wγ 6= 0 (i.e., there are non-trivial elements of W that
are invariant under γ).

Remark. In rank 2, the notions of adequate, big and enormous coincide. However,
in higher ranks, the definition above is only the definition of enormous. The defin-
ition of big is obtained by replacing “with distinct eigenvalues” with “semisimple
with an eigenvalue of multiplicity 1” in condition (3); the definition of adequate is
obtained by replacing “with distinct eigenvalues” with “semisimple” and Wγ 6= 0
with something more technical in condition (3).

Theorem 54. With the assumptions that Γ acts absolutely irreducibly on F2 and that
p > 2, the group Γ is enormous unless

• either p = 3 and the image of Γ in PGL2(F3) is conjugate to PSL2(F3)

• or p = 5 and the image of Γ in PGL2(F5) is conjugate to PSL2(F5).

Remark. The first case fails because PSL2(F3) ∼= A4 has a quotient of order 3. The
second case fails because H1(Γ, ad0) 6= 0. This last case is more delicate and so
must often be avoided.

Proposition 55. Suppose that Γ = ρ(GF(ζp)) is enormous. Let q = h1
S ⊥,T(ad0(ρ)(1)).

For every N ∈ Z≥1, we can find a set QN of Taylor–Wiles primes of level N such that
(1) |QN| = q and
(2) H1

S ⊥QN
,T(ad0(ρ)(1)) = 0.
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Proof. Fix N ∈ Z≥1. Take Taylor–Wiles primes Q = { v1, . . . , vj−1 } of level N for
some j ∈ { 1, . . . , q } such that

h1
S ⊥Q ,T(ad0(ρ)(1)) = q− (j− 1).

We show how to find another Taylor–Wiles prime vj of level N such that, setting
Q′ = Q ∪ vj,

h1
S ⊥

Q′ ,T
(ad0(ρ)(1)) = q− j.

Thus, iterating this construction, we obtain the proposition.
Fix a class [κ] ∈ H1

S ⊥Q ,T(ad0(ρ)(1)) \ { 0 }, where κ is a 1–cocycle. It suffices to

show that there exist infinitely many primes v of F such that
(a) v 6∈ S,
(b) qv ≡ 1 mod pN,
(c) ρ(Frobv) has distinct eigenvalues (defined in F) and
(d) the restriction map resv induces an isomorphism

F[κ] ∼= H1(Fur
v /Fv, ad0(ρ)(1)).

If v satisfies the first 3 conditions, then

H1(Fur
v /Fv, ad0(ρ)(1)) ∼= ad0(ρ)/(Frobv−1)ad0(ρ)

via [φ] 7→ φ(Frobv) and the right-hand side has dimension 1. (In particular, we
could get rid of the Tate twist on the right-hand side thanks to condition (b).)
Therefore, we can replace condition (d) with
(d’) resv(κ) 6∈ (Frobv−1)ad0(ρ).

By Chebotarev’s density theorem, it suffices to show that there is σ ∈ GF,S such
that

(i) σ ∈ GF(ζN
p ),

(ii) ρ(σ) has distinct eigenvalues and
(iii) κ(σ) 6∈ (σ− 1)ad0(ρ).

Indeed, these conditions are open (in the sense that they will be true for an open
neighbourhood of σ) and then there will be a positive density of primes v satisfying
the conditions from above.

Let L1 be the extension of F1 = F(ζp) cut out by ρ|GF(ζp)
. Consider also the

extensions FN = F(ζpN) and LN = L1 · FN (where ·means the compositum). We
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obtain a diagram
LN

L1 FN

F1

F

Γ

Γ

using the first property in definition 53 to see that L1 ∩ FN = F1. We claim that
H1(LN/F, ad0(ρ)(1)) = 0. Indeed, in the inflation-restriction exact sequence

0 H1(FN/F, (ad0(ρ)(1))Gal(LN/FN)
)

H1(LN/F, ad0(ρ)(1))

H1(LN/FN, ad0(ρ)(1))

we see that
(ad0(ρ)(1))Gal(LN/FN) = H0(Γ, ad0(ρ)) = 0

and
H1(LN/FN, ad0(ρ)(1)) = H1(Γ, ad0(ρ)) = 0

by the second property in definition 53, whence the claim follows. Therefore, using
the claim and the inflation-restriction exact sequence for FS/LN/F, the restriction
morphism

H1(FS/F, ad0(ρ)(1)) −→ H1(FS/LN, ad0(ρ)(1))Gal(LN/F)

is injective. In particular,

0 6= res([κ]) ∈ H1(FS/LN, ad0(ρ)(1))Gal(FS/LN) ⊆ HomΓ(Gal(FS/LN), ad0(ρ)).

Let W be a non-zero irreducible subrepresentation of Γ in the F–span of
κ(Gal(FS/LN)) inside ad0(ρ). By the third property in definition 53, we can
find σ0 ∈ Gal(LN/FN) such that ρ(σ0) has distinct eigenvalues and Wσ0 6= 0.
That is, the element σ0 satisfies conditions (i) and (ii). If κ(σ0) 6∈ (σ0 − 1)ad0(ρ),
which is condition (iii), we can take σ = σ0 and we are done. Now assume that
κ(σ0) ∈ (σ0 − 1)ad0(ρ). After conjugation if necessary, we can assume that

ρ(σ0) =

(
α 0
0 β

)
with α 6= β.
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Therefore,

(σ0 − 1)ad0(ρ) =

{(
0 ∗
∗ 0

)}
,

which has no non-zero ρ(σ0)–invariant vectors. Since Wσ0 6= 0, we deduce that

W 6⊆ (σ0 − 1)ad0(ρ),

which implies that κ(Gal(FS/LN)) 6⊆ (σ0 − 1)ad0(ρ) and so there exists some
τ ∈ Gal(FS/LN) such that κ(τ) 6∈ (σ0 − 1)ad0(ρ). We can take σ = τσ0, which
satisfies that

σ ∈ GFN and ρ(σ) = ρ(σ0)

and
κ(σ) = κ(τ) + τκ(σ0) = κ(τ) + κ(σ0) 6∈ (σ0 − 1)ad0(ρ).

The result follows because (σ0 − 1)ad0(ρ) = (σ− 1)ad0(ρ).

If we further assume that the deformation problems Dv for v ∈ S are nice like
in the cases

(1) T = ∅ or
(2) T containing all the primes of F lying above p,

then we obtain the following result:

Corollary 56. There exists q ∈ Z≥0 such that, for every N ∈ Z≥1, there exist a set QN

consisting of exactly q Taylor–Wiles primes of level N and a surjection

RT−loc
S [[x1, . . . , xg]]→→ RT

SQN
,

where
(1) if T = ∅ (so that RT−loc

S = O), then g = q, and
(2) if T contains all the places above p, then

dim(RT−loc
S ) + g = q + 4|T|.

Definition 57. A Taylor–Wiles datum (for S and T) is a pair (Q, (αv)v∈Q), where Q
is a set of Taylor–Wiles primes and αv is an eigenvalue of ρ(Frobv) for each v ∈ Q.

We saw after proposition 52 that, if

ρuniv : GF,S → GL2(RSQ)
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is the universal deformation of type SQ, then for every v ∈ Q

ρuniv|GFv
∼= χ1 ⊕ χ2

and the composition O×Fv
→ R×S of χi with (the restriction of) the local Artin

reciprocity map factors through the maximal quotient ∆v of κ×v of p–power order.
The choice of an eigenvalue αv of ρ(Frobv) determines an ordering of the characters
χ1 and χ2 by, say, requiring that χ1(Frobv) = αv. (Here, we are using that the two
eigenvalues are distinct.)

Thus, a Taylor–Wiles datum gives rise to a morphism of O–algebras

O [∆Q]→ RT
SQ

,

by means of which we regard RT
SQ

as an O [∆Q]–algebra. There is a natural surject-
ive morphism RT

SQ
→→ RT

S (corresponding to the forgetful functor) and we saw
in the paragraphs after proposition 52 that its kernel is aQRT

SQ
, where aQ is the

augmentation ideal of O [∆Q]. That is, we obtain a short exact sequence

0 aQRT
SQ

RT
SQ

RT
S 0.

Take a Taylor–Wiles datum with Q as in corollary 56. Write q = |Q| and define
S∞ = O [[y1, . . . , yq]] and a∞ = (y1, . . . , yq)S∞.

(1) Suppose that T = ∅. Since each ∆v (for v ∈ Q) is cyclic of p–power order,
we have a diagram

O [[Z
q
p]] O [[y1, . . . , yq]] = S∞ a∞

1 + yi

O [∆q] (gen. of ∆vi) aQ

O [[x1, . . . , xg]] RSQ

∼= ⊃

which shows that RSQ /a∞ ∼= RS . Moreover, we know that g = q. Later we
will use this fact together with the two maps

O [[x1, . . . , xg]]→→ RSQ ← O [[y1, . . . , yq]].

(2) Suppose that T contains all primes of F lying over p. Fix an isomorphism
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RT
SQ
∼= RSQ [[z1, . . . , z4|T|−1]]

∼= RSQ ⊗̂O T , where T = O [[z1, . . . , z4|T|−1]]. In
this case, we have a similar diagram

T [[Zq
p]] T [[y1, . . . , yq]] ∼= T ⊗̂O S∞ T ⊗̂O a∞

T [∆Q] T ⊗̂O aQ

RT−loc
S [[x1, . . . , xg]] RT

SQ

∼= ⊃

which shows that RT
SQ

/a∞ ∼= RS . Moreover, we know that

dim
(

RT−loc
S [[x1, . . . , xg]]

)
= dim

(
T ⊗̂O S∞

)
.

Later we will use this fact together with the two maps

RT−loc
S [[x1, . . . , xg]]→→ RSQ ← O [[z1, . . . , z4|T|−1, y1, . . . , yq]].

4 Modularity lifting

Fix a finite extension E/Qp with ring of integers O and residue field F. We always
assume that p > 2. We consider a continuous homomorphism

ρ : GQ,S → GL2(F),

where S is a finite set of prime numbers containing p, QS is the maximal extension
of Q unramified outside S and GQ,S = Gal(QS/Q). We fix a Taylor–Wiles datum
of level N (

Q, (αv)v∈Q
)

for ρ, which consists of a finite set Q of prime numbers v not in S and such that
(1) v ≡ 1 mod pN,
(2) ρ(Frobv) has F–rational eigenvalues αv and βv satisfying that αv 6= βv.

Then (αv)v∈Q is a choice of one eigenvalue for each v ∈ Q in the last property.
Associated with such data, there is a theory on the Galois side that we have studied
in section 3, and a theory on the automorphic side that we will study next.

Fix a torsion-free subgroup Γ of SL2(Z) such that Γ1(M) ⊆ Γ ⊆ Γ0(M) for
some M ∈ Z≥1. Assume that ρ arises from a Hecke eigenform g ∈ S2(Γ, O). To
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simplify the notation, we write S2(Γ) = S2(Γ, O).

Remark. We have the following analogy with Hida theory. In Hida theory, one
considers S2(Γ ∩ Γ1(pN+1)) and take (co)invariants under

(
Γ ∩ Γ0(pN+1)

)
/
(
Γ ∩ Γ1(pN+1)

) ∼= (Z/pN+1Z)× ∼= (Z/pZ)× × (Z/pNZ)

to obtain S2(Γ ∩ Γ0(pN+1)). Then one applies Hida’s idempotent operator to pass
from S2(Γ ∩ Γ1(pN+1))ord to

S2(Γ ∩ Γ0(pN+1))ord ∼= S2(Γ ∩ Γ0(p))ord.

Fixing a tame character, we can build a module over Λ = O [[Zp]] which, after
modding out by the augmentation ideal, recovers S2(Γ ∩ Γ0(p))ord.

Taylor and Wiles defined

Γ1(Q) = Γ ∩ Γ1

(
∏
v∈Q

v
)

and Γ0(Q) = Γ ∩ Γ0

(
∏
v∈Q

v
)

and considered the subgroup ΓQ of Γ0(Q) which contains Γ1(Q) and such that
Γ0(Q)/ΓQ is the maximal p–power quotient of

Γ0(Q)/Γ1(Q) ∼= ∏
v∈Q

(Z/vZ)×.

In particular, Γ0(Q)/ΓQ
∼= ∆Q (the same ∆Q that appeared in section 3.7). They

consider S2(ΓQ) and take (co)invariants under ∆Q (which projects onto (Z/pNZ)q,
where q = |Q|) to obtain S2(Γ0(Q)) (by the property of Taylor–Wiles primes
regarded modulo pN). After localizing at appropriate maximal ideals m and mQ

defined using the condition on the Frobenius-eigenvalues of Taylor–Wiles primes,
one passes from S2(ΓQ)mQ to

S2(Γ0(Q))mQ
∼= S2(Γ)m.

We use this to build a module over S∞ = O [[Z
q
p]] which, after modding out by the

augmentation ideal, recovers S2(Γ)m.

4.1 Taylor–Wiles primes and Hecke algebras

Let TS(Γ) be the subalgebra of EndO

(
H1(Γ, O)

)
= EndO

(
H1(Y, O)

)
(where we

write Y = Y(Γ)) generated by the Hecke operators T` and S` = 〈`〉 for all primes
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` 6∈ S. Our representation ρ arising from the eigenform g gives rise to a max-
imal ideal m of TS(Γ) (the kernel of the corresponding Hecke eigensystem λg;
cf. section 2). We assume that ρ is absolutely irreducible, which means that m
is non-Eisenstein. We showed in proposition 9 that Hi(Γ, F)m = 0 unless i = 1.
Consequently:

(1) The O–module H1(Γ, O)m is free. More generally, if R is an O–algebra, then
H1(Γ, R)m is a free R–module.

(2) On O–modules, the functor

R 7→ H1(Γ, R)m

is exact.
(3) In particular, we have a Hecke–equivariant isomorphism

HomO

(
H1(Y, O)m, O

) ∼= H1(Y, O)m.

Recall from section 2 that we have a Galois representation

ρm : GQ,S → GL2
(
TS(Γ)m

)
with the property that, for every prime ` 6∈ S,

CharPoly(ρm(Frob`)) = X2 − T` X + ` S` .

In particular, for v ∈ Q, we have

CharPoly(ρ(Frobv)) = X2 − Tv X + v Sv

and this is ≡ (X− αv)(X− βv) mod m. Theorem 11 says that, for a representation
ρ : GQ,S → GL2(R) with R a complete local ring with residue field F, if the residual
representation is absolutely irreducible, then ρ can be conjugated to take values in
the subring generated by the traces on a dense subset of GQ,S. We can apply this
to “remove” finitely many more primes apart from those in S (for example, those
in Q) and still recover TS(Γ)m from the characteristic polynomials of ρm.

To make this more precise, by abuse of notation, let m also denote m∩TS∪Q(Γ).
The inclusion TS∪Q(Γ) ⊆ TS(Γ) induces an isomorphism TS∪Q(Γ)m ∼= TS(Γ)m.
Thus, by Hensel’s lemma, we can find Av ∈ TS∪Q(Γ)m lifting our fixed root αv for
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every v ∈ Q. Define

T
S∪Q
Q (Γ0(Q)) = TS∪Q(Γ0(Q))[Uv : v ∈ Q]

and let mQ = (m, (Uv−Av)v∈Q) ⊆ T
S∪Q
Q (Γ0(Q)).

Proposition 58. The ideal mQ of T
S∪Q
Q (Γ0(Q)) is maximal and the natural map

H1(Y0(Q), O)→ H1(Y, O)

induces an isomorphism

H1(Y0(Q), O)mQ
∼= H1(Y, O)m

that is equivariant for the Hecke operators at primes outside S ∪Q.

Define T
S∪Q
Q (ΓQ) to be the O [∆Q]–subalgebra of EndO

(
H1(YQ, O)

)
(where

YQ = Y(ΓQ)) generated by the Hecke operators T` and S` for primes ` 6∈ S ∪ Q
and Uv for primes v ∈ Q. We consider the ideal

mQ =
(
m, aQ, (Uv−Av)v∈Q

)
⊆ T

S∪Q
Q (ΓQ),

where aQ is the augmentation ideal of O [∆Q]. We have a natural map

H1(YQ, O)mQ → H1(Y0(Q), O)mQ .

But, by Shapiro’s lemma, we can identify

H1(YQ, O)mQ
∼= H1(Y0(Q), O [∆Q])mQ

and the latter is a free O [∆Q]–module with coinvariants

∼= H1(Y0(Q), O)mQ
∼= H1(Y, O)m

(where we used proposition 58). Therefore, the natural map above on homology
spaces has a particularly simple form.

Recall that we can view TS(Γ) as the image of TS,univ = O [T`, S` : ` 6∈ S] in
EndO

(
H1(Y, O)

)
. We defined m to be the maximal ideal of TS(Γ) arising from ρ,

but sometimes we also want to view it as a maximal ideal of TS,univ (its pullback
under the natural map). Apart from that, we used the symbol m to mean the
maximal ideal m∩TS∪Q(Γ) too and we get analogous results.
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Lemma 59. Let mQ = m∩TS∪Q,univ. The natural inclusion

TS∪Q(Γ)mQ → TS(Γ)m

is an isomorphism.

Proof. By Nakayama’s lemma, it suffices to prove that

TS(Γ)m/(mQ) ∼= F

(i.e., surjectivity modulo mQ). But this reduces us to proving that, for every v ∈ Q,
the operators Tv and Sv act modulo mQ as multiplication by an element of F.

Since ρ is absolutely irreducible, we have Galois representations
• ρm : GQ,S → GL2(T(Γ)m) characterized by

CharPoly(ρm(Frob`)) = X2 − T`X + `S`

for all ` 6∈ S and
• ρmQ : GQ,S∪Q → GL2(T(Γ)mQ) characterized by

CharPoly(ρmQ(Frob`)) = X2 − T`X + `S`

for all ` 6∈ S ∪Q.
Consider the Galois representation ρ = ρm mod mQ. For ` 6∈ S ∪ Q, we can
compute

tr
(
ρ(Frob`)

)
=
(
tr
(
ρm(Frob`)

)
mod mQ) = (T` mod mQ)

=
(
tr
(
ρmQ(Frob`)

)
mod mQ) = tr

(
ρ(Frob`)

)
∈ F.

By continuity, we deduce that tr(ρ) is F–valued. In particular, for v ∈ Q,

(Tv mod mQ) = tr
(
ρ(Frobv)

)
∈ F.

The same argument with det in place of tr shows that (Sv mod mQ) ∈ F too.

Remark. Lemma 59 shows that

Hi(Y, O)mQ = Hi(Y, O)m

(and similarly using F–coefficients instead of O–coefficients). For this reason, we
will just write m = mQ in what follows.
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Define T
S∪Q,univ
Q = TS∪Q,univ[Uv : v ∈ Q]. For each v ∈ Q, choose a lift α̃v ∈ O

of the eigenvalue αv ∈ F and define

mQ =
(
m, (Uv − α̃v)v∈Q

)
⊆ T

S∪Q,univ
Q .

By the theory of oldforms, the ideal mQ is in the support of H1(Y0(Q), F) (we
prove it later) and so also of H1(Y0(Q), F) ∼= HomF

(
H1(Y0(Q), F), F

)
. Observe

that the natural map
TS∪Q(Γ0(Q))→ T

S∪Q
Q (Γ0(Q))

is a morphism of finite O–algebras. In addition, TS∪Q(Γ0(Q))m is a complete local
ring and T

S∪Q
Q (Γ0(Q))m is a complete semilocal ring, one of whose (local) direct

summands is T
S∪Q
Q (Γ0(Q))mQ . Therefore, H1(Y0(Q), O)mQ is a direct summand of

H1(Y0(Q), O)m. The same is true if we replace Γ0(Q) and Y0(Q) with ΓQ and YQ

(or if we use cohomology instead of homology).
We could prove proposition 58 using that, since

Hi(Y, F)m = HomF

(
Hi(Y, F)m, F

)
= 0 if i 6= 1,

the properties recalled before for Hi also hold for Hi (also if we replace Γ with
Γ0(Q) or ΓQ). Instead, we prove the following analogue directly with cohomology
groups:

Proposition 60. The natural map H1(Y, O)→ H1(Y0(Q), O) induces an isomorphism

H1(Y, O)m ∼= H1(Y0(Q), O)mQ

of TS∪Q,univ–modules whose inverse is given by the trace map up to units in O×.

To prove proposition 60, it suffices to prove that

H1(Y, F)m ∼= H1(Y0(Q), F)mQ .

Indeed, both H1(Y, O)m and H1(Y0(Q), O)mQ are finite free O–modules satisfying
that

H1(Y, O)m ⊗O F ∼= H1(Y, F)m

and
H1(Y0(Q), O)mQ ⊗O F ∼= H1(Y0(Q), F)mQ .
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Thus, we can apply the snake lemma to the diagram

0 H1(Y, O)m H1(Y, O)m H1(Y, F)m 0

0 H1(Y0(Q), O)mQ H1(Y0(Q), O)mQ H1(Y0(Q), F)mQ 0

v

v

and apply Nakayama’s lemma.
Arguing by induction on |Q|, we may assume that Q = { v }. Consider

K = GL2(Zv) and I =
{(

a b
c d

)
∈ K : c ≡ 0 mod v

}
.

For an open compact subset U of K, let HU denote the convolution algebra of
compactly supported U–biinvariant functions f : GL2(Qv)→ F, which is gener-
ated by double coset operators [UgU] for g ∈ GL2(Qv). Its identity element is the
characteristic function [U] of U.

Let M = H1(Y0(Q), F)m and N = H1(Y, F)m. By definition, M is aHI–module
and N is a HK–module. We will define some isomorphisms that depend on the
choice of a square root v1/2 ∈ F. Since v ≡ 1 mod p, we can choose v1/2 = 1.

Observe thatHK = F[Tv, Sv], where

Tv =

[
K
(

v 0
0 1

)
K
]

and Sv =

[
K
(

v 0
0 v

)
K
]

.

Let T be the diagonal torus in GL2 and let X∗(T) be the group of cocharacters of T.
We can express X∗(T) = Zλ1 + Zλ2, where

λ1(t) =
(

t 0
0 1

)
and λ2(t) =

(
1 0
0 t

)
.

Let W = { 1, w0 } be the Weyl group of GL2. We will use the Satake isomorphism

F[X∗(T)]W ∼= HK

given by
λ1 + λ2 7→ v1/2 Tv = Tv and λ1λ2 7→ v Sv = Sv

(where we used that v = 1 in F). There is an analogous description ofHI :
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Lemma 61. Since v ≡ 1 mod p, we have an isomorphism

HI
∼= F[X∗(T)oW]

characterized as follows:
• λ ∈ X∗(T)+ = { aλ1 + bλ2 : a ≥ b } is mapped to [Iλ(v)I] ∈ HI and
• w ∈W is mapped to [Iw̃I] ∈ HI , where w̃ ∈ N(T) is a lift of w.

Under this isomorphism, the centre Z(HI) of HI corresponds to F[X∗(T)]W and the
composition

F[X∗(T)]W ∼= Z(HI) −→ HK

f 7−→ [K] f

is the Satake isomorphism described above.

Remark. Lemma 61 follows from the Bernstein presentation or from the Iwahori–
Matsumoto presentation ofHI .

Lemma 62. The inclusion N ↪→ M is split by

x 7→ [K]x.

Proof. Geometrically, the morphism

H1(Y0(Q), F)m −→ H1(Y, F)m

x 7−→ [K]x

is the trace map (equivalently, in terms of group cohomology, it is the corestriction).
Therefore, the composition

N ↪→ M
[K]−→ N

is multiplication by [K : I] = v + 1 ∈ F×, as v = 1 ∈ F and p > 2.

By the Bruhat decomposition, inHI we can express

[K] = [I] + [Iw0 I] = 1 + w0 = ∑
w∈W

w.

Since |W| = 2 is invertible in F, we deduce that

MW =

(
∑

w∈W
w
)

M.
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But N ⊆ MW and, by lemma 62,

N = MW = [K]M.

We know that the operators Tv and Sv act on N as multiplication by αv + βv

and αvβv, respectively. Consider the maximal ideal

n = (λ1 + λ2 − αv − βv, λ1λ2 − αvβv) ⊂ F[X∗(T)]W ∼= F[Tv, Sv].

By the explicit description of the Satake isomorphism, we see that Nn = N. On the
other hand, since αv 6= βv, there are exactly two maximal ideals mα,mβ ⊂ F[X∗(T)]
above n, namely

mα = (λ1 − αv, λ2 − βv) and mβ = (λ1 − βv, λ2 − αv).

But note that λ1 corresponds to Uv under the isomorphism of lemma 61, whence

Mmα = H1(Y0(Q), F)mQ .

Thus, we have to prove that the composition N → M→ Mmα is an isomorphism.
Since n = mα ∩ F[X∗(T)]W , it suffices to show that the composition of natural
morphisms

N = Nn −→ Mn −→ Mmα

is an isomorphism.

Lemma 63. In the situation from above, we have a decomposition Mn
∼= Mmα ⊕Mmβ

and w0 ∈W maps Mmα isomorphically onto Mmβ
and vice versa.

Proof. Since M is finite-dimensional over F, the action of F[X∗(T)]n on Mn factors
through an artinian quotient A of F[X∗(T)]. Since mα and mβ are the two (distinct)
maximal ideals of A, there is a canonical decomposition A ∼= Amα × Amβ

, which in
turn induces a decomposition Mn

∼= Mmα ⊕Mmβ
. It is straight-forward from the

definitions that the Weyl group W permutes mα and mβ, whence the second claim
follows.

Now, using the isomorphisms

N = MW = [K]M and Nn = MW
n = [K]Mn
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together with Nn = N, we can conclude that the compositions

N ↪→ Mn = Mmα ⊕Mmβ
→→ Mmα

and
Mmα ↪→ Mmα ⊕Mmβ

= Mn
[K]−→ N

are isomorphisms and are inverse to each other up to multiplication by F×. This
concludes the proof of proposition 60.

Proposition 64. The homology group H1(YQ, O)mQ is a free O [∆Q]–module and the
natural map H1(YQ, O)mQ → H1(Y0(Q), O)mQ induces an isomorphism

H1(YQ, O)mQ

aQ H1(YQ, O)mQ

∼= H1(Y0(Q), O)mQ .

Remark. Proposition 64 is also true if we localize only at m = m∩TS∪Q,univ, and
the further localization at mQ gives only a direct summand of this more general
result.

Combining proposition 64 with proposition 58, we obtain the main result of
this subsection:

Proposition 65. The homology group H1(YQ, O)mQ is a free O [∆Q]–module and the
natural map H1(YQ, O)mQ → H1(Y, O)m induces an isomorphism

H1(YQ, O)mQ

aQ H1(YQ, O)mQ

∼= H1(Y, O)m.

To prove proposition 64, we are going to use again the key fact that

Hi(YQ, F)m ∼= HomF

(
Hi(YQ, F)m, F

)
= 0 if i 6= 1

and so

Hi(YQ, O)m =

{
0 if i 6= 1,

O if i = 1.

In what follows we switch to group homology (instead of singular homology).
Since ΓQ is a normal subgroup of Γ0(Q) with quotient ∆Q, there is a Hochschild–
Serre spectral sequence

Hi(∆Q, Hj(ΓQ, O)) =⇒ Hi+j(Γ0(Q), O).
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After localizing at m, only the column j = 1 of the second page of the spectral
sequence is non-trivial. In particular,

H0(∆Q, H1(ΓQ, O)m) ∼= H0(Γ0(Q), O)m.

But, by definition,

H0(∆Q, H1(ΓQ, O)m) =
H1(ΓQ, O)m

aQ H1(ΓQ, O)m
,

which means that we have proved the second claim of proposition 64. It remains
to prove that H1(ΓQ, O)m is a free O [∆Q]–module.

Since O [∆Q] is a local ring, a finitely generated O [∆Q]–module M is free if

and only if M is flat or, equivalently, Tor
O [∆Q]
1 (M, F) = 0. Using again that, after

localizing the Hochschild–Serre spectral sequence at m, only the column j = 1 of
the second page is non-trivial, we deduce that

0 = H2(Γ0(Q), O)m = H1(∆Q, H1(ΓQ, O)m) = Tor
O [∆Q]
1 (H1(ΓQ, O)m, O).

But, if we tensor the short exact sequence

0 O O F 0v

with H1(ΓQ, O)m over O [∆Q], we obtain an exact sequence

0 = Tor
O [∆Q]
1 (H1(ΓQ, O)m, O) −→ Tor

O [∆Q]
1 (H1(ΓQ, O)m, F) —

→H1(ΓQ, O)m ⊗O [∆Q]
O

v−−→ H1(ΓQ, O)m ⊗O [∆Q]
O −→ H1(ΓQ, O)m ⊗O [∆Q]

F

and we can reinterpret the second line (using the part of proposition 65 that we
have already proved) as

H1(Γ0(Q), O)m H1(Γ0(Q), O)m H1(Γ0(Q), F)m
v

But multiplication by v on H1(Γ0(Q), O)m is injective (by proposition 58 and the
properties listed in the beginning of this subsection). Therefore, we see from the
exact sequence above that

Tor
O [∆Q]
1 (H1(ΓQ, O)m, F) = 0

as desired. This completes the proof of proposition 64.
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Remark. The proof of proposition 64 was completely formal, using only the key
fact that Hi(YQ, F)m = 0 if i 6= 1 (but without using modular forms).

Recall that, given a fixed global deformation problem

S =
(
ρ, S, ψ, O , (Dv)v∈S

)
,

we have the augmented deformation problem

SQ =
(
ρ, S, ψ, O , (Dv)v∈S ∪ (Dψ

v )v∈Q
)

and the universal ring RSQ is an O [∆Q]–algebra (depending on the choice of the
αv) satisfying that

RSQ /aQ
∼= RS ,

where aQ is the augmentation ideal of O [∆Q]. We also have Galois representations

ρm : GQ,S → GL2
(
TS(Γ)m

)
and

ρmQ : GQ,S∪Q → GL2
(
T

S∪Q
Q (Γ)mQ

)
.

If we know that ρm and ρmQ are of types S and SQ, respectively, then the actions
of RSQ on H1(YQ, O)mQ and of RS on H1(Y, O)m are compatible (with respect to
the projections modulo aQ). That is, we obtain a commutative diagram

RSQ H1(YQ, O)mQ

RS H1(Y, O)m

mod aQ mod aQ

of actions.

4.2 Local-global compatibility

Theorem 66. Let f be a cuspidal Hecke eigenform with associated cuspidal automorphic
representation π f of GL2(AQ). Let p be a prime number and consider a fixed isomorphism
ι : C ∼= Qp. Let ρ f ,ι : GQ → GL2(Qp) be the associated Galois representation.

(1) The representation ρ f ,ι|GQp
is de Rham with Hodge–Tate weights 0 and k− 1, where

k is the weight of f .
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(2) For every prime number `,

WD
(
ρ f ,ι|GQ`

)Fr-ss ∼= LL
(
π` ⊗ |det|−1/2

`

)
⊗C,ι Qp,

where WD means the Weil–Deligne representation, Fr-ss denotes the Frobenius-
semisimplification and LL means the local Langlands correspondence (suitably
normalized).

Let us write down some more concrete consequences of theorem 66. Take a
newform f ∈ S2(Γ1(N), Qp) (i.e., f does not come from Γ1(M) for any M < N).
Let η be the nebentype of f and let C be its conductor (in particular, C

∣∣ N). Write
again η for the corresponding Galois character. Let εp be the p–adic cyclotomic
character. Take a prime ` 6= p.

• If `
∣∣- N, then ρ f is unramified at ` and

CharPoly(ρ f (Frob`)) = X2 − a`X + η(`)`,

where a` is the T`–eigenvalue of f .
• If ` ‖ N but `

∣∣- C (i.e., at `, f is new of level Γ0(`)), then

ρ f |GQ`

∼=
(γ ∗

0 γε−1
p

)
,

where γ is the unramified character such that γ(Frob`) is the U`–eigenvalue
of f and

1 6= ρ f (I`) ⊆
{(

1 ∗
0 1

)}
.

• If ` ‖ N and ` ‖ C, then

ρ f |GQ`

∼= γ⊕ γ−1ε−1
p η,

where γ is the unramified character such that γ(Frob`) is the U`–eigenvalue
of f .

• If ρ f |GQ`
is irreducible, then `2

∣∣ N.
• If p

∣∣- N and the Tp–eigenvalue ap of f is a p–adic unit, then

ρ f |GQp
∼=
(

χ1 ∗
0 χ2

)
,

where χ1 is the unramified character such that χ1(Frobp) is the unit root of
X2 − apX + η(p)p and χ2|Ip = ε−1

p .
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4.3 Patching

Fix a newform g ∈ S2(Γ1(N), Qp) with nebentype η, a prime number p and a finite
extension E/Qp with ring of integers O , uniformizer v and residue field F. Let
ρ = ρg : GQ → GL2(Fp) be the associated representation modulo p. We assume
that F is sufficiently large so that the eigenvalues of ρ(σ) are defined in F for all
σ ∈ GQ.

We require the following hypotheses:
• p > 2 and p

∣∣- N;
• ρ|GQ(ζp)

is absolutely irreducible with enormous (equivalently, adequate)
image (e.g., automatic condition if p ≥ 7);

• N is square-free, ρ is ramified at every prime `
∣∣ N (restrictive condition)

and η has order prime to p; equivalently, ρ is modular of weight 2 and the
level N = N(ρ), its Artin conductor, is square-free;

• we have

ρ|GQp
∼=
(

χ1 ∗
0 χ2

)
with χ1|Ip = 1 and χ2|Ip = ε−1

p

(this is actually unnecessary but simplifies things).
We define a global deformation problem

(
ρ, S, ψ, O , (Dv)v∈S

)
with S = { `

∣∣ N } ∪ { p }, ψ = ηε−1
p and

Dv =

{
Dmin

v if v
∣∣ N,

Dord
v if v = p.

(Taking the deformation problems Dmin
v is quite restrictive for modularity lifting

purposes, but still has interesting consequences.) Let

Γ = Ker
(
Γ0(N) Γ0(N)/Γ1(N) ∼= (Z/NZ)× Qp

)η

and assume that Γ is torsion-free (not completely necessary, but it simplifies things).
Let m be the maximal ideal of TS,univ corresponding to ρ.

Theorem 67. The Galois representation ρm : GQ,S → GL2
(
TS(Γ)m

)
lifting ρ is of type

S . Consequently, there is a morphism

RS →→ TS(Γ)m
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in CNLO .

Remark. Our goal is to prove that the morphism RS → TS(Γ)m is actually an
isomorphism.

Proof. This theorem is a consequence of two results:
(1) we can express

TS(Γ)m ⊗O Qp
∼= ∏

eigen.
Qp,

where the product is over the Hecke eigensystems in S2(Γ, Qp) that are
congruent to that of g modulo p, and TS(Γ)m is p–torsion-free, and

(2) the local-global compatibility for such eigensystems.
Take a Hecke eigenform f ∈ S2(Γ, O) congruent to g modulo v.
• The representation ρ f is unramified outside of pN, as Γ1(N) ⊆ Γ.
• The nebentype χ of f factors through (Z/NZ)×/ Ker(η), by the definition

of Γ. But χ ≡ η mod v because f ≡ g mod v. Since the order of η is prime
to p, we have that Ker(η) = Ker(η). All in all, χ = η and det(ρ f ) = ηε−1

p .
• Take `

∣∣ N and write C for the conductor of η. If `
∣∣- C, we know from

section 4.2 that

1 6= ρ f (I`) ⊆
{(

1 ∗
0 1

)}
.

In particular, ρ(I`) 6= 1 and ρ f defines a minimal deformation (in the sense
of example 34). If `

∣∣ C, we know from section 4.2 that

ρ f |I` = 1⊕ η

and η has order prime to p, so η(I`) = η(I`); therefore, ρ f defines a minimal
deformation (in the sense of example 35).

• At p, one can use Fontaine–Laffaille’s theory to deduce that

ρ f |GQp
∼=
(

χ1 ∗
0 χ2

)
with χ1|Ip = 1 and χ2|Ip = ε−1

p .

Therefore, ρ f |GQp
gives an ordinary deformation (in the sense of example 33).

Now we have a Galois representation

ρm : GQ,S → GL2
(
TS(Γ)m

)
lifting ρ and unramified outside S, which induces a morphism

Runiv
ρ →→ TS(Γ)m.
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This morphism is surjective because TS(Γ)m is generated by the operators T` and
S` for ` 6∈ S and the fact that

CharPoly(ρm(Frob`)) = X2 − T` X + ` S`

implies that T` and S` appear in the image. It remains to show that the map
Runiv

ρ →→ TS(Γ)m factors through RS . As TS(Γ)m is embedded in TS(Γ)m ⊗O Qp,
it suffices to prove that the composition

Runiv
ρ → TS(Γ)m → TS(Γ)m ⊗O Qp

factors through RS . But

ρm ⊗Qp = ∏
f

ρ f : GQ,S → GL2

(
∏

f
Qp

)
,

where the product runs over the eigenforms f congruent to g modulo v as above,
and each ρ f is of type S . This completes the proof of the theorem.

4.3.1 The minimal case

Consider a Taylor–Wiles datum (Q, (αv)v∈Q). From this, we defined an augmen-
ted global deformation problem SQ, a finite p–group ∆Q and T

S∪Q
Q (ΓQ)mQ (cf.

section 4.1). Let TS∪Q(ΓQ)mQ be the subalgebra of EndO

(
H1(ΓQ, O)mQ

)
generated

by the operators T` and S` for the primes ` 6∈ S ∪ Q and the operators 〈δ〉 for
δ ∈ ∆Q.

Theorem 68. There exists a continuous Galois representation

ρQ : GQ,S∪Q → GL2
(
TS∪Q(Γ)mQ

)
satisfying the following properties:

(1) for every prime ` 6∈ S ∪Q, ρQ is unramified at ` and

CharPoly(ρQ(Frob`)) = X2 − T` X + ` S` ;

(2) for every v ∈ S, the lift ρQ|GQv
is in Dv, and

(3) for every v ∈ Q,

ρQ|IQv
∼=
(

1 0
0 χv

)
with χv ◦ recQv(δ) = 〈δ〉,
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where recQv : O×
Qv
→ Gab

Qv
denotes Artin’s local reciprocity map.

Proof. It works like theorem 67, using the local-global compatibility.

Note that ηQ = det(ρQ)ψ
−1 is a finite character of p–power order and so (as

p > 2) admits a square root η1/2
Q . The twist

ρ′Q = ρQ ⊗ η−1/2
Q

is then of type SQ and we obtain a morphism RSQ → TS∪Q(Γ)mQ (representing
ρQ). That is, H1(YQ, O)mQ is an RSQ–module in a way that is compatible with the
structure of O [∆Q]–module (cf. proposition 65).

Proposition 69. There exist q ∈ Z≥0 and a commutative diagram

S∞ R∞ H∞

R = RS H = H1(Y, O)m

mod a

of actions, where
(1) S∞ = O [[y1, . . . , yq]] and a = (y1, . . . , yq) ⊂ S∞,
(2) R∞ = O [[x1, . . . , xq]] and it admits a surjection R∞ →→ R whose kernel contains

aR∞, and
(3) H∞ is a finitely generated R∞–module that becomes finite free as an S∞–module

and admits a surjection H∞ →→ H with kernel aH∞.

Theorem 70. The natural map RS → TS(Γ)m (cf. theorem 67) is an isomorphism of
local complete intersection rings.

Proof. Since H∞ is free over S∞ and the S∞–module structure factors through R∞

by proposition 69, we have

1 + q = dim(R∞) ≥ dimR∞(H∞) ≥ depthR∞
(H∞)

≥ depthS∞
(H∞) = dim(S∞) = 1 + q

and so all these inequalities must be equalities.
Since R∞ is regular, then H∞ has a projective resolution of finite length by

Serre’s theorem. More precisely, we can use the Auslander–Buchsbaum formula:

projdimR∞
(H∞) = depth(R∞)− depthR∞

(H∞) = (1 + q)− (1 + q) = 0.
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Therefore, H∞ is a projective R∞–module and must be free because R∞ is local.
By proposition 69, H ∼= H∞/aH∞ is a free module over R ∼= R∞/aR∞. But the

R–action on H = H1(Y, O)m is defined via the surjection RS →→ TS(Γ)m, which
must thus have trivial kernel. In conclusion, RS

∼= TS(Γ)m. Moreover, these rings
are complete intersection rings because we have a presentation

RS
∼= R∞/a = O [[x1, . . . , xq]]/(y1, . . . , yq)

and dim(RS ) = dim(TS(Γ)m) = 1.

Next we want to prove proposition 69. We use the results of the last part
of section 3.7 for T = ∅ (in particular, see corollary 56 and the paragraphs that
follow). Set q = h1

S ⊥
(Q, ad0(ρ)(1)). We work with S∞ = O [[Z

q
p]] (that can be

identified with O [[y1, . . . , yq]]). For every N ∈ Z≥1, define

aN = Ker
(
S∞ →→ O [(Z/pNZ)q]

)
,

SN = S∞/(vN, aN),

dN =
(
vN, AnnR(H)N) ⊂ R (open ideal).

Definition 71. A patching datum of level N is a triple ( f , X, g), where
• f : R∞ →→ R/dN is a surjective morphism in CNLO ,
• X is an (R∞ ⊗O SN)–module that becomes finite free over SN such that

– Im
(
SN → EndO(X)

)
⊆ Im

(
R∞ → EndO(X)

)
and

– Im
(
a→ EndO(X)

)
⊆ Im

(
Ker( f )→ EndO(X)

)
,

and
• g : X/a → H/(vN) is an isomorphism of R∞–modules, with R∞–module

structure on H/(vN) given by f .
We say that two patching data ( f , X, g) and ( f ′, X′, g′) of level N are isomorphic if
f = f ′ and there is an isomorphism X ∼= X′ of (R∞ ⊗O SN)–modules by means of
which g and g′ are compatible.

Remark. Given N ∈ Z≥1, there are only finitely many isomorphism classes of
patching data of level N. In addition, given M ∈ Z≥1 with M ≥ N, every
patching datum D = ( f , X, g) of level M induces a patching datum

(D mod N) = ( f mod dN, X⊗SM SN, g⊗SM SN)

of level N.
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Proof of proposition 69. For each M ≥ 1, we can choose a Taylor–Wiles datum
(QM, (αv)v∈QM) of level M such that |QM| = q and h1

S ⊥QM

(Q, ad0(ρ)(1)) = 0, by

proposition 55. We define a patching datum DM = ( fM, XM, gM) as follows:
• we construct the composition

fM : R∞ →→ RSQM
→→ RSQM

/aQM
∼= R→→ R/dM,

where the first arrow is given by corollary 56 and the other arrows are the
canonical projections;

• let XM = H1(YQM , O)mQM
⊗S∞ SM, which is a finite free SM–module be-

cause H1(YQM , O)mQM
is a free O [∆QM ]–module (see proposition 64) and the

projection S∞ →→ SM factors through O [∆QM ], while the R∞–action is via

R∞ →→ RSQM
→→ TS∪QM(ΓQM)mQM

,

and
• the isomorphism gM : XM/a→ H/(vM) is induced by the isomorphism

H1(YQM , O)mQM
/(aQM)

∼= H1(Y, O)m = H

from proposition 65.
Now, for M ≥ N ≥ 1, we can define a patching datum of level N

DM,N = (DM mod N) = ( fM,N, XM,N, gM,N).

Since there are only finitely many isomorphism classes of patching data of a fixed
level N but there are infinitely many M ∈ Z such that M ≥ N, we can find a
subsequence (Mi, Ni)i≥1 with Mi ≥ Ni and Ni+1 > Ni and such that

(DMi+1,Ni+1 mod Ni) ∼= DMi,Ni .

Finally, we define
H∞ = lim←−

i≥1
XMi .

The desired projections are

lim←−
i≥1

fMi,Ni : R∞ →→ R and lim←−
i≥1

gMi,Ni : H∞ →→ H.
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From

Im
(
SMi → EndO(XMi,Ni)

)
⊆ Im

(
R∞ → EndO(XMi,Ni)

)
,

we deduce that

Im
(
S∞ → EndO(H∞)

)
⊆ Im

(
R∞ → EndO(H∞)

)
.

Since S∞ is a ring of power series, we can choose the morphism S∞ → R∞ lifting
S∞ → EndO(H∞). Similarly, from

Im
(
a→ EndO(XMi,Ni)

)
⊆ Im

(
Ker( fMi,Ni)→ EndO(XMi,Ni)

)
,

we deduce that

Im
(
a→ EndO(H∞)

)
⊆ Im

(
Ker(R∞ →→ R)→ EndO(H∞)

)
,

whence the diagram
S∞ R∞ H∞

R H

commutes.

As a consequence of theorem 70, we have the following result:

Theorem 72. Let p be a prime number > 2 and let ρ : GQ → GL2(Qp) be a continuous
representation satisfying the following conditions:

(1) ρ is unramified outside finitely many primes,
(2) we can express

ρ|GQp
∼=
(

χ1 ∗
0 χ2

)
with χ1|Ip = 1 and χ2|Ip = ε−1

p ,

(3) ρ|GQ(ζp)
is absolutely irreducible with adequate image,

(4) for every prime ` 6= p at which ρ is ramified,
• either

ρ|I` ∼=
(

1 0
0 γ

)
and the reduction map ρ(I`)→ ρ(I`) is an isomorphism

• or
ρ|I` ∼=

(
1 ∗
0 1

)
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but ρ(I`) 6= 1,
whereas at p we have

ρ|GQp
∼=
(

χ1 ∗
0 χ2

)
with χ1χ−1

2 6= 1 or εp,

and
(5) ρ ∼= ρg for some g ∈ S2(Γ1(N), Qp) with

N = ∏
` 6=p

`,

where the product runs over the primes where ρ is ramified.
Then ρ ∼= ρ f for some Hecke eigenform f ∈ S2(Γ1(N), Qp).

Sketch of the proof. One checks that the assumptions of the theorem imply, after
fixing a model ρ : GQ → GL2(O

′), for O ′ the ring of integers of some finite ex-
tension of Qp, that ρ defines a morphism RS → O ′ of O–algebras, where S is a
global deformation problem as in the rest of this section. Combining this with the
isomorphism RS

∼= TS(Γ)m, where S = { `
∣∣ N } ∪ { p }, we obtain a morphism

λ : TS(Γ)m → O ′ of O–algebras with the property that, for every prime ` 6∈ S,

CharPoly(ρ(Frob`)) = X2 − λ(T`)X + `λ(S`).

Such a λ is the eigensystem of some f ∈ S2(Γ1(N), Qp).

Remark. Condition (4) is very restrictive. To remove it, Wiles defined a “numerical
criterion” (which seemed hard to generalize but experiences a revival in current
research). Alternatively, Kisin presented global deformation rings as algebras over
local framed deformation rings (that is what we will do next).

4.3.2 The non-minimal case

Continue to assume that ρ is modular (i.e., ∼= ρg) and that ρ|GQ(ζp)
is absolutely

irreducible with adequate image, but let us drop the “minimality hypotheses”, so
maybe the integer N appearing in the level Γ1(N) is not square-free and we want
to allow lifts ramified at primes ` at which ρ is unramified.

Say that we have a global deformation problem

S = (ρ, S, ψ, O , (Dv)v∈S)
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such that we can prove that

ρm : GQ,S → GL2(T
S(Γ)m)

is of type S and that we expect all deformations of ρ of type S come from
TS(Γ)m. Assume that, for every place v ∈ S, we have Dv ⊆ D�,ψ

v and the ring Rv

representing Dv is O–flat and pure with

dim(Rv) =

{
1 + 3 if v 6= p,

1 + 3 + 1 if v = p,

where the first 1 comes from O , the 3 comes from the dimension of the space of
values of Frobenius (which are 2× 2 matrices with a fixed determinant) and the
last 1 is the index of Qv over Qv itself (cf. the assumptions of section 3.7).

We consider frames at T = S and

RS−loc
S =

⊗
v∈S

Rv,

which is O–flat of dimension 2 + 3|S|. Recall also that

RS
S
∼= RS ⊗̂O T , where T = O [[z1, . . . , z4|S|−1]].

Proposition 73. There exist q ∈ Z≥0 and a commutative diagram

S∞ R∞ H∞

R = RS H = H1(Y, O)m

mod a mod a

of actions, where
(1) S∞ = T [[y1, . . . , yq]] and a = (z1, . . . , z4|S|−1, y1, . . . , yq) ⊂ S∞,
(2) R∞ = RS−loc

S [[x1, . . . , xg]], for some g ∈ Z≥0 such that

dim(S∞) = 4|S|+ q = g + 2 + 3|S| = dim(R∞),

and it admits a surjection R∞ →→ R whose kernel contains aR∞, and
(3) H∞ is a finitely generated R∞–module that becomes finite free as an S∞–module

and admits a surjection H∞ →→ H with kernel aH∞.

Sketch of the proof. The proof of this result is analogous to that of proposition 69:
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• One needs to use the computations of Galois cohomology from section 3.7
(especially corollary 56) in the case that T = S.

• We have to use the framed deformation rings RS
SQN

to define the maps

fN : R∞ →→ RS
SQN
→→ R/dN.

• The modules XN have to be defined using

H1(YQN , O)mQN
⊗̂RSQN

RS
SQN

∼= H1(YQN , O)mQN
⊗̂O T ,

where the last module is free over T [∆QN ].

We can try to proceed as in section 4.3.1. From the chain of inequalities

dim(R∞) ≥ dimR∞(H∞) ≥ depthR∞
(H∞) ≥ depthS∞

(H∞) = dim(S∞)

and the fact that dim(R∞) = dim(S∞), all the inequalities must be equalities. In
addition, H∞ is a Cohen–Macaulay R∞–module and SuppR∞

(H∞) is a union of
irreducible components of Spec(R∞). However, in this case the ring R∞ might
not be regular and we cannot apply the Auslander–Buchsbaum formula as in
section 4.3.1.

Proposition 74. If SuppR∞
(H∞) = Spec(R∞), then SuppR(H) = Spec(R) and the

natural map
R = RS →→ TS(Γ)m

has nilpotent kernel.

Proof. Take p ∈ Spec(R) and let p∞ be its pull-back in R∞. By hypothesis, we
know that (H∞)p∞ 6= 0. Since H∞ is finitely generated over R∞, by Nakayama’s
lemma,

Hp
∼= (H∞/aH∞)p = (H∞)p∞ /a(H∞)p∞ 6= 0

and so p ∈ SuppR(H). Therefore, SuppR(H) = Spec(R). This implies that
AnnR(H) is nilpotent and, as the action of R on H factors through the natural map

R→→ TS(Γ)m

and TS(Γ)m acts faithfully on H, the kernel of the last map must be nilpotent.

Remark. The ring Rred
S (i.e., the quotient of RS by its nilpotent ideal) is ∼= TS(Γ)m

and that is good enough for modularity lifting. (However, it is not enough for
applications to adjoint Bloch–Kato conjectures.)
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For modularity lifting, we want to know that H∞ has full support in Spec(R∞).
Since SuppR∞

(H∞) is a union of irreducible components of Spec(R∞), we have to
prove that it contains all these irreducible components. But the map

Spec(R∞) = Spec
(

RS−loc
S [[x1, . . . , xg]]

)
→ Spec(RS−loc

S )

induces a bijection on the sets of irreducible components and an irreducible com-
ponent X of Spec(RS−loc

S ) is of the form

X = ∏
v∈S

Xv,

where Xv is an irreducible component of Spec(Rv) for every v ∈ S. Thus, for each
v ∈ S, we want to

(1) understand the irreducible components of Spec(Rv) and
(2) produce congruences from g (as ρ ∼= ρg), which lies on one component, to

modular forms lying on other components.
There are two clearly different cases to consider.

• If v
∣∣- p, one can use level raising/lowering using Ihara’s lemma (this method

has not been generalized to higher ranks) or Taylor’s Ihara avoidance trick.
• If v

∣∣ p, the situation is more complicated. It is related to the Breuil–Mézard
conjecture and to the weight part of Serre’s conjecture.

The minimal modularity lifting follows from an R ∼= T theorem. Similarly,
the non-minimal modularity lifting follows from an Rred ∼= T theorem assuming
that H∞ has full support over R∞. Next, we want to show how to prove this full
support result in some cases.

4.4 A result over totally real fields

We will sketch the proof of the following modularity lifting theorem:

Theorem 75. Let F be a totally real field and take a prime number p ≥ 5 that is unrami-
fied in F. Let ρ : GF → GL2(Qp) be a continuous irreducible representation satisfying
that

(1) ρ is unramified outside finitely many primes,
(2) for every place v

∣∣ p of F, the restriction ρ|GFv
is crystalline and all its labelled

Hodge–Tate weights are 0 or 1,
(3) the representation ρ|GF(ζp)

is absolutely irreducible with adequate image and
(4) ρ ∼= ρg for a Hilbert modular cusp form of parallel weight 2 and level prime to p.

Then ρ ∼= ρ f for some Hilbert modular cusp form f of parallel weight 2.
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Using cyclic base change (work of Saito and Shintani), we can prove the fol-
lowing result:

Theorem 76. Let L/F be a finite solvable totally real Galois extension. Consider a
representation ρ : GF → GL2(Qp) and a Hilbert modular form g as in theorem 75.

(1) If ρg|GL is irreducible, then there exists a Hilbert modular cusp form G over L which
is the base change of g to L. In particular,

ρg|GL
∼= ρG.

(2) If ρ|GL
∼= ρH for a Hilbert modular cusp form H over L, then ρ ∼= ρ f for a Hilbert

modular cusp form f over F.

Lemma 77. Let K be a number field and let S be a finite set of places of K. For each v ∈ S,
let K′v/Kv be a finite Galois extension. There exists a finite solvable Galois extension
L/K with the property that, for every place w of L above a place v ∈ S, Lw ∼= K′v as
Kv–algebras.

Idea of the proof. It is an application of the Grunwald–Wang theorem.

Let Sp = { v place of F : v
∣∣ p } and S∞ = { v place of F : v

∣∣ ∞ }. Let Σ denote
the set of finite places of F at which ρ or g are ramified. In particular, Σ ∩ Sp = ∅.
Let M/F(ζp) be the extension cut out by ρ|GF(ζp)

, which is a Galois extension. We
can find a finite set V of finite places of F such that V ∩ (Sp ∪ Σ) = ∅ and every
non-trivial conjugacy class in Gal(M/F) is of the form Frobv for some v ∈ V. Now
we apply lemma 77 with K = F and S = S∞ ∪ Sp ∪ Σ ∪V with the following local
extensions:

(1) for every v ∈ S∞, K′v = Fv ∼= R;
(2) for every v ∈ Sp, K′v = Fv;
(3) for every v ∈ Σ, we take K′v/Fv to be an extension such that, if ρ|GK′v

is
ramified, then the ramification is unipotent, and similarly for g, such that
ρ|GK′v

= 1 and such that the cardinality of the residue field of K′v is≡ 1 mod p;
(4) for every v ∈ V, K′v = Fv.

Thus, we obtain a finite solvable Galois extension L/F with the following proper-
ties:

(1) L is totally real;
(2) p is unramified in L;
(3) for every prime w of L at which ρ|GL is ramified, the ramification is unipotent;

similarly, writing G for the base change of g to L, for every prime w of L at
which G is ramified, G has Iwahori level at w;
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(4) M ∩ L = F and, in particular, ρ|GL(ζp)
is absolutely irreducible with adequate

image.
Therefore, after replacing F with L, we have simplified our original situation
because now ramification of ρ or g is of a simple kind. By further replacing F
with F · F0 for an appropriate quadratic extension F0/Q (i.e., F0/Q is disjoint from
M/Q and p is unramified in F0), we can assume that [F : Q] is even.

Now we can consider the unique (up to isomorphism) quaternion algebra D
over F which is ramified exactly at S∞. For every place v of F, write Dv = D⊗F Fv.
Fix a maximal order OD of D and an isomorphism

OD ⊗Z Ẑ ∼= M2(OF ⊗Z Ẑ) ∼= ∏
v|-∞

M2(OFv).

We have an isomorphism

(OD ⊗Z Ẑ)× ∼= GL2(OD ⊗Z Ẑ) ∼= ∏
v|-∞

GL2(OFv)

which can be extended to

(D⊗F A∞
F )
× ∼= GL2(A

∞
F ).

Fix an open compact subgroup U of (OD ⊗Z Ẑ)× and identify it with an open
compact subgroup of

∏
v|-∞

GL2(OFv).

(Later we will need a precise choice of such U.)
By our assumptions on ρ and g, the characters det(ρ)εp and det(ρg)εp are finite

(and unramified) and det(ρ)det(ρg)−1 is finite of p–power order. Since we assume
that p > 2, the character det(ρ)det(ρg)−1 admits a square root and, up to twisting,
we can assume that

det(ρ) = det(ρg) = ηε−1
p

for some unramified character η of finite order. Let O be the ring of integers
of some finite extension of Qp such that ρ takes values in GL2(O). For every
O–algebra A, define

S2,η(U, A) =
{

f : D×\(D⊗A∞
F )
× → A continuous :

f (gu) = f (g) for all u ∈ U and
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f (gz) = η(z) f (g) for all z ∈ (A∞
F )
×
}

,

where (by abuse of notation) we write η for the composition of η with the Artin
reciprocity map recF : F×\A×F → O×. This space has an action of the Hecke
operators

Tv =

[
GL2(OFv)

(
vv 0
0 1

)
GL2(OFv)

]
and

Sv =

[
GL2(OFv)

(
vv 0
0 vv

)
GL2(OFv)

]
for all places v of F such that Uv = GL2(OFv). (Observe that Sv simply acts by
η(vv).) That is to say, defining S = { v

∣∣ p } ∪ { v : Uv 6= GL2(OFv) }, we have an
action of

TS,univ = O [Tv, Sv : v 6∈ S]

on S2,η(U, A).

Theorem 78 (Jacquet–Langlands). Recall that we have a fixed isomorphism Qp
∼= C.

The Hecke eigensystems appearing in the space of Hilbert modular cusp forms of parallel
weight 2 and level U and nebentype η are in bijection with the Hecke eigensystems
appearing in S2,η(U, C) that do not factor through the reduced norm of D.

Remark. The Hecke eigensystems of S2,η(U, C) that factor through the reduced
norm of D are Eisenstein, which means that their associated Galois representations
are reducible.

Consequently, we can transfer statements of Hilbert modular forms into state-
ments in terms of S2,η(U, Qp). In particular, it suffices to prove that ρ ∼= ρ f for some
f ∈ S2,η(U, O). Also by theorem 78, we have that ρ ∼= ρg for some g ∈ S2,η(U, O),
where the level

U ⊆ (OD ⊗̂Z Ẑ)× ∼= ∏
v|-∞

GL2(OFv)

satisfies that
• for every place v 6∈ Σ, Uv = GL2(OFv), and
• for every place v ∈ Σ,

Uv = Iwv =

{(
a b
c d

)
∈ GL2(OFv) : c ≡ 0 mod vv

}
.

(Since Σ might contain places at which g is unramified, this U is not the “optimal”
level in which g appears; however, it is the “optimal” level in which both g and the
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desired f appear.)
Writing

(D⊗F A∞
F )
× =

⊔
i∈I

D×tiU(A∞
F )
×,

we can decompose

S2,η(U, A) ∼=
⊕
i∈I

A(η−1)(U(A∞
F )×∩t−1

i Dti)/F×

and this isomorphism is given by f 7→ ( f (ti))i∈I .

Lemma 79. Each group
(
U(A∞

F )
× ∩ t−1

i Dti
)
/F×, for i ∈ I, is finite and (since p ≥ 5

and is unramified in F) has order prime to p.

Corollary 80. The functor on O–algebras given by A 7→ S2,η(U, A) is exact. In particu-
lar, S2,η(U, O) is a free O–module and

S2,η(U, O)/(v) ∼= S2,η(U, F).

Given a Taylor–Wiles datum (Q, (αv)v∈Q) for ρ, we can proceed as in the
beginning of section 4 (where we defined levels Γ0(Q) and ΓQ) and define levels
U0(Q) and UQ as follows:

• for v 6∈ Q, set U0(Q)v = UQ,v = Uv and
• for v ∈ Q, set U0(Q)v = Iwv and

UQ,v =

{(
a b
c d

)
∈ Iwv : ad−1 ∈ Ker(O×Fv

→→ ∆v)

}
,

where ∆v is the maximal p–power order quotient of (OFv /vv)×.
In particular,

U0(Q)/UQ
∼= ∆Q = ∏

v∈Q
∆v.

Analogously to section 4.1, we can define maximal ideals

m ∈ TS,univ and mQ ∈ T
S∪Q,univ
Q

and can prove that S2,η(UQ, O)mQ is a free O [∆Q]–algebra with ∆Q–coinvariants
∼= S2,η(U, O)m as TS∪Q,univ–modules (cf. proposition 65).
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4.4.1 Taylor’s Ihara avoidance trick

Recall that, for every v ∈ Σ, we have N(v) ≡ 1 mod p. (This is one of the
assumptions that we imposed when we potentially used lemma 77 for a base
change.) Fix a non-trivial character

χv : O×Fv
→→ (OFv /vv)

× → O×

of p–power order. From this, we obtain

χ = ∏
v∈Σ

χv : U = ∏
v|-∞

Uv −→ O×

((
av bv

cv dv

))
v
7−→ ∏

v∈Σ
χv(avd−1

v )

and we can define

Sχ
2,η(U, A) =

{
f : D×\(D⊗F A∞

F )
× → A continuous :

f (guz) = η(z)χ(u)−1 f (g) for all g ∈ (D⊗F A∞
F )
×,

u ∈ U and z ∈ (A∞
F )
×
}

.

Observe that

Sχ
2,η(U, O)/(v) ∼= Sχ

2,η(U, F) = S2,η(U, F) ∼= S2,η(U, O)/(v).

We again argue as in the proof of proposition 65 and see that Sχ
2,η(UQ, O)mQ is

a free O [∆Q]–module with ∆Q–coinvariants ∼= Sχ
2,η(U, O)m. Furthermore, as in

section 4.1, we have that

Sχ
2,η(UQ, O)mQ /(v) ∼= S2,η(UQ, O)mQ as O [∆Q]–modules.

Recall that, for every v ∈ Σ, we assume that ρ|GFv
= 1. (This is another of the

assumptions that we imposed in the base change step.)

Theorem 81 (Taylor). Let v ∈ Σ.
(1) There is a local deformation problem D1

v corresponding to the lifts ρ of ρ|GFv
with

det(ρ) = ηε−1
p and such that

CharPoly(ρ(σ)) = (X− 1)2 for all σ ∈ IFv .
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The ring R1
v representing D1

v satisfies the following properties:
• all irreducible components of Spec(R1

v) have dimension 3 and generic point of
characteristic 0, and

• every irreducible component of the special fibre Spec(R1
v/(v)) is contained in

a unique irreducible component of Spec(R1
v).

(2) There is a local deformation problem Dχv
v corresponding to the lifts ρ of ρ|GFv

with
det(ρ) = ηε−1

p and such that

CharPoly(ρ(σ)) = (X− χv(σ))(X− χ−1
v (σ)) for all σ ∈ IFv .

The ring Rχv
v representing Dχv

v satisfies that Spec(Rχv
v ) is irreducible of dimension

3 and its generic point has characteristic 0.

Remark. We are interested in studying R1
v but it is easier to work with Rχv

v . We will
use that R1

v/(v) ∼= Rχv
v /(v) because χv ≡ 1 mod v.

We define a pair of global deformation problems as. In what follows, the
symbol ? means either 1 or χ. Consider the global deformation problem

S ? =
(
ρ, S = { v

∣∣ p } ∪ Σ, ηε−1
p , O , (Dv)v|p ∪ (D?

v)v∈Σ
)
,

where for every v
∣∣ p the local deformation problem Dv corresponds to crystalline

lifts with all labelled Hodge–Tate weights equal to 0 or 1. It turns out that such Dv

are represented by
Rv ∼= O [[z1, . . . , z3+[Fv :Qp]]].

One can show that the Galois representations valued in

Im
(
TS,univ → EndO(S2,η(U, O)m)

)
are of type S 1 and, similarly, the Galois representations valued in

Im
(
TS,univ → EndO(S

χ
2,η(U, O)m)

)
are of type S χ. Also, our fixed ρ is of type S 1.

As before, we can augment with a Taylor–Wiles datum to obtain global deform-
ation problems S 1

Q and S χ
Q . We patch both (towers of) deformation problems

simultaneously incorporating an isomorphism modulo v between the two patch-
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ing data. In this way, we get a pair of diagrams

S∞ R1
∞ H1

∞

RS 1 S2,η(U, O)m

and

S∞ Rχ
∞ Hχ

∞

RS χ Sχ
2,η(U, O)m

that are identified modulo v. We know that H?
∞ is supported on a non-empty

union of irreducible components of Spec(R?
∞). Our goal is to prove that H1

∞ has
full support in Spec(R1

∞). But

R?
∞ =

((⊗
v|p

Rv

)
⊗̂O

(⊗
v∈Σ

R?
v

))
[[x1, . . . , xg]]

and, as the Rv for v
∣∣ p are formally smooth, the irreducible components of R?

∞

arise from the R?
v for v ∈ Σ. More precisely, the canonical morphism

Spec(R?
∞)→ ∏

v∈Σ
Spec(R?

v)

induces a bijection on irreducible components.
The second part of theorem 81 implies that Spec(Rχ

∞) is irreducible and so
Hχ

∞ has full support in it, as it must be a union of irreducible components. Thus,
H1

∞/(v) ∼= Hχ
∞/(v) has full support in Spec(R1

∞/(v)) ∼= Spec(Rχ
∞/(v)). But

SuppR1
∞
(H1

∞) must be a union of irreducible components too and, by the first part
of theorem 81, each irreducible component of Spec(R1

∞/(v)) is contained in a
unique irreducible component of Spec(R1

∞). All in all, H1
∞ has full support in

Spec(R1
∞), as desired.

Once we know this, we can apply the analogue of proposition 74 (whose
proof was formal at this point) to deduce that the action of RS 1 on S2,η(U, O)m

via the Hecke algebra has nilpotent kernel and so ρ arises from an eigenform
f ∈ S2,η(U, O)m.

4.5 More general number fields

Previously our field F was either Q or a totally real number field. This assumption
was used in two places:
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• On the Galois side, we used it in the “minimal case” to obtain that

h1
S (ad0(ρ)) = h1

S ⊥(ad0(ρ)(1)).

Thus, if we “kill” the dual Selmer group with a set Q of q = h1
S ⊥

(ad0(ρ)(1))
Taylor–Wiles primes, then RSQ is a quotient of O [[x1, . . . , xq]] and we can
deduce that dim(R∞) = dim(S∞). In the “non-minimal case”, we used it
analogously.

• On the automorphic side, after localizing at a non-Eisenstein maximal ideal
m, we used that the cohomology

H•(Y, F)m

is concentrated in a single degree d to deduce that, at the Taylor–Wiles level,
Hd(YQ, O)mQ is a free O [∆Q]–module with ∆Q–coinvariants ∼= Hd(Y, O)m.

Combining these results, we obtained a commutative diagram

S∞ R∞ H∞

RS Hd(Y, O)m

mod a

of actions that we used for the patching step.
Now say that F is any number field and write [F : Q] = r + 2s, where r (resp.

s) is the number of real (resp. complex) places of F. Let ρ : GF → GL2(F) be a
continuous representation such that

• the restriction ρ|GF(ζp)
is absolutely irreducible and

• for every real place of F and a choice of complex conjugation cv at v,

det(ρ(cv)) = −1.

Suppose that we are in a “minimal regular” situation:
• for every place v

∣∣ p, we consider regular crystalline deformations of fixed
weight and

• for every ramified place v,

dimF(Lv)− h0(Fv, ad0(ρ)) =

{
[Fv : Qp] if v

∣∣ p,

0 if v
∣∣- p.
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Then (see theorem 50 and the computations in section 3.7)

h1
S (ad0(ρ)) = h1

S ⊥(ad0(ρ)(1)) + ∑
v∈S

(
dimF(Lv)− h0(Fv, ad0(ρ))

)
− ∑

v|∞
h0(Fv, ad0(ρ))

= h1
S ⊥(ad0(ρ)(1)) + [F : Q]− r− 3s = h1

S ⊥(ad0(ρ)(1))− s.

Thus, if s 6= 0, the rings S∞ and R∞ will not have the same dimensions.
On the other hand, let

X =

(
∏
v|∞

PGL2(Fv)

)
/U∞,

where U∞ is a maximal compact open subset. Then

X ∼=
(
PGL2(R)/ PO(2)

)r ×
(
PGL2(C)/ PU(2)

)s ∼= Hr
2 ×Hs

3,

where Hk denotes the hyperbolic k–space. Choose an open compact subgroup U
of

∏
v∈∞

PGL2(OFv)

that is “sufficiently small”. We obtain a smooth manifold

Y(U) = PGL2(F)\X× PGL2(A
∞
F )/U.

Let S = { v
∣∣ p } ∪ { v : Uv 6= PGL2(OFv) } and consider for every place v 6∈ S the

Hecke operator

Tv =

[
PGL2(OFv)

(
vv 0
0 1

)
PGL2(OFv)

]
.

For every O–algebra A,
H•(Y(U), A)

has an action of TS,univ = O [Tv : v 6∈ S]. Fix an isomorphism η : Qp
∼= C.

Theorem 82 (Harder, Franke). There are TS,univ–stable decompositions

H•(Y(U), C) ∼= H•cusp(Y(U), C)⊕H•Eis(Y(U), C)

with
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(1) Hi
cusp(Y(U), C) ∼=

⊕
π

(
(π∞)U)mi(π∞) as TS,univ–modules, the sum ranging over

the cuspidal automorphic representations of PGL2(AF), and
(2) the TS,univ–action of Hi

Eis(Y(U), C) “is Eisenstein”.

Theorem 83 (Borel–Wallach). Set q0 = r + s. Let λ : TS,univ → C be an eigensystem
corresponding to a cuspidal automorphic representation π of PGL2(AF) such that π∞

is tempered. If H•cusp(Y(U), C)[λ] 6= 0, then Hi
cusp(Y(U), C)[λ] 6= 0 exactly for

i ∈ [q0, q0 + s].

Remark. The key philosophy (also valid for more general ranks or groups) is that,
in “nice situations”, the difference between the dimensions of the dual Selmer
and of the Selmer groups is δ if and only if the cohomology appears in δ + 1
consecutive degrees.

For PGL2 /F, we have δ = s (the number of complex places of F).

Conjecture 84 (Ash, Calegari–Geraghty). Let m be a maximal ideal of TS,univ such
that H•(Y(U), F)m 6= 0. There exists a continuous semisimple representation

ρm : GF,S → GL2(F)

such that, for every place v 6∈ S,

CharPoly(ρm(Frobv)) = X2 − Tv X + N(v) mod m.

Remark. When δ > 0, there can exist classes in H•(Y(U), F) that do not lift to
characteristic 0.

Assuming conjecture 84, we say that m is non-Eisenstein if ρm is absolutely
irreducible.

Conjecture 85 (Calegari–Geraghty). Let m be a maximal ideal of TS,univ. If m is
non-Eisenstein, then

Hi(Y(U), F)m = 0 if i 6∈ [q0, q0 + δ].

Our goal next is to construct a diagram of actions

S∞ R∞ H•(C∞)

RS H•(C) ∼= H•(Y(U), O)m

mod a

81



in which
• S∞ is a power series ring over O with augmentation ideal a,
• dim(R∞)− dim(S∞) = −δ,
• C∞ is a complex of finite free S∞–modules concentrated in degrees [q0, q0 + δ]

and C ∼= C∞ ⊗S∞ S∞/a computes H•(Y(U), O)m and
• H•(C∞) is a finite R∞–module.

Theorem 86. Assuming that we have a diagram of actions as above,
(1) SuppR∞

(Hq0(C∞)) is a non-empty union of irreducible components of Spec(R∞),
(2) if every irreducible component of Spec(R∞) is in SuppR∞

(Hq0(C∞)), then

Ker
(

RS → EndO

(
Hq0(Y(U), O)m

))
is nilpotent, and

(3) if R∞ ∼= O [[x1, . . . , xg]] (with 1 + g = dim(S∞)− δ), then Hq0(Y(U), O)m is a
free RS –module.

Proof. We claim that depthS∞
(Hq0(C∞)) = dim(S∞)− δ. We will prove this claim

later; now we use it to prove the statements of the theorem (in a way that is similar
to the proofs of theorem 70 and proposition 74).

(1) The S∞–action on H•(C∞) factors through R∞ and H•(C∞) is a finitely gen-
erated R∞–module. Thus, for every i ∈ Z,

depthS∞
(Hi(C∞)) ≤ depthR∞

(Hi(C∞)) ≤ dimR∞(Hi(C∞))

≤ dim(R∞) = dim(S∞)− δ.

In particular, for i = q0, all the inequalities must be equalities (by the claim)
and the result is a restating of dimR∞(Hi(C∞)) = dim(R∞).

(2) Take p ∈ Spec(RS ) and let p∞ denote its pull-back to R∞. By assumption,
Hq0(C∞) 6= 0, whence

Hq0(Y(U), O)p ∼= Hq0(C∞ ⊗S∞ O)p =
(
(C∞)q0/(a, Im(dq0−1))

)
p

=
(
Hq0(C∞)/a

)
p
∼= Hq0(C∞)p∞ /a 6= 0

by Nakayama’s lemma. Here, we used that q0 is the smallest degree in which
the complex C∞ is non-trivial (in general it is not true that taking quotients
commutes with homology).

(3) Since R is regular and dimR∞(Hq0(C∞)) = depthR∞
(Hq0(C∞)) (as we saw in

the proof of (1)), we can use the Auslander–Buchsbaum formula to deduce

82



that Hq0(C∞) is a projective R∞–module and so must be free because R∞ is
local. Therefore,

Hq0(Y(U), O)m ∼= Hq0(C∞)/a

is a free (R∞/a)–module. But the (R∞/a)–action factors through RS and
we conclude that R∞/a ∼= RS .

Lemma 87. Let S be a local regular noetherian ring of dimension n. Let P = P• be
a homological complex of finite free S–modules concentrated in degrees [0, δ]. In this
situation, dimS(H•(P)) ≥ n− δ and moreover, if equality holds, then

(1) P is a projective resolution of H0(P) and
(2) H0(P) has depth n− δ (as an S–module).

Proof. Write dn : Pn → Pn−1 for the differentials of the complex P•. Let m ∈ Z≥0

be the largest integer such that Hm(P) 6= 0. Then

0 Pδ Pδ−1 · · · Pm

is a projective resolution of M = Pm/ Im(dm+1). Therefore,

projdimS(M) ≤ δ−m.

On the other hand, Hm(P) = Ker(dm)/ Im(dm+1) ⊆ M, which implies that
dimS(Hm(P)) ≥ depthS(M). Using the Auslander–Buchsbaum formula, we ob-
tain that

dimS(Hm(P)) ≥ depthS(M) = n− projdimS(M) ≥ n− δ + m.

If dimS(H•(P)) ≤ n − δ, then we must have m = 0, which means that P is
a projective resolution of M = H0(P) and all the inequalities above must be
equalities. In particular, depthS(H0(P)) = n− δ.

It remains to discuss, at least conjecturally, how to create the patched diagram
that we used to prove theorem 86.

On the Galois side, just as for GL2(Q), we can use that ρ|GF(ζp)
is absolutely

irreducible with enormous image to prove that, for every N ∈ Z≥1, we can find a
Taylor–Wiles datum QN of level N such that

h1
S ⊥QN

(ad0(ρ)(1)) = 0
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in such a way that |QN| = q is independent of N. Then RS
SQN

is a quotient of

R∞ = RS−loc
S [[x1, . . . , xg]] with g = h1

S ⊥QN

(ad0(ρ)) = q + |S| − 1− δ. Therefore,

dim(R∞) = dim(S∞)− δ.

On the automorphic side, we consider G = PGL2 and the quotient X of G(F⊗Q

R) by some maximal compact. Let U be a sufficiently small subgroup of G(A∞
F ).

We obtain a smooth manifold Y(U) = G(F)\X× G(A∞
F )/U. Every Taylor–Wiles

datum Q still gives rise to levels UQ ⊆ U0(Q) ⊆ U such that U0(Q) is the Iwahori
level at every v ∈ Q and U0(Q)/UQ

∼= ∆Q (formed from the maximal p–power
quotients of the residue fields).

Again, we can define a maximal ideal mQ of T
S∪Q,univ
Q . The problem is that

H•(Y(UQ), O)mQ ⊗O [∆Q]
O ∼= H•(Y(U0(Q)), O [∆Q])mQ ⊗O [∆Q]

O

6∼= H•(Y(U0(Q)), O)mQ

because homology and tensor products do not commute (unless, say, homology
is concentrated in one single degree). A workaround is to use a complex CQ of
free O [∆Q]–modules that computes H•(Y(UQ), O)mQ , in which case CQ ⊗O [∆Q]

O

computes H•(Y(U0(Q)), O)mQ .
• We will have to define a Hecke action on CQ and an action on RSQ via a map

to a Hecke algebra with operators outside S∪Q. If we use singular chains to
define CQ (i.e., the usual complex that computes singular homology), then
we automatically have a Hecke action.

• However, for patching, we need CQ to be a bounded complex of finite free
O [∆Q]–modules (in order to have only finitely many isomorphism classes of
patching data of a fixed level) and that will not be preserved by TS,univ.

The most natural way to resolve this “contradictory” requirements on the
complexes is to work in the derived categories D(O) and D(O [∆Q]) of O–modules
and O [∆Q]–modules, respectively.

Roughly, for a ring A, the category D(A) is constructed as follows. Let Ch(A)

be the category of chain complexes of A–modules and let K(A) be the category
whose objects are the same as in Ch(A) but whose homomorphisms are morph-
isms of complexes up to chain homotopy. The category D(A) is obtained from
K(A) by formally inverting quasi-isomorphisms (i.e., chain morphisms that in-
duce an isomorphism on homology). In particular, every morphism f : X → Y in
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D(A) is represented by a roof

Z

X Y

formed of a quasi-isomorphism Z → X and a general morphism of complexes
Z → X. There are full subcategories D−(A) (or K−(A)) and D+(A) (or K+(A)) of
bounded above and bounded below, respectively, complexes. Let K−,proj(A) be
the full subcategory of K−(A) consisting of complexes of projective A–modules.
It turns out that the obvious functor K−,proj(A) → D−(A) is an equivalence of
categories.

Let C ∈ Ob(D−(A)). (We often identify chain and cochain complexes by
Ci = C−i.) Choose a complex P of projective A–modules isomorphic to C in D(A).
Given an A–module M, we define

C⊗L
A M = P⊗A M (i.e., (C⊗L

A M)i = Pi ⊗A M)

and R HomA(C, M) by

R HomA(C, M)i = HomA(P−i, M)

with d( f ) = (−1)deg( f )+1 f ◦ d. These objects are independent of the choice of P
up to unique isomorphism in D(A). If M = B is an A–algebra, we obtain a functor

· ⊗L
A B : D−(A)→ D−(B).

There is a spectral sequence

(E2)i,j = TorA
j (Hi(C), M) =⇒ Hi+j(C⊗L

A M)

(and a similar spectral sequence computing the same homology in terms of a
resolution of M).

The category D(A) is idempotent complete: if e ∈ EndD(A)(C) satisfies that
e2 = e, there exists a decomposition C = eC⊕ (1− e)C in D(A).

We say that C is perfect if it is isomorphic in D(A) to a bounded complex
of finite projective A–modules. If A is local and noetherian, the complex C is
called minimal if it is a bounded complex of finite projective (equivalently, free)
A–modules and the differentials are 0 modulo mA. When A is local and noetherian,
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every perfect complex is isomorphic in D(A) to a minimal one. Moreover, if C is a
perfect complex such that H•(C⊗L

A A/mA) is concentrated in degrees [a, b], then
C is isomorphic in D(A) to a complex concentrated in degrees [a, b]. Observe that
there is a natural map

EndD(A)(C)→ EndA(H•(C))

and, if C is perfect and concentrated in degrees [0, d] and f ∈ EndD(A)(C) acts as 0
on H•(C), then f d+1 = 0 in EndD(A)(C). More generally, for a perfect complex C,
the kernel of

EndD(A)(C)→ EndA(H•(C))

is nilpotent.
Going back to our automorphic setting, it turns out that there exists a perfect

complex C(U) ∈ Ob(D(O)) such that

H•(C(U)) = H•(Y(U), O)

and then H•(Y(U), O) is computed by

R HomO(C(U), O).

There exists a morphism

TS,univ → EndD(O)(C(U))

of O–algebras and we define TS(U) to be its image. In particular, TS(U) is an
O–algebra of finite rank and so must be semilocal (equal to the product of its
local subrings). For the maximal ideal m of TS,univ that we constructed before,
the localization C(U)m makes sense in D(O) and H•(C(U)m) = H•(Y(U), O)m.
Therefore, the kernel of

TS(U)m → EndO

(
H•(Y(U), O)m

)
is (at least) nilpotent.

Conjecture 88 (Calegari–Geraghty). There exists a continuous Galois representation

ρm : GF,S → GL2(T
S(U)m)
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such that, for every v 6∈ S,

CharPoly(ρm(Frobv)) = X2 − Tv X + N(v).

Moreover,
(1) for every place v

∣∣ p such that Uv = G(OFv), if p is unramified in F, then ρm|GFv
is

Fontaine–Laffaille with all labelled Hodge–Tate weights equal to 0 or 1, and
(2) for every v ∈ S such that v

∣∣ ` 6= p and Uv contains the pro-` Iwahori group,

CharPoly(ρm(σ)) = (X− 〈rec−1
Fv
(σ)〉)(X− 〈rec−1

Fv
(σ−1)〉)

for every σ ∈ IFv and we can also describe CharPoly(ρm(Frobv)) similarly. (Here,
recFv : O×Fv

→ Gab
Fv

is Artin’s local reciprocity map and 〈 · 〉 denotes the diamond
operator.)

Conjecture 88 would give a morphism

RS → TS(U)m

for a suitable type S , whence we obtain an action

RS H•(C(U)m) = H•(Y(U), O)m.

Adding a Taylor–Wiles datum Q, we can similarly construct a perfect complex
C(UQ)mQ ∈ Ob

(
D(O [∆Q])

)
such that

C(UQ)mQ ⊗
L
O [∆Q]

O ∼= C(U)m.

In particular,
C(UQ)mQ ⊗

L
O [∆Q]

F ∼= C(U)m ⊗L
O F

and the latter computes H•(Y(U), F)m. Then conjecture 85 implies that C(UQ)mQ

is concentrated in degrees [q0, q0 + δ]. Therefore, assuming conjectures 85 and 88,
we can patch the (minimal) complexes and get the desired diagram of actions.

Conjecture 85 can be proved if F is a quadratic imaginary field because then
dim(Y(U)) = 3 and we only need to understand H0 (and H3). But it is very hard
to prove it in general. There is a workaround due to Khare and Thorne if one only
wants to prove that Rred

S
∼= TS(U)red

m (or RS [p−1] ∼= TS(U)m[p−1]). We at least
know that

Hi(Y(U))F = 0 for i 6∈ [0, d],
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where d = dim(Y(U)). We can still patch to obtain a diagram of actions

S∞ R∞ H•(C∞)

RS H•(C) ∼= H•(Y(U), O)m

mod a

but we only know that C∞ is concentrated in degrees [0, d]. We need concentration
in [q0, q0 + δ] instead. Suppose that we know that Hq0(Y(U), O)m[p−1] 6= 0 and
localize the previous diagram at the augmentation ideal a of S∞ to obtain

S∞,a R∞,a H•(C∞)a ∼= H•(C∞,a)

RS [p−1] H•(Y(U), O)m[p−1]

(where we used that localizing at a and then modding out by a is equivalent to
just inverting p). Let E = O [p−1]. Then

C∞,a ⊗L
S∞,a

E ∼= C⊗L
O E

and theorems 82 and 83 imply that H•(C⊗L
O E) ∼= H•(Y(U), O)m[p−1] is concen-

trated in degrees [q0, q0 + δ]. Now we can apply the arguments from proposi-
tion 74 (cf. theorem 86 too), based on commutative algebra results, to prove that
the morphism

RS [p−1]→ TS(U)m[p−1]

has nilpotent kernel if Hq0(C∞,a) has full support in Spec(R∞,a).

Remark. We need Galois representations for this argument to work; then one uses
that m is non-Eisenstein to show that

H•(Y(U), O)m[p−1]

is all cuspidal.

Conjecture 88 can be proved if F is a CM field with many technical conditions
up to replacing TS(U)m with TS(U)m/I for a nilpotent ideal I with nilpotence
degree depending only on F and the rank n = 2 (appearing in PGLn). Then
one can build I into the patching argument and still get a theorem of the form
Rred

S
∼= TS(U)red. This crucially relies on viewing ResF/F+ GLn (where F+ is the

maximal totally real field of F) as a Levi on a unitary 2n–dimensional unitary
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group over F+. Via the Borel–Serre compactification, one can find the cohomology
of the locally symmetric space associated with GLn in the cohomology of the
unitary Shimura variety. That is why we restricted to CM fields.
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