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1 Overview

Let f € Sx(I'1(N),C) for some weight k > 1 and some level N > 1. Suppose that
f is an eigenform for all Hecke operators T, and (¢) for £ { N. Write Ty f = a, - f
and (£)f = x(¢) - f,so thata, € Qand x: (Z/NZ)" - Q".

We implicitly fix embeddings Q —Cand Q — @p.

Theorem 1 (Shimura-Deligne, Deligne—Serre, Ribet). There exists a continuous
irreducible representation

pf,P: Gal(@/@) — GLQ(QP)

satisfying that
(i) pf,p is unramified at every ¢ t Np and the characteristic polynomial of p p(Froby)
is X> —ayX + x (€)1,
(ii) py,p is potentially semistable at p.

Remark. The first property determines uniquely pf,, by Chebotarev’s density
theorem.

This course is about the study of a converse to this theorem (and some general-

izations).

Conjecture 2 (Fontaine-Mazur). Let p: Gal(Q/Q) — GL,(Q,) be a continuous
irreducible representation that is

(i) unramified outside a finite set of primes and

(ii) potentially semistable at p.
If there is no i € Z making the twist p ® eé (where €, denotes th(? p-adic cyclotomic
character) an even representation with finite image, then p = p¢ , ® e]p for some eigenform
f and some j € Z.

Remarks.

(1) By Chebotarev’s density theorem, det(ps,) = Xe},_k . In particular, one
checks that py, , is odd, which justifies the need of the hypothesis on p ® €,
in the conjecture. That is, the conjecture states that the only obstructions for
a representation to arise from an eigenform are the known ones.

(2) Nowadays the conjecture in this form is almost completely proved. For

example, it is known for regular weights.

Conjecture 3 (Fontaine-Mazur-Langlands). Let F be a number field. Every continu-
ous irreducible representation p: Gal(F/F) — GL,(Q,) that is
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(i) unramified outside a finite set of primes and
(ii) is potentially semistable at p

arises (in some sense) from a cuspidal automorphic representation of GL, (AF).

Why do we care?

(1) Philosophically, this theory is a non-abelian form of class field theory (in the
sense that it relates some Galois groups to some groups of adeles).

(2) Currently, it is the only way to study analytic properties of certain arithmetic
L—functions (e.g., analytic continuation). For example, there are arithmet-
ically defined L—-functions (like the L-function of an elliptic curve), which
converge on some half-plane, that are only known to have analytic continu-
ation by means of automorphic tools.

Example 4. The conjecture implies the modularity of elliptic curves.

* Over Q the modularity theorem is already known by the work of Wiles,
Taylor-Wiles, ..., Breuil-Conrad-Diamond-Taylor.

e If F is a totally real number field, it is known that all but finitely many elliptic
curves over F are modular, even all in the case that F is a real quadratic field
by the work of Freitas-Le Hung-Siksek.

* Over a quadratic imaginary field F, all we can say is that at least a positive
proportion of elliptic curves are modular.

¢ For more general fields, like F = Q(\3/§), the situation is hopeless with the

current tools.

How do we prove these conjectures? We can assume that p takes values in
GL,(Z,) and so we can consider its reduction p (with values in GL,(IF;)). Then a
potential proof can follow these two steps:
(1) Prove thatp = p, , for some modular form g (residual modularity or Serre’s
conjecture).
(2) Prove that, if p = Pgp for a modular form g, then p = p¢ ,, for some (possibly
different) modular form f (modularity/automorphy lifting).
This course is about the techniques for this second step. Often step 1 is more
difficult than step 2 and, in fact, is based on some kind of induction argument
using the latter.

The strategy for the modularity lifting.
* One can construct Z,—algebras R and T representing functors related to

representations and to eigenforms, respectively. More precisely,
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1.1

(1) HomZp_Alg(T, @p) corresponds to the set of systems of Hecke eigen-
values on a certain space M of modular forms (whence p should arise)
and

(ii) Homgz, Alg(R, @p) corresponds to the set of Galois representations that
conjecturally arise from the modular forms in M.
One constructs a morphism R — T.
One has to prove that the morphism R — T is an isomorphism or, at least,

induces an isomorphism R¢ 2 Tred,

Rough plan of the course

We want to introduce deformation theory and minimal modularity lifting
for GL,(Q) (4 or 5 weeks).

We want to study the theory for GL,(F) with F a totally real number field
and explain non-minimal modularity lifting (which involves base changes)
and maybe higher rank conjugate self-duals (4 or 5 weeks).

We might study the theory for GL,(F) with F a CM field and maybe other
topics (2 to 4 weeks).



2 Galois representations valued in Hecke algebras

Fix a prime number p and a finite extension E/Q,. Let & denote the ring of
integers of E and fix a uniformizer @ of E. Write F = &'/ (@) for the residue field,
which is a finite field with g = pf elements. We fix algebraic closures Q of Q and
Q, of Q.

Fix also a weight k € Z>; and a level N € Z~4. We are going to work with the
congruence subgroup I' = T'1(N).

Let S be a finite set of places of Q containing p, the primes dividing N and
the archimedean place co. Write Qg for the maximal algebraic extension of Q
that is unramified outside S and let Gg s = Gal(Qg/Q). We fix also an abstract
isomorphism ¢: Q, — C, which induces an isomorphism S¢(T,Q,) = S(T,C).
We are going to obtain an integral structure for this space of cusp forms from the
Eichler-Shimura isomorphism. (In this setting, one could use Katz’s geometric
interpretation of modular forms to obtain an integral structure, but that strategy
does not extend well to other settings that we will study later.)

Definition 5. Let TSV be the Z-algebra generated by the Hecke operators T,
and S, (formal variables) for all primes ¢ € S. For any commutative ring A, we

define
Ti,umv — TS,uniV ®Z A.

For a Ti’uni"—module M, we define
TS (M) = TS (M) = Im(T5"™ — Enda(M)).

Example 6. The algebra TZ"™" acts on the space of cusp forms Sy(T, C) by double
coset operators:

T, = [r(é ?)r] and S, = [r(é g)r} = F2(0).

Since S contains all primes in the level, Sx(T', C) is a semisimple Tg"mi"—module
(the Petersson inner product shows that each T, is normal) and so we obtain a

decomposition

T°(Sk(T,C)) = J] C,

elgen

where the product is over the Hecke eigensystems (i.e., the eigenforms in Sy (T, C)).



This decomposition transforms under ¢ into

T°(Sk(T,Qp)) = [T Qp-

eigen.

Every eigensystem
A TS(Sk(r/@p)) — @p

(corresponding to an eigenform) gives rise to a Galois representation
pr: Gos — GL2(Qp)
such that, for every prime ¢ ¢ S,
CharPoly (o, (Froby)) = X2 — A(T;)X + LA(Sy).

Thus, putting everything together, we obtain

p= T] pa: Gos — GL2(T5(S(T,Q,)))

A eigen.

with the property that, for every prime ¢ € S,
CharPoly(o(Frob,)) = X*> — T, X + (S, .

Our goal is to obtain an integral version of this representation. That is, we want to
replace @p with Zp (or even O for a suitable E/ Q).

Theorem 7 (Eichler-Shimura). There is an isomorphism of Tcsz'univ—modules
Mi(T,C) @ S(T,C) = H' (T, Sym"2(C?)).

The action of a double coset operator [Tal| with a € GLy(Q) on Hi(T,Sym*2(C?)) is
given by the composition

H' (T, Sym*—2(C?)) —5 H{(I' na~'Ta, Sym*2(C?))

| [Car] la*
H' (T, Sym*2(C?)) «—— H'(aTa~' NT,Sym"2(C?))

(where res and cor denote the obvious restriction and corestriction in group cohomology).



Remark. This cohomology can also be seen geometrically. Indeed, assuming that
k = 2 for simplicity, one can identify H'(T,C) = H'(Y(T),C) for Y(I') = T\$
(with integral coefficients this holds only under the assumption that N > 4;
otherwise there might be torsion and the right-hand side has to be modified) and
then the action of [['aT'] is given by

Y(TNa 'Ta) «+*— Y(ala~1NT)

I I

Y(T) Y(I)
(or rather, by 715 , o a* o 77).

Then H' (T, Sym*~2(C?)) = HY(I,Sym*2(Z?)) ®z C has a natural integral
structure. In addition, H' (T, Sym*~2(Z?2)) is a finitely generated abelian group,
which implies that H (T, Sym*~2(62)) = HY(T,Sym‘2(Z2)) @z 0 is a finitely
generated &-module. This is the object that we want to study. All in all, we obtain

isomorphisms

H'(T, Sym*%(62)) ®, Q, = H'(T,Sym*2(Q})) = H!(T, Sym*~3(C?))

J |

ST, Qp) 5k(T,C)

(where we used the fixed isomorphism : @p = C and the restriction of the Eichler—
Shimura isomorphism).

Choose a Hecke eigenform g € Sx(I',C) = Si(T, @p) and consider the cor-
responding Hecke eigensystem Ag: TS (H'(T, Symkfz(ﬁi)) — Q,. Enlarging &
if necessary (for this g), we obtain an integral version of A, and we can form a

“reduction” A, making the diagram

Ag: TS (H'(T,Sym" (@) —— T5(Si(T1,Q,)) — Q,

I

TS (HY(T, Sym* 2(62))) -------mmmme - femmoe e r 0
F



commutative. Now m = Ker(A,) is a maximal ideal of
T*(T, k) = T (H'(T, Sym*2(6?)))
and we can attach a continuous representation
Pm: Go,s — GLy(F)
to m and Ag. By construction, this representation satisfies that
CharPoly(p,, (Frob)) = X* — A¢X + fA¢(Sy) = X* — Ty X + ¢S, mod m

for all primes ¢ ¢ S.

Definition 8. We say that the maximal ideal m of T°(T, k) is non-Eisenstein if the
representation p,, is absolutely irreducible.

Proposition 9. If m is a non-Eisenstein maximal ideal of T° (T, k), then the localization
HY(T, Sym*=2(6?)), is a finite free O—module.
Since T%(T, k)w C Endg (H (T, Sym*2(6?))n), we deduce the following:

Corollary 10. If m is a non-Eisenstein maximal ideal of T° (T, k), then T (T, k), is flat
over O (i.e., torsion-free).

Proof of proposition 9. We assume that k = 2 to simplify the notation. Since we
already know that H'(T, &), is finitely generated over ¢, we just need to show
that it is p—torsion-free. Taking cohomology of the short exact sequence

0 N/ s F s 0

and localizing at m, we obtain an exact sequence
HY(T,F)y —— HYT, 0)n —2— HYT, O)n.
Thus, it suffices to prove that
H(T,F), = 0.
A double coset [TaTl'] with & € GL,(Q) acts on H(T, F) by

HY(T,F) = HY(T'na'Ta, F) —2— H(aTa 'NT,F) = HY(T,F)
1'1': idg / ]'1; idg / 1'1; [C:aTa~ 10T / ]'1;




(i.e., simply by multiplication by [I" : aTa~! N T]). Therefore, for every prime ¢ & S,
Ty acts by £ + 1 and Sy acts by 1. That is, if HO(F, F)m # 0, we would have that

Ty=14+¢ modm and Sy;=1 mod m

and we would obtain an explicit description of CharPoly(p,, (Frob,)). But then
P, would have to be 1 ® €, (where €, is the cyclotomic character modulo p) by
Chebotarev’s density theorem, contradicting the fact that m is non-Eisenstein. [

Remark. This proof is much more complicated than necessary in this setting (one
does not even need to localize at m to get the p—torsion-free result), but it will be

better for generalizations.

We have
T (L, k)m = T°(T,k)m ®sQ, = [] Q.

eigen.

where the product is over the eigensystems lying over m. Therefore, we have a
representation
0= le : GQIS — GLp (TS(F, k)m KR @P)

satisfying that
CharPoly(p(Frob,)) = X2 — Ty X + (S, € T5(T, k) [X]

for all ¢ ¢ S. That is, the values of p lie in a much smaller (and integral) subspace

corresponding to m. More precisely, the representation p descends to
pm: Ggs — GLo (T5(T, k)m)

by the following result:

Theorem 11 (Carayol). Consider a local ring A with residue field F and let R be an
A-algebra (e.g., A = T5(T, k) and R = A[Ggq,s]). Let A’/ A be a semilocal extension
with a decomposition

=114

iel
where each Al is local with maximal ideal w and residue field F! (e.g., continuing with
the A above, A’ = T5(T,k)m ®¢ Zp). If there is an A-algebra representation

o' =]1pi: Rosg A" = My(A") = [[Mu(4))

icl icl
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satisfying that
(1) tr(p(r®1)) € Aforallr € R and
(2) the reductions p;: R ® 4 F} — M,,(F!) are all absolutely irreducible and have equal
tr(pi(r®1)) € Fforallr € R (i.e., tr(pi(r ® 1)) is independent of i € I),
then p' is conjugate to the scalar extension - ® 4 A’ of a representation p: R — My (A).

11



3 Deformations of Galois representations

Let I be a profinite group and let p be a prime number.

Definition 12. We say that I' satisfies condition ®, if, for every open subgroup H
of T, the set Hom“™(H, IF,) is finite or, equivalently, the maximal pro-p quotient
HP) of H is topologically finitely generated.

Example 13. The condition ®,, is satisfied by
(1) the Galois group Gp g = Gal(Fs/F), where F is a number field, S is a finite
set of places of F and Fs is the maximal extension of F that is unramified
outside S, and
(2) the absolute Galois group G = Gal(K/K) of a finite extension K/Q, with ¢

prime.

Let FF be a finite field of characteristic p. Let CNL denote the category of
complete noetherian local rings (A, m,) with a fixed isomorphism A/my = F.
Let Ar denote the full subcategory of CNL consisting of artinian objects. Given
A € Ob(CNL), we define CNL, (resp. Arp) to be the full subcategory of CNL
(resp. Ar) whose objects are A—algebras. In particular, the ring of Witt vectors
W(TF) is an initial object in CNL and so CNL = CNLyy ().

Fix a continuous homomorphism

p: T — GL,(F).
Definition 14.
(1) A lift or lifting or framed deformation of p to A € Ob(CNL) is a continuous
homomorphism
p: T = GLy(A)

such that pmod my4 = p.

(2) We say that two lifts p and p’ to A are strictly equivalent if they are conjugate
by an element of 1 + M, (m,4) = Ker(GL,(A) — GL,(F)).

(3) A deformation of p to A is a strict equivalence class of lifts of p to A.

Remark. By abuse of notation, we will often identify deformations with some
representative lift. The reason to consider deformations instead of lifts is that

modular forms give rise to Galois representations without a distinguished basis.
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Example 15. Let g € Si(I', Z,) be a Hecke eigenform with Galois representation
modulo p
[_)g: GQ,S — GLz(lF).

Then any Hecke eigenform f € Si(T,Z,) congruent to g yields a deformation p
of p,,.
g

3.1 Representability

Definition 16. We define the functors

D = D,: CNL —> Set
A —— { Deformations of p to A }

and

DY = DE: CNL — Set
A+— {Liftsof pto A }

Remark. The two functors D and DﬁD are continuous in the sense that, for every
A € Ob(CNL), the natural maps

D(A) = limD(A/m}) and D"(A) — lim D"(A/m)
i>1 i>1

are bijections. Therefore, both functors D5 and DﬁD are completely determined by

their restriction to Ar.

We next want to study when these functors are representable (i.e., under what
hypotheses we have D; = Homcny (R, - ) and DﬁD >~ Homcny (RY, ) for some
R,RY € Ob(CNL)).

Proposition 17. If I satisfies the condition ®y, then DﬁD is representable.
Proof. Let H = Ker(p), which is an open subgroup of I'. By hypothesis, the
maximal pro-p quotient H(P) of H is topologically finitely generated.

Let N = Ker(H — H(")). Since N is fixed by automorphisms of H, N is a
normal subgroup of I'. By the definition of N and condition ®,, the quotient I'/ N

is also topologically finitely generated. Fix topological generators 7, ..., ¢ of

I'/N. We can define a continuous function
p:T = GL, (W(F)[X,;j:1<s<gand1<ij<n])

13



by
Ts = [0(rs)] - (14 (Xsig)ig)

where [ - | denotes the Teichmdiller lift and 1 denotes the identity matrix. Then DﬁD
is represented by the quotient of W(IF)[[{ X ;; }s,;] by the ideal generated by all
matrix entries of p(r) — 1 as r ranges over all relations satisfied by v1,...,7,. O

Theorem 18 (Mazur). If I' satisfies the condition ®p, and Endgr|(p) = T, then Dy is
representable.

Remark. One way to prove Mazur’s theorem is to take the quotient of DE by the

free action of the formal group scheme PGL,.

Next we explain the ingredients that appear in the classical proof of theorem 18.
Suppose that a functor F: CNL — Set is represented by an object R and consider
two morphisms A — C and B — C in CNL. Then

F(A Xc B) = HOI’HCNL(R,A Xc B)
= HomcnL (R, A) X Homey (r,c) HomenL(R, B)
Write Fle] = F[X]/(X?).

Theorem 19 (Grothendieck). Let F: CNL — Set be a continuous functor such that
F(FF) is a singleton. The functor F is representable if and only if

(1) the restriction of F to Ar preserves fibre products and

(2) dimg F(F[e]) < oo.

Remark. The structure of F—vector space on F(IF[e]) is not obvious. Multiplication
by an element « € F on F(F[e|) is obtained by applying F to the F-algebra
morphism

a+ be — a + abe.

For the addition, we use the identification
F(IFle]) x F(F[e]) = F(F[¢] xr Fle])
and apply F to the [F-algebra morphism

(a+bea+ce)—a+ (b+c)e.

14



The condition that dimy F(IF[¢]) be finite allows us to obtain noetherianness of the
ring representing F.

Condition (1) of theorem 19 can be very hard to check, so we explain an
alternative characterization of representability of the functors we are interested in.

We say that a morphism A — C in the category Ar is small if it is surjective and
its kernel is a principal ideal annihilated by m4. Consider morphisms a: A — C
and B: B — Cin Ar and the natural map

F(A Xc B) — F(A) XF(C) P(B)

Theorem 20 (Schlessinger). Let F: CNL — Set be a continuous functor such that
F(F) is a singleton. The functor F is representable if and only if

(1) for every a and B as above, the natural map
F(A Xc B) — F(A) XF(C) F(B)

is surjective whenever w is small,
(2) for every a as above (and taking B = w), the natural map

F(A xc A) — F(A) xg(c) F(A)

is bijective whenever  is small,
(3) taking C =T, w as above and B = F|e], the natural map

F(A x5 Fle]) — E(A) x F(F[e])

is bijective and
(4) dimp F(F[e]) < oo.

Remark. Grothendieck’s criterion looks simpler but it is much more difficult to
check in practice than Schlessinger’s more technical conditions.

Lemma 21. If Endgr)(0) = T, then Endcri(p) = C for every C € Ob(CNL) and
every lift p: T — GL,(C) of p to C.

Idea of the proof. The lemma can be proved by reducing to the artinian case and
using an induction argument on the length of C. O

Now we are in a position to prove (most of) theorem 18, that we recall here:
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Theorem 18 (Mazur). If I satisfies the condition ®), and Endgr)(0) = IF, then Dy is

representable.

Proof. We use Schlessinger’s criterion (i.e., theorem 20).

1)

()

)
(4)

Take lifts p4 and pp of p to A and B, respectively, such that « 0 p4 and S o pp
are (1 + M, (m¢))-conjugate. Thus, we may take ¢ € 1+ M, (mc) such that
g(xopa)g~! = Bopp. Since a is surjective, we can lift g to h € 1+ M, (my).
Then (hosh~!, pp) defines a lift of p to A x ¢ B and is a preimage of (04, 0).
We are going to use lemma 21. Let a: A — C be a small morphism in the
category Ar. By the previous part, we only have to prove that the natural
map
®: Ds(A xc A) — Ds(A) X Dy(C) D5(A)

is injective. Take p,r € DﬁD(A X ¢ A) such that ®(p) = O(r) (regarded as
deformations). Write (p1,p2) (resp. (r1,72)) for the image of p (resp. r) in
DF(A) x po(c) DS(A). By assumption, we can express p; = g;7;g; * for some
Qi € 14+My(my). Butawop; = aopyand a ory = a or; as lifts (not just as

deformations). Therefore,

wopr =a(gr)(aor)a(g) " = a(gr)(xor)a(gr) ™
1

= (18, ) (@op)a(g18, ")t = a(g18, ) (wopr)a(gigy ),

which means that a(g1g, ') commutes with « o p;. By lemma 21, we deduce
that zx(glg;l) € CNM,(14+m¢c) =14 me. We can take a lifta; € 1+ my of
(g1, ') and, replacing g1 with a;'¢1, we may assume that a(g7) = a(g2).
All in all, we obtain § = (g1,82) € 1 +M,(max_4) such that p = grg™?,
which means that p and r define the same deformation.

We skip the proof of this part.

We are going to check that D(IF[¢]) is finite later (see corollary 24). O

Lemma 22. Suppose that T satisfies the condition @, and that Endgr)(p) = F. Let
R be the ring that represents the functor Dg: CNL — Set. For every A € CNL, the
restriction of Dy to CNL,, is represented by R ®W(]F) A.

Remark. 1f R represents the functor DE, then there is a universal object p™' € DﬁD

corresponding to idzno. Thus, for every A € Ob(CNL) and every p € DFD, there

exists a unique a: R~ — A such that p = a o0 p~. Sometimes the existence of the

universal object is useful.
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3.2 The tangent space

Let ad(p) = M, (FF) with adjoint I'-action. That is, given o € I"and X € ad(p),
¢ X = (o) Xp(o) .

Remark. We may view ad(p) = gl, and that is the right way to interpret this object
for generalizations. That is, if we replace GL,, with another group scheme, then
the role of ad(p) is played by a Lie algebra over F.

Take alift p: I' — GL,(FF[¢]) of p. For every o € T, we can express
p(0) = (1+ec(o))p(e) withe(o) € My(FF).
For o, T € T, we rewrite the relation p(07) = p(0)p(7) as

(1+ec(o))p(ot) = (1 +ec(0))p(0) (14 ec(t))p(T),

whence

c(et)p(et) = c(o)p(o)p(T) + plo)e(T)p(T)
or, equivalently,
e(07) = c(0) +p(0)e(T)p(o) .

That is, c € Z!(T,ad(p)).

In this way, we obtain a bijection DﬁD(IF[e]) >~ 71(T,ad(p)). One can check
that the [F—vector space structures on DE (IF[¢]) and on Z!(T, ad(p)) agree. If R”
represents DﬁD, then this also agrees with Homp (mpo/ (m%zm, p), F).

Two lifts p1 = (1 +ecq)p and p2 = (1 + ecp)p of p to F[e] define the same
deformation if and only if there exists some X € M, (FF) with the property that
p1 = (1 +eX)p2(1 — eX). But this is equivalent to

c1p = Xp + 0 — pX.

Therefore, p; and p, define the same deformation if and only if there exists some
X € M, (F)

c1(0) =ca(0) + X —p(0)Xp(o) P =ca(0) — (¢ —1)X forallo €T,

which happens precisely when c¢; and ¢, define the same class in H'(T',ad(p)).

17



Proposition 23. There are isomorphisms of F—vector spaces

DY(F[e]) = Z\(T,ad(p)) and  Dp(Fle]) = H'(T,ad(p))

Corollary 24. IfT satisfies the condition ®, then D5(IFe]) is finite-dimensional over TF.

Proof. Let H = Ker(p). In the inflation-restriction exact sequence
0 —— HYT'/H,ad(p)) —— HY(T,ad(p)) —— H(H,ad(p)),

we see that HY(T'/H,ad(p)) is finite because I'/ H is a finite group and the con-
dition ®, implies that H'(H, ad(p)) = Hom“"(H, IF"*) is finite. In conclusion,
H!(T,ad(p)) is finite too. O

Remark. Assume that I' satisfies the condition @, and that Endgr(0) = F and
consider the ring R that represents D5. One can find a presentation of the form

REWE)[Xy,..., X/ (f1 - fr),

where ¢ = dimp HY(T',ad(p)) and r = dimg H*(T,ad(p)).

Conjecture 25 (Mazur). Take I' = Gr s for a number field F and a finite set S of places
of F containing the archimedean places and the primes over p. If p is absolutely irreducible
and R is the ring representing Dg, then

dim(R) =1+ hy —hy,  where h; = dimg H'(Gg5,ad(p)).

Remark. For n =1 (i.e., in the case of deformations of characters), this conjecture

is equivalent to Leopoldt’s conjecture.

3.3 Deformation conditions

Fix p: I' — GL,(FF) as before. We want to study subfunctors of DE or D5 (in par-
ticular, subfunctors with arithmetic properties). Fix A € Ob(CNL). We often take
A to be the ring of integers ¢ of a finite totally ramified extension of W(TF)[p~!].

Example 26 (fixed determinant deformations). Fix a continuous morphism
p: T — 0 suchthat ¢ mod my = det(p).

Let DﬁD Y. CNL, — Set be the subfunctor of DﬁD of lifts p: I — GL,(A) with
det(p) = ¥ (to be precise, in the right hand side we should compose i with the
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structure morphism &' — A). This condition is invariant under conjugation and
so defines also a subfunctor Dlﬁp of D5 of deformations with determinant .

Proposition 27.
(1) The functor DﬁD Vs represented by a quotient of the universal lifting ring R™ (which
represents DpD ).
(2) If Endgr)(p) = F, then D%P is represented by a quotient of the universal deforma-
tion ring R™™ (which represents D).

Proof. Let pM: T — GL,(R") be the universal lift of p. Let ] be the ideal of R™
generated by

{det(pD(U)) —¢(o):0ceT}.

For every lift p: T — GL,(A) of p to A € Ob(CNLy), there exists a unique
morphism ¢: R~ — A in CNL, with the property that p = ¢ o p". It is easy to
see that det(p) = ¢ if and only if ¢(]J) = 0. Therefore, R“¥ = R"Y/] represents

DpD ¥ The proof for deformations is essentially the same. O

Let ad’(p) denote the subspace of matrices in ad(p) = M, (F) (i.e., with adjoint
I'-action) that have trace 0.

Proposition 28.
(1) DS (Fe]) = Z'(T,ad’(p)).
(2) Dg (Fle]) = Im(HY(T,ad’(p)) — HY(T,ad(p))) (and the right-hand side is
~H'(T,ad’(p)) if p { ).

Proof. Take alift p: T — GL,(Fle]). Write p = (1 +¢ec)p with c € Z}(T,ad(p)). We
can check that det(p) = ¢ = det(p) if and only if 1 + e tr(c) = 1, which happens
precisely when ¢ € Z'(T,ad’(p)).

The statement for deformations now follows using that coboundaries have

coefficients in ad’(p). O
Remark. We can identify ad(p) 2 gl,, and ad’(p) 2 sl,..

Definition 29. A deformation condition or deformation problem % on CNL, is a col-
lection of lifts p of p to objects A of CNL, satisfying the following properties:
(1) (F,p) € 7;
(2) if (A,p) € Z and ¢: A — Bis a morphism in CNL,, then (B,¢pop) € Z;
(3) if (A,p4),(B,pB) € Z and we have two morphisms A — C and B — C in
Arp, then (A Xc B,pa X pp) € Z;
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(4) if (Aj, pi)ics is an inverse system in 2 and @ A; € Ob(CNL,), then

(lgn Ai,lgnpi> €9;
i€l i€l
(5) Z is stable under strict equivalence, and
(6) if ¢: A — B is an injective morphism in CNL, and (4, p) is a lift with the
property that (B,¢op) € 7, then (A,p) € 2.

Proposition 30. Let R™ be the universal lifting ring on CNL, and let R® —» R be a
quotient morphism in CNL with the following property: for every lift p: T — GL,(A)
of p to A € Ob(CNLy) and every ¢ € 1+ My (my), the morphism RE — A cor-
responding to p factors through R if and only if the morphism corresponding to gog ™!
does. The collection of lifts whose associated morphisms R™ — - factor through R form a

deformation problem. Moreover, every deformation problem arises in this way.

Proof. The first claim is easy to verify. For the second claim, let & be a deformation
problem. Let .# be the set of all ideals I of RY such that (R9/1, ;) € 2, where p;
is the composition of p™ with the canonical morphism GL,(R”) — GL,(R"/I).
From the definition of a deformation problem:
* .7 # by condition (1) (as mzo € &),
e alift (A,p)isin 2 if and only if Ker(RY — A) € .# by conditions (2) and
(6) (Where the morphism RY — A classifies p);
* .7 is closed under nested intersections by condition (4) and the previous
property;
* .7 is closed under finite intersections by conditions (3) and (4), and
* .7 contains a minimal element | that is contained in every I € .# by the
previous properties and Zorn’s lemma.
All in all, we can use R = RY/] with the quotient map R™ — R to recover 2. [J

Consider a quotient map R= — R = RY/] corresponding to a deformation
problem 2. There is a subspace %5 C Z!(T',ad(p)) given by the image of the map
that makes the diagram

Homp (mg/(m%,mp),F) = Homg (mRD/(m%{D,],mA),IF)

l

Z!(T,ad(p)) = Homp (mgo/(m%q,my),TF)

commutative. Let L denote the image of . in H'(T,ad(p)), so that we obtain a
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surjective map £ —% Ly and
dimp(Zy) = dimg(Lg) + n* — dimg (H*(T,ad(p))).

Example 31. Let p: I' — GL,(F) be a representation of the form

— X1 *

a (01 Xz)
and suppose that there is a normal subgroup I of I' such that

pli#1 and xi[i=1
Let ¢: I — 0 be alift of x,|;. The collection of lifts p of p that are conjugate to a
(v )
0 x2

with x1|; = 1 and x2|; = ¢ is a deformation problem.

representation of the form

Example 32. Letp: I' — GL,(IF) be the trivial representation. The condition from
example 31 (that lifts be conjugate to upper triangular representations with a fixed
diagonal on I) is not a deformation problem. In particular, if T = Z = (), we can
consider p1,p2: I — GL;(IF[¢]) defined by

p1(7) = ((1) i) and  05(7) = (1 (1))

and it is impossible to conjugate p1 X pa: I — GL,(FF[¢] X F[e]) to make it upper
triangular.

3.4 Examples of deformation conditions

Let I' be a profinite group satisfying the condition ®, and let I be a normal
subgroup of I'. Let & denote the ring of integers of some finite extension of Q,
with residue field IF. We consider a continuous homomorphism p: I' — GL,(FF)

(for the examples, we want n = 2).

Example 33 (ordinary deformations). Suppose that we can express
_ (x1 * )
b < 0 X2
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and that x;|; = 1 but p|; # 1. Fix a continuous character §: I — ¢*. We consider
the functor D"@: CNL, — Set which sends A to the set of lifts p of p to A that are
strictly equivalent to a representation of the form

(Xl *> with x1]; = land xz2|; = ¢
0 x X1[1 X2l1 .

We claim that D™ is a deformation problem. Indeed, recall that one way to think
about deformation problems is as quotients of the universal lifting ring R" that
has a certain conjugacy invariance property (see proposition 30). But observe
that, if D°™! were represented by a quotient of R, then it would automatically
satisfy the condition in proposition 30. Therefore, it suffices to prove that D° is
represented by a ring R € Ob(CNL,) that is a quotient of R".

First suppose that D™ is represented by some R® € Ob(CNL,) and let
us see that in this case R°™ must be a quotient of RY. Indeed, the inclusion
D™ (IF[¢]) € D"(Fe]) can be expressed as

Homg (mgora / (Mm%, Mg), F) < Homp (mgo/ (m35, my), F)
and taking duals we obtain
mRD / (m%{[,, mﬁ) —» mRord / (miord, mﬁ).

By Nakayama’s lemma, we conclude that the natural map RY — R°™ correspond-
ing to the universal lift in D°™(R°™) C DY(R™) must be surjective.

It only remains to prove that D™ is represented by some ring in CNL,. To do
so, consider the subfunctor DBT: CNL, — Set which sends A to the set of lifts p
of p to A of the form

:<X1 *) with x1|; = land x2|; = ¢
P 0 1 X111 X2l .

Consider also the functor L: CNL,; — Set which sends A to the set of lifts p of p

to A of the form 1 0
( ) with x € my4.
x 1

There is a natural transformation ¢: L x DBT — D° given by

(u,p) — upu_l.
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We claim that ¢ is an isomorphism. But one can prove that D" is represented by
a ring RP°" € Ob(CNLy) (the proof is similar to that of proposition 17) and L is
represented by ¢[[z]. Therefore, the last claim implies that D™ is represented by

Rord _ gBor @ﬁ ﬁ[[z]] ~ RBor [[Z]]
Next we want to prove that, for every A € Ob(CNLg), the map

¢pa: L(A) x DPT(A) — D4(A)

(u,p) — upu_1

is a bijection. For the surjectivity, observe that every g € 1+ Mj(my) can be

1 0\/a b i
g:(x 1><0 d) with x,b,1 —a,1 —d € myu.

Thus, if o € D°"( A) satisfies that

expressed as

1 X1k Bor
= € D°°'(A),
808 (o Xz) (A)

(CC (1)) (g Z)P(g Z)1> € L(A) x DBf(A)

is a preimage of p. As for the injectivity, suppose that uj01u; = UpoUy 1. Then
uoiu—1
p1u
that u is upper triangular. This is a consequence of the following more general
fact.
Given p € DP"(A) and ¢ € 1+ My(my), if gog~! € DBO'(A), then g must be
upper triangular. Indeed, we can reduce to the case in which A is artinian and

then

= pa, where u = u, 'u; € L(A). To prove that u = 1, it suffices to prove

then argue by induction on the length of A. Write

o) = () )

) forallo €T.
0 xa(0)

Using the decomposition

1 0\/a b )
g:(x 1)(0 d) with x,b,1 —a,1 —d € my,
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we may conjugate p by the second matrix and assume that

()

Moreover, by induction, we may assume that mfjl = 0 and that x € qu. Then we

1 0\ /1 b(o) 1 0
-1 _
257 = (2 1) o i) (5 1)
_(1—b(¢7)x *)_(1 *)
S \1=yle)x x/  \0 %)’
where the last equality follows from the assumption that gog~! € DBT(A). Since
plr # 1, we can find o € I such that

compute for o € I

@)

ither p(0) = (- *) witha #00rp(0) = (-
either p(0) = o 1) Witha #0orp(o) = 0 B
That is, either b(0) € A* or 1 — ¢(0) € A*. Inboth cases, x = 0 and so g is upper
triangular.

) with B # 1.

A particular case of interest is the following: one might take I' = Gg for some
finite extension K/Qy, I = Ik (the inertia subgroup) and ¢ = ello_k for some k > 2.
This is the kind of situation that we encounter when working with representations
associated with p—ordinary eigenforms of weight k.

Another variant can be obtained by setting A = [0y (p)], where OF (p) is
the maximal pro-p quotient of &) Then one might consider D™@: CNL, — Set
defined analogously to the D°' from above but replacing : Ix — 0 with
the universal character ¥: Ix — A provided by the local class field theory
isomorphism [2* = ¢. In this way, one can consider deformation problems
associated with Hida families.

3.4.1 Minimally ramified lifts

Other cases of interest come up from taking I' = Gk for some finite extension
K/Qywith ¢ # pand I = Ix.

Example 34. Suppose that

1 £ 5(I) { ((1) ’1‘) € GLa(F) }
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Taking ¢ = 1, we obtain the deformation problem D™": CNL, — Set that sends
A to the set of lifts p of p to A such that p(Ik) is strictly equivalent to a subgroup of

() <cun).

called minimally ramified lifts of p.

Example 35. Suppose that
_ _(x1 O o —
=10 » with x1|7, = 1 but x,|1, # 1.
X2

There is a deformation problem D™": CNL, — Set that sends A to the set of lift
p of p to A which are strictly equivalent to

O —
(%1 X) WithX1|1K:1andX2|1K:IKQIFX—>ﬁx—>AX,
2

called minimally ramified lifts of p. To see that D™ is indeed a deformation problem,
one can use example 33 with ¢ the composition of the Teichmdiller character and
X2 |1, together with some facts about the structure of Gk (especially the tame and

wild ramification).

More generally, if p: Gx — GL;(IF) satisfies that p(Ix) has order prime to p,
then there is a deformation condition D™": CNL, — Set that sends A to the set
of lifts p of p to A such that the reduction modulo m, induces an isomorphism
p(Ix) = p(Ix), called minimally ramified lifts of p.

3.5 A computation of a local deformation ring

Take a finite extension K of Q, and I' = Gg. Fix a continuous homomorphism

: Gk — GL,(F)

-5 2
0 X

such that p|;, # 1but x;|;, = 1. Choose some continuous character

of the form

IP:IK—>@7X
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and let D°™: CNL, — Set be the functor that sends A to the set of lifts p of p to A
that are strictly equivalent to a representation of the form

X ith ., = 1land x2|r, =
0 x X1lIx = X2l = ¥

This functor is represented by a ring R°™ in CNL, (cf. example 33).

Assume further that XX, V£1or €p. Under these assumptions, we want to
prove that R & J[xy, ..., x,], where g = 4 + [K: Q,].
3.5.1 Two preliminary results

Let ¢ be a prime number and consider a finite extension L/Q,. Let V be a finite

F—vector space with a continuous G —-action. Write V* for the dual representation
toVand V*(1) = V* ®F €.

Theorem 36 (local Tate duality). Fori € {0,1,2 }, we have canonical isomorphisms
H (G, V) = H> (G, V*(1))*

Theorem 37 (local Euler characteristic). The Euler characteristic of V is

2 , , ifl #p,
Y (-1)' dimp H'(G, V) = { . f T
i=0 —[L . Qg] dlm]F(V) lfg =p.

Combining these results, we can compute the dimensions of all the cohomology
spaces as long as we can find the dimension of H’, which is comparatively easier.
Also, when V = ad(p), the pairing

(X,Y) — tr(XY)
is perfect and I'-equivariant. In particular, (ad(p))*(1) = ad(p)(1).

3.5.2 The form of R°d

Proposition 38. Under our assumptions for o, the functor D° is formally smooth in
the sense that, for every A € Ob(Arg) and every ideal I of A such that 1> = 0, the
canonical map

D4(A) — DY(A/T)

is surjective.
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Proof. Arguing by induction on the length of I, we can reduce the proof to the case
inwhich I = (f), myl = 0and I = [F as &-modules.

Fix o’ € D°(A/I) and assume (up to taking a strict equivalent representation)
that

p_(xn VYN :
o = 0 X/ WlthX1|11< =1land X2|11< =9y
2

and b’ € Z'(Gk, (A/1)(x;(x5)~1)). We can lift x| to x;: Gk — A by lifting
X:(Frobg) (as the action on Iy is determined by the definition of D°d), Then, we
just need to lift b’ to a cocycle b € Z'(Gk, A(x1x5 ")) and

x1 b ) ord
= e D A
3 ( 0 Xxe (4)

will be a preimage of p’.
We can lift any coboundary easily, so it suffices to show that the natural map

H' Gk, A(ix; ) = H' (G, (A/D (1x; 1))
is surjective. But the cokernel of this map injects into
2 ~1\) o 12 — =11} o 190 —-1= = |y —
H*(G, I(x1x; 1)) = HY(Gk, F(xix; ) = H (G, F(xy Xx2€p)) = 0

as X1X, 1o €p. (For the first isomorphism, we use the assumption that I = IF; for

the second isomorphism, we use local Tate duality.) O

Using general results of commutative algebra applied to CNL4 (namely, the
fact that a ring that represents a formally smooth functor is formally smooth
itself and the structure of formally smooth algebras), this proposition implies the

following:

Corollary 39. The ring R is of the form
RO > g[xy, .. -, Xg]
for some g € Z>1.

It remains to compute the value of g.
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3.5.3 Computing ¢
Observe that
g = dimp (Mpoa / (M0, M0)) = dimp (Mpora / (M%oea, Mo) ) = dimp D (FF[e]).

But D is a subfunctor of DY and we can define

and so

¢ = dimg HL,4(Gy, ad(p)) + dimg B' (G, ad(p))
= dimp H! (G, ad(p)) + 4 — dimp H%(Gg, ad(p))
3 if p is non-split,

= dimg H! (Gk,ad(p)) +
¥ Hora(Grrad(p)) {2 if p is split.

It remains to compute dimp H! ;(Gx,ad(p)).
Let b be the space of upper triangular matrices in ad(p) and let n be the space of
nilpotent matrices in b. Both of these subsets are stable under the (adjoint) action

of Gk. Observe that, under the trace pairing,

Consider the composition
¢: H' (G, b) —— HY(Gg, b/n) = H(Ig, b/n).
Proposition 40. In the situation above,
H! 4 (Gk,ad(p)) = Im(Ker(¢) C H'(Gk, b) — H' (G, ad(p))).

Proof. Left as an exercise. The idea is that D°¢ is defined by requiring that rep-

resentations be (conjugate to) upper triangular, so the cocycles in H. (G, ad(p))
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should come from H!(Gg, b). On the other hand, the constraints on the restriction
to Ix correspond to mapping to 0 in H' (I, b/n). O

Now observe that
H(Gr,ad(p)/b) = H (G, F(x1 'X2)) = 0
because | # X», whence we obtain
H'(Gg, b) — H'(Gg,ad(p))
from the long exact sequence of cohomology. Therefore,

H. (G, ad(p)) = Ker(¢: H'(Gx, b) — H' (I, b/n)).

ord

Taking cohomology of the short exact sequence

0 > n > b > b/n > 0
we obtain
H'(Gg,b) ——— HY(Gk, b/n) » H?(Gg,n)
Homc"“tl(lzGK, b/n) H°(Gg, (ac!z(ﬁ) /6)(1))
Hom™ (K B2 HO(Gr, F(T, 'sey) =0

(where in the last column we have used local Tate duality and that X x, 1 €p).
Allin all, ¢ factors as

¢: H (Gg,b) —— HY(Gg,b/n) ——=— H(Ig, b/n)
1 I
Hom®™ (£ x 0F,F)? --=2- Hom“" (¢, F)?

and so

dimg Ker(¢) = dimy Ker(res: H'(Gx, b/n) — H' (I, b/n)) +
+ dimy Ker (H'(Gk, b) — H'(Gk, b/n))
= 2 + dimy Im (H' (Gg, n) — H'(Gk, b))
= 2 + dimy H'(Gx, n) — dimg Ker (H' (Gg,n) — H'(Gk, b))
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= 2+ dimp H!(Gg, n) — dimp H(Gg, b/n) +

+ dimy Im (H%(Gg, b) — H°(Gg, b/n))
= dimy H'(Gk, n) + dimg Im (H° (Gx, b) — H°(Gk, b/n))
1 if p is non-split,

= dimp H'(Gg, n) +
2 if pissplit,

where we have used the exact sequence

H°(Gg,n) » H(Gk, b) » H%(Gg, b/n) » H (Gg, n) » HY (G, b) » H (Gg, b/n)
I 12 12
0 IF or IF? IF?

(the dimension of the second term depends on whether p is non-split or split).
We can evaluate the dimension of the remaining term using the Euler charac-

teristic formula:
dimp H' (G, n) = [K : Q,] + dimp H?(Gg, n) + dimp H*(Gk, n) = [K: Q,].
Combining everything, we finally conclude that
g = dimp Zj,4(Gk,ad(p)) = 4+ [K: Q).

3.5.4 Variants

Proposition 41. Let L be a finite extension of Q, with ¢ # p. Consider a continuous
homomorphism
p: GL — GLz(IF)

satisfying that
(1) either

epmy e { (g 1) ecLam |

(2) orp = X1 ® Xp with x1|1, = 1 but x,|;, # 1.
The minimal deformation problem D™": CNL, — Set introduced either in example 34

or in example 35 is represented by R™™ = ¢'[x1, x, x3, X4].

Proof. Lett as an exercise. It is similar to the previous case that we worked out, but

somewhat simpler. O
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3.6 Global deformation problems

Fix a number field F and a prime number p. Fix a finite set S of finite places of F
containing all primes above p and let Fs be the maximal extension of F unramified
outside S and outside the archimedean places. Write Gr s = Gal(Fs/F).

Let & be the ring of integers of a finite extension of Q, and let F be its residue
field. Fix a continuous homomorphism p: Grs — GL,(IF) (for some n € Z>1).
We assume that p { 2.

We consider the deformation functor D5: CNLs — Set, which is represented
by a ring R‘piniv in CNLy if Endpg, ;(0) = T (see theorem 18).

Next we want to impose additional conditions. Given a place v of F, there is a

localization map D5 — D5 . given by restriction from Gr to Gr,. Fix a continuous
p P|GFU v

character ¢: Gpg — 0 and, for each v € S, a deformation problem D, C Dggp .
Fy

We will refer to the tuple

< =(p,5,¢,0,(Dy)yes)

as a global deformation problem.

Definition 42. We say that a lift p of p to A € Ob(CNLy) is of type .7 if

(1) pisunramified outside S,

(2) det(p) = ¢ and

(3) plcy, € Do(A) forevery v € S.
Similarly, we say that a deformation is of type .7 if one lift (or, equivalently, all lifts)
in the corresponding equivalence class is of type .7.

Thus, we can define a functor D »: CNL,; — Set that sends A to the set of
deformations of p to A of type ..

Proposition 43. Let . be as above. If Endpg, (p) = F, then D is represented by a
quotient R & of R‘plni".

Proof. By proposition 27, the deformation problem obtained after fixing determin-
ants is still representable by a quotient Rlpp of R%“i".

Choose a lift p in the class of the universal Rg—deformation. For every v € S,

the restriction p|, corresponds to a morphism R%G — Rg.
v Fo

On the other hand, let R, be the quotient of R%G representing D, (see propos-
Fy
ition 30). Set

Ré= Q@ R;. and R = Ro
veS,o Y veS,0
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Then, the functor D & is represented by
Ry = RY &40 RS
‘ p “Rg

This quotient of R%) is independent of the choice of the lift p in the class of the
universal R%P—deformation, as the quotients

RY

oler, —# Ro

are invariant under strict equivalence classes. O

Remark. With the notation in the proof, observe that R » is an algebra over RIS
but not canonically (because of the choice of p). It is useful to have a variant of R »
that is canonically an algebra over RI%.

Fix asubset T C S.

Definition 44. A T—framed lift of pto A € Ob(CNLy ) is a tuple (o, (Bo)ocT), where
pisaliftof pto Aand B, € 14+ M, (my) forall v € T. We say that (p, (Bo)ver) is
of type .7 if p is.

Definition 45. We say that two T—framed lifts (p, (Bo)ver) and (¢, (B,)ver) of
p to A € Ob(CNLy) are strictly equivalent if there exists ¢ € 1+ M, (m4) such
that o’ = gpg ! and B, = gB, for all v € T. A T—framed deformation of p to
A € Ob(CNLy) is a strict equivalence class of T-framed lifts of p to A. We say
that a T-framed deformation is of type . if one lift (equivalently, all lifts) in the

corresponding equivalence class is of type .7

Proposition 46.
(1) If Endpg, (] (p) = For T # @, then the functor DT,: CNL, — Set that sends
A to the set of T—framed deformations of p to A of type . is represented by a ring
RT, € Ob(CNLy).
(2) IfEndgg, (0) = Fand T # O, the choice of a lift in the universal deformation of
type . gives rise to an isomorphism

R; = R!y [[xl,. . .,an‘T‘fl]].

Proof. Left as an exercise. The idea for the second part is that n?| T| is the dimension
of the space of choices of (By)ycT and the —1 comes from scaling each , by the
same element in 1 + m 4, which stabilizes p. O
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3.6.1 Tangent spaces

Assume for simplicity that Endg, () = F, so that DY, is represented by a ring
R;. Observe that, for every T—-framed lift (p, ( ,BU)UGT) in the universal T-framed
deformation and every v € T, we have a local lift

5;19‘@051}3 Gr, = GLx(RY,)

that is independent of the choice in the strict equivalence class. Thus, we get a
canonical morphism R, — R, for every v € T. Putting these together, we obtain
a morphism
RT1¢ — RY,  with R, = @) R,.
veT,0

Next, we want to describe the relative tangent space

my/ (mzyr mT*lOC)/

where m » and mr_j,. are the maximal ideal of R?, and of R;*IOC, respectively.
Let M be an IF[Gf s]-module of finite dimension over IF. We write C*(Fs/F, M)
for the complex of inhomogeneous cochains computing the Gr s—cohomology
with coefficients in M and C*(F,, M) for the complex of inhomogeneous cochains
computing the Gr,—cohomology with coefficients in M. We want to consider these
complexes for M = ad(p) or ad’(p).
Recall that, for every v € S, we have a deformation problem D, C D;’lp which

GF?}
has a corresponding subspace

L, C H'(F,,ad’(p)).

Namely, D, (F[e]) corresponds to a subspace %, C Z!(F,,ad"(p)) whose image
under Z'(F,,ad’(p)) — H'(F,,ad’(p)) is L,. Define a complex C('%T(ad0 (p)) as
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follows:

(CO(Fs/F,ad(p)) ifi =0,
Cl(Fs/F,ad’(p)) @ <@ CO(Pv,ad(ﬁ))> ifi =1,
veT
. C?(Fs/F,ad’(p CY(F,, ad’(p
N G L IR (@'t )«
a ( a Cl(FU,adO(ﬁ))/$v> ifi =2,
veS\T

Ci(Fs/F,ad’(p)) @ (@ C-Y(F,, adO(p))> ifi > 2.

L vES

with boundary map

(f, (gv)UGS) L (af/ (f‘GFv - agv)ves)-

We write nylT(adO (p)) for the corresponding cohomology groups. Also, write
hjy,T(adO (p)) for the dimension of Hiy,T(adO (9)) (and define ' (Fs/F,ad’(p)) and
hi(F,,ad’(p)) similarly).

Since we assumed that p { 7, there is a G s—equivariant decomposition

ad(p) = ad’(p) ®F
and the pairing
(X,Y) — tr(XY)
on ad’(p) is perfect and defines an isomorphism (ad’(p))* = ad’(p).

Proposition 47. There is a canonical isomorphism
Homp (mﬁﬂ / (mzyl mTfloc)' ]F) = H}V,T(ado (f_)) )

Proof. Take a T—framed lift (p, (Bv)ver) Of p to [F[e]. For this lift to arise from an
element of Homg (m 7/ (m?y, MT_loc)s ]F), we want it to be of type .# and to have
trivial restriction at each v € T. More precisely, we want
(i) det(p) = y = det(p),
(i) plgs, = BoPlcy, By forevery v € T and
(iii) plcy, € Dy(IF[¢]) for every v € S\ T.
We can express p = (1 + ep)p with ¢ € Z}(Fs/F,ad(p)) and B, = 1+ ea,

with &, € ad(p) = C°(F,,ad(p)) for every v € T. The previous conditions can be
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reformulated as follows:
(i) ¢ € Z'(Fs/F,ad’(p)),
(ii) foreveryv € T,

Plcy, = (0 ay — mxva_l) = duy,

and
(i) ¢lgy, € £ forallv € S\ T.
But by construction of C;ﬂlT(ad0 (p)),

(¢, (0)ver)) = (99, (9lcy, — I0)oer)-

Therefore, the conditions (i), (ii) and (iii) hold if and only if 9 ((¢, (ay)ver)) = 0.
Furthermore, two such cocycles (¢, (ay)per) and (¢', (a),)ver) give strictly
equivalent lifts if and only if there exists § = 1 + ex satisfying that

{4>’=4>+aoc,

o, =ay+a foreveryov € T.

This happens precisely when
(9" = ¢, (& — )oer) =3 in C5 r(ad’(p)). O

Since the complex Cr'le(adO (p)) is defined almost as a cone of two other com-

plexes, a diagram chase gives an exact sequence

0 — HY r(ad’(p)) — H’(Fs/F,ad(p)) — EPH’(Fy,ad(p)) -
veT

— H, r(ad’(p)) — H'(Fs/F,ad’(p)) -

— (EB Hl(Fv,adO(ﬁ))) ® ( P Hl(Fv,adO(ﬁ))/Lv) -
veT veS\T

— H%, p(ad’(p)) — H*(Fs/F,ad’(p)) -

— P H*(F,ad’(p)) — HY 1(ad’(p)) — 0

vES

If we wanted to allow p = 2, then the local terms would be more complicated
because the archimedean places could appear in the corresponding sequence.
We want to give some formula for 1!, (ad’(p)). First, we can use the previous
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exact sequence to compare Euler characteristics:

Xz7(ad’(p)) =1 |T| + x(Fs/F,ad’(p)) —

-) x(Fy,ad’(p)) + Y (hO(Pv/ ad’(p)) — dimg(Ly)).
veS veS\T

Here, the term 1 — | T| comes from the fact that the H® groups have coefficients in
ad(p) = ad’(p) @ F instead of in ad’(p).

We will be able to obtain formulae for the Euler characteristics x(F,,ad’(p))
using theorems 36 and 37. Analogously, for x(Fs/F,ad’(p)), we can use the
following general results:

Theorem 48 (Poitou-Tate). Let M be a finite F—vector space endowed with a continu-
ous Gp s—action and let M* denote the dual representation. There is an exact sequence

0 — HFs/F,M) — €p H(E, M) — H*(Fs/F, M*(1))* -
vESorv|oo
—H'(Fs/F, M) — P H'(F,, M) — H'(Fs/F, M*(1))*
veS
— H2(Fs/F, M) — D H*(F,, M) — H"(Fs/F, M*(1))* — 0.
veS

(In general, we should include the infinite places everywhere, but with the assumption
p # 2 only the corresponding H groups are non-trivial.)

Theorem 49 (global Euler characteristic). With the same notation as in theorem 48,
we have

x(Fs/F,M) = —[F : Q| dimg(M) + Y h°(F,, M).

o[

We will apply the previous theorems to M = ad’(p), noting that M* = M in
this case.

Let L be the orthogonal complement of L, in H!(F,,ad"(p)(1)) under local
Tate duality (see theorem 36) and define

HL. ;(ad(7)(1)) = Ker (H'(Fs/F,ad’(p)(1)) — @) H!(F,,ad"()(1))/ L),
veS\T

By theorem 48, we obtain an exact sequence
H!(Fs/F,ad’(p)) — (@ H!(E,, ado(ﬁ))) ® ( P H'(F, ado(ﬁ))/Lv) -
veT veS\T
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— H!

Ui p(ad’(p)(1))" — H*(Fs/F,ad’(p)) — P H(F,,ad’(p)) -

vES

— HO(Fs/F,ad’(p)(1)) — 0
that we can compare to the original exact sequence to deduce that

iy 1 (ad’(p)) = hl,. p(ad’(p)(1))

and

13, r(ad’(p)) = h°(Fs/F,ad"(p)(1)).

Now we can use the local and the global Euler characteristic formulae (see theor-

ems 37 and 49) and the fact that S contains all primes above p to compute

xor(ad’ () =1—|T| + thO(FwadO(ﬁ)) + Z\ (h°(Fy,ad’(p)) — dimg(Lo)).
v|oo veS\T

In conclusion, knowing hzy’T, hi,’T and . 1, we can compute hoy’T (easy) and
obtain the following result:

Theorem 50 (Greenberg-Wiles formula). In the situation above, we have

Iy r(ad’(p)) = by p(ad’(p) (1) + ) (dimp(Lo) — h'(Fy,ad’(p))) —

veS\T
— Y h(F,,ad’(p)) — h°(Fs/F,ad’(p)(1)) +
o]oo
+{|T|—1 if T # @,
0 if T = Q.

3.7 Taylor-Wiles primes

Fix again a global deformation problem

< =(0,S,¢9,0,(Dy)ves),

where p: Grs — GLy(F) (with the same notation as in section 3.6). Assume, for
simplicity, that p > 2.

Definition 51. A Taylor—Wiles prime (for .’) is a (finite) prime v of F such that

1) v ¢gs,
(2) 9o =N(v) =1 mod p and
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(3) p(Frob,) has distinct F-rational eigenvalues.
We say that a Taylor-Wiles prime v has level N € Z >, if, moreover,

go =1 mod p".

Remarks.
(1) Up to enlarging IF, we can (and do) assume that all eigenvalues of all the
elements in p(Gp g) are defined over F.
(2) Inranks higher than 2, the generalization of condition (3) varies depending
on the context.

Proposition 52. Let v be a Taylor—Wiles prime. For every A € Ob(CNLy ), every lift
o: Gr, = GL2(A) of plg,, is strictly equivalent to a diagonal lift

(5 )
0 x2/
Proof. We can reduce to the case where A is artinian by taking the limit of quotients

by powers of m4. Then, fix a lift ¢ € Gr, of Frob, € G, /If,. Since p(Frob,) has

distinct eigenvalues in [F*, we can find a basis for p such that

« 0
p(¢p) = ( ) for some a, B € A.
0 p

Since p(Ir,) = 1, we have p(Ir,) € 1+ Mjy(my). In particular, p(If,) is a pro-p
group and p|;, must factor through the tame inertia quotient. Fix a topological
generator t for the tame inertia. It suffices to prove that, in the basis fixed above,
p(t) is also diagonal.

We argue by induction on the length of A. The base case is trivial because p is
unramified outside S. For the inductive step, we can assume that m’}f’l = 0and

p(t) =14+ X € 1+My(my) mmhxz<”

b
. d) and b, c € m’).

It is easy to check that X* is diagonal for all k € Z~,. But we know that ¢ ~1t¢ = t1°

and we can compute

0 =p(¢)"'p(t)p(¢) —p(t)™
Lo a”lBb\ |
ap~lc d
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B 0 (1B —1)b x 0
B ((aﬁl —1)c 0 > - (0 *)’

where in the last equality we used that (g, —1)b = 0 = (g, — 1)c because, by
the assumptions on v, p | (9o —1) and so (9o — 1) € ma. But (¢! — 1) and
(x"!B —1) are units in A, as & Z B mod m 4. Therefore, b = ¢ = 0. O

Let v be a Taylor—Wiles prime for . and let RE’IP denote the universal lifting
ring for p|g, with fixed determinant ¢. Let p¥ be the universal lift corresponding
to the identity on RE'lp. By proposition 52, the lift p¥ is strictly equivalent to a lift
of the form

0
(?f)l X > with x1, x2: Gr, — (Rg"¥)* such that y1x2 = 9.
2

In particular, since ¢ is unramified at v,

_ 1
Xl|lpv = X2 |11:z,'
But p is unramified at v, so x1[;,, must be a pro-p character of
b ~ ~ d
I§; :@’;;:KUX X 7.2 X Gy,

where «x, is the residue field of F at v, s is the characteristic of x, and G, is a finite
s—group. Therefore, x1|1,, must factor through . (as p 1 v). Let A, be the maximal
p-power quotient of x5 and write &[A,] for the associated group algebra over &
and a, for the augmentation ideal of &'[A,]. The character x1j, determines an
O'|Ay]-algebra structure on RE ¥ Moreover, there exists a natural surjection

Ry — Ry™,

where Ry represents the lifts of p|c, that are unramified at v and with determ-
inant i, whose kernel is precisely avRvD’IP because a lift p: Grs — GLp(A) is
unramified if and only if the corresponding map ¢: RE’lP — A satisfies that the
composition

I, M (RI¥) 2 4

~
~

A

Ay

is trivial (or, equivalently, ¢ factors through RE vy avRUD’lp). All in all, we obtain an
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isomorphism
R /ayRSY = Ry,

Let Q be a finite set of Taylor-Wiles primes. Define

Ag=]] 4
veQ

and consider the group algebra &'[Ag| and its augmentation ideal ag. We define
the global deformation problem

Fo=(p,5UQ,¥,0,(Dy)pes U (DLP)UGQ)'

where, for each v € Q, DZJ is the deformation condition of all lifts of ﬁ|GFy with
determinant | Gr,- (The idea is that sometimes we want to enlarge S.) Assume that
End]F[GF/ ] (p) = F, so that there exist universal rings RyQ and R o representing the
deformation problems .5 and .. For every T C S, we also have rings R;Q and
R, representing the corresponding T—framed problems. Observe that, applying
the construction of the previous paragraph to each v € Q, the ring R;Q has the
structure of an €'[Ag]-algebra and the natural surjection R, —» R, has kernel
3 Q <
T

aQI{Qb'

Recall that, for every (possibly empty) T C S, the tangent space of RT, (relative
to RT71°%) is given by a cohomology group Hlle(adO (p)) whose dimension is

Wy, r(ad’(p)) = 11 p(ad’(p)(1)) + ) (dimg(Lo) — h'(F, ad’(p))) —

veS\T
— ) H(F,ad’(p)) — h°(Fs/F,ad’(p)(1)) +
oo
T —1 ifT#0Q,
L if T #
0 ifT =0,

by theorem 50 (see section 3.6.1 for all the notation). Now add the following
assumptions:
(1) p Gr(¢y) is absolutely irreducible, which implies that there are no non-scalar
Gr s—equivariant morphisms p — p(1) and so H(Fs/F,ad’(p)(1)) = 0;
(2) Fis totally real and det(p(c,)) = —1 for all places v | oo, where ¢, denotes
the complex conjugation at v, which implies that h°(F,,ad’(p)) = 1;
3) e foreveryv e S\ Tsuchthato | p,

dimg(L,) — h°(F,,ad’(p)) = [F, : Q)
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(e.g., this holds if
ole. = (X * ithx,|,. —1and ¥ 1
P|Gpv =\o X, wit X1|Ipv = lan X2|Ipv #

and D, = DSM is analogous to example 33 adding the condition of
fixed determinant );
o for every v € T such that v | p, the ring R, is O—flat of relative dimen-
sion 3 + [F, : Qp] over O (so that dim(R,) = 4 + [F, : Qp));
(4) o foreveryv e S\ Tsuchthatvtp,

dimg(L,) — h°(F,,ad’(p)) =0

_ 1
Pliz. = (0 1) 7

_ 1 0 .
pler, = <)E) Xz) with x1]1,, = 1and xa|r, #1

(e.g., this holds if

or

and D, = D;nin’lp is analogous to examples 34 and 35, respectively,
adding the condition of fixed determinant ), and

o for every v € T such that v { p, the ring R, is O—flat of relative dimen-
sion 3 over € (so that dim(R,) = 4).

Remark. In applications, the conditions appearing in (3) and (4) for the places
v € T are essentially always true, while the conditions for the placesv € S\ T

hold if and only if D, (equivalently R,) is formally smooth over &.

Under these additional assumptions, the formula becomes simpler:

Wy, p(ad’(p)) = 1,1 p(ad’(p)(1)) — Z‘%[Fv $Qpl +
ol

T -1 #T#0,
0 if T = Q.

In particular, if T = @, then

Iy (ad’(p)) = R, (ad” (p)(1)).

Similarly, if T contains all the primes of F lying over p,
Iy r(ad’(p)) = |T| —1—[F: Q] + kL, ;(ad’(p)(1)).
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One can show that dim(R7,1°¢) = 14 3|T| + [F : Q] and so
dim(RY, ) + 1y 1(ad’(p)) = 1 £ (ad’(p) (1)) + 4/T].

(One should interpret this 4|T| as the sum of 4|T| — 1, the relative dimension of
R; over R v, and 1, coming from &)

Now let Q be a finite set of Taylor—Wiles primes for .. Recall that we defined
a global deformation problem

S0 =(0,SUQ ¥, (Do)oes U (DY)ueq).

We want to study how the formulae for hgﬂ’T(ado (p)) in the two cases T = @ or
T D {v | p} changes if we replace .7 with .%5,.

e Observe that h}y l,T(adO (p)(1)) gets replaced by h}y 5'T(ad0 (p)(1)). But, for

veEQ, Dzl/f contains all lifts with determinant ¢|GFU and so
L, = H(F,,ad’(p)) and L; =0.

Therefore,
HY, r(ad’(p)) = Ker <H1<P5UQ/F, ad’(p) (1)) —

— ( D Hl(Fv,adO(p)(l))/Lz}) o (@ Hl(Fv,adO(ﬁ)(l))D

veS\T veQ

= Ker (H}S/L’T(ado(ﬁ)(l)) — (P HY(F, adO(p)(1))) :
veQ

e We have to add

ZQ(dim]F(Lv) —1°(Fy,ad’(p))) = Z(jg(hl(Fwado(ﬁ)) — h(Fy,ad"(p)))

= %hz(Fv, ad’(p))

=} 1(Fy,ad’(p)(1))

veQ

= ZQhO(Fv/adO(ﬁ)) =1Ql,

where we have used theorems 36 and 37 and then at the end the defining

42



properties of Taylor-Wiles primes, namely that g, = 1 mod p and that
p(Frob,) has distinct eigenvalues.
Our next goal is to get hly QL’T(ado (p)(1)) = 0by adding (at least) h; L/T(ado(f)) (1))
Taylor-Wiles primes. But this number (of primes) depends only on the original
data. In that case, we will be able to obtain a formula for h}%,T (ad’(p)) depending

only on ..

Definition 53. Let I' be a subgroup of GL,([F) acting absolutely irreducibly on
IF? and such that all the eigenvalues of elements of T are defined over F. Let ad’
denote the space of matrices of trace 0 in My (IF) with adjoint I'-action. We say that
I is adequate or big or enormous if

(1) T has no quotient of order p,

(2) H(T,ad’) = 0 = HY(T,ad") and

(3) for every simple IF[[']-submodule W of ad’, there exists y € T with distinct

eigenvalues such that W7 # 0 (i.e., there are non-trivial elements of W that

are invariant under 7).

Remark. Inrank 2, the notions of adequate, big and enormous coincide. However,
in higher ranks, the definition above is only the definition of enormous. The defin-
ition of big is obtained by replacing “with distinct eigenvalues” with “semisimple
with an eigenvalue of multiplicity 1” in condition (3); the definition of adequate is
obtained by replacing “with distinct eigenvalues” with “semisimple” and W7 # 0

with something more technical in condition (3).

Theorem 54. With the assumptions that T acts absolutely irreducibly on F? and that
p > 2, the group T’ is enormous unless

e either p = 3 and the image of T in PGL;(IF3) is conjugate to PSL, (IF3)

* or p = 5 and the image of T in PGL,(TFs) is conjugate to PSLy(IFs).

Remark. The first case fails because PSL;(IF3) = A4 has a quotient of order 3. The
second case fails because H' (T, ado) # 0. This last case is more delicate and so
must often be avoided.

Proposition 55. Suppose that I' = p(Ggg,)) is enormous. Let q = h;i T(ado (p)(1)).

For every N € Z>1, we can find a set Qn of Taylor-Wiles primes of level N such that
(1) 1Qn| = g and
@ HY, (ad(p)1) =0.
N
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Proof. Fix N € Z 1. Take Taylor-Wiles primes Q = { v1,...,v;_1 } of level N for
somej e {1,...,q9} such that

Hys r(@d’(@)(1)) =g = (= 1).

We show how to find another Taylor-Wiles prime v; of level N such that, setting
Q' =Qu 0},
i (' @)(1) = 9=

Thus, iterating this construction, we obtain the proposition.
Fix a class [x] € H}y L/T(ado (p)(1)) \ {0}, where « is a 1-cocycle. It suffices to
show that there exist ianinitely many primes v of F such that
@ v ¢S,
(b) g, = 1 mod pV,
(c) p(Froby,) has distinct eigenvalues (defined in F) and
(d) the restriction map res, induces an isomorphism

F[x] = H'(F}"/F,,ad’(p)(1)).
If v satisfies the first 3 conditions, then
H' (F}"/F,,ad’(p)(1)) = ad’(p)/ (Frob, —1)ad’(p)

via [¢] — ¢(Frob,) and the right-hand side has dimension 1. (In particular, we
could get rid of the Tate twist on the right-hand side thanks to condition (b).)
Therefore, we can replace condition (d) with

(d’) resy(x) & (Frob, —1)ad’(p).
By Chebotarev’s density theorem, it suffices to show that there is ¢ € Gr g such
that

(i) o e GF((:;,‘])'

(ii) p(c) has distinct eigenvalues and

(iii) x(0) & (0 —1)ad’(p).
Indeed, these conditions are open (in the sense that they will be true for an open
neighbourhood of o) and then there will be a positive density of primes v satisfying
the conditions from above.

Let L; be the extension of F; = F({y) cut out by (_)|GF(€p). Consider also the

extensions Fy = F(CPN) and Ly = L; - Fy (Where - means the compositum). We
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obtain a diagram

using the first property in definition 53 to see that L1 N Fyy = F;. We claim that
H!(Lyn/F,ad’(p)(1)) = 0. Indeed, in the inflation-restriction exact sequence

0 — H!(Fy/F, (ad’(p) (1)) N/ EN)) — HY(Ly/F,ad’(p)(1)) —
—— HY(Ly/Fy,ad’(p)(1))

we see that
(ad’(p) (1)) En/Fv) = HO(T,ad’(p)) = 0

and
H'(Lyn/Fy,ad’(p)(1)) = H(T,ad"(p)) = 0

by the second property in definition 53, whence the claim follows. Therefore, using
the claim and the inflation-restriction exact sequence for Fs/Ly /F, the restriction

morphism
H' (Fs/F,ad’(p)(1)) — H'(Fs/ Ly, ad"(p) (1)) /D
is injective. In particular,
0  res([x]) € H(Fs/Ly,ad"(p)(1))5(F5/1) C Homp (Gal(Fs/ L), ad’(p)).

Let W be a non-zero irreducible subrepresentation of I' in the F-span of
x(Gal(Fs/Ly)) inside ad’(p). By the third property in definition 53, we can
find 0y € Gal(Ly/Fy) such that p(op) has distinct eigenvalues and W% # 0.
That is, the element oy satisfies conditions (i) and (ii). If x(cp) & (0p — 1)ad’(p),
which is condition (iii), we can take ¢ = 0y and we are done. Now assume that

k(0g) € (09 —1)ad’(p). After conjugation if necessary, we can assume that

plon) = (o ) withe#p
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Therefore,

@-vad®={ (| o)}

which has no non-zero p(0p)—invariant vectors. Since W% # 0, we deduce that
W £ (00— 1)ad’(p),

which implies that x(Gal(Fs/Ly)) € (0o — 1)ad’(p) and so there exists some
T € Gal(Fs/Ly) such that k(1) & (09 — 1)ad’(p). We can take ¢ = 70y, which
satisfies that

o€ Gr, and p(0) =p(0o)

and
k(o) = K(x) + T(00) = K(7) + K(00) & (0 — 1)ad"(p).

The result follows because (0p — 1)ad’(p) = (¢ — 1)ad’(p). O

If we further assume that the deformation problems D, for v € S are nice like
in the cases
(1) T=Qor
(2) T containing all the primes of F lying above p,
then we obtain the following result:

Corollary 56. There exists q € Z > such that, for every N € Z>1, there exist a set Qn
consisting of exactly q Taylor—Wiles primes of level N and a surjection

T—loc T
R, [x1, ..., xg]] — RyQN,

where
(1) if T = @ (so that R = ©), then g = q, and
(2) if T contains all the places above p, then

dim(R710%) + ¢ = g +4|T|.

Definition 57. A Taylor—Wiles datum (for .7 and T) is a pair (Q, (ay)»eq), where Q

is a set of Taylor—Wiles primes and &, is an eigenvalue of p(Frob,) for each v € Q.

We saw after proposition 52 that, if

p"™: Gp,s — GLa(R,)
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is the universal deformation of type .7, then for every v € Q

PuniV|GFv = X1 D X2

and the composition &7 — R7, of x; with (the restriction of) the local Artin
reciprocity map factors through the maximal quotient A, of x; of p—power order.
The choice of an eigenvalue &, of p(Frob, ) determines an ordering of the characters
X1 and x: by, say, requiring that ; (Frob,) = a,. (Here, we are using that the two
eigenvalues are distinct.)

Thus, a Taylor-Wiles datum gives rise to a morphism of &—-algebras

0[Ag] = RY,,

by means of which we regard R;Q as an O'[Ap]-algebra. There is a natural surject-
ive morphism R;Q — RT, (corresponding to the forgetful functor) and we saw
in the paragraphs after proposition 52 that its kernel is aQR;Q, where ag is the
augmentation ideal of @[Ag]. That is, we obtain a short exact sequence

e

T T . RT

Take a Taylor-Wiles datum with Q as in corollary 56. Write 4 = |Q| and define

Soo — ﬁﬂyl, . .,yq]] a].’ld aoo — (yl, . .,yq)SQQ.
(1) Suppose that T = @. Since each A, (for v € Q) is cyclic of p—power order,

we have a diagram

olZ]] = Oy, ..., Yq] = Seo D aco

1+y;
S I

/ O[N] (gen. of Ay,) ag

A\

W e

Olxi, ..., xg]] —» Ry,

which shows that R o /a0 = R . Moreover, we know that ¢ = g4. Later we
will use this fact together with the two maps

Olxi, ..., xg] — Ry, Olyi, .-, yql-
(2) Suppose that T contains all primes of F lying over p. Fix an isomorphism
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T ~Y ~Y S
RyQ = RyQ [[Zl, .. '/Z4|T|71]] = RyQ ®Re T, where T = ﬁ’[[zl, .. '/Z4|T|71]]' In
this case, we have a similar diagram

TIZ)] = Ty, Yl ET ®6 S O T B oo

3
7
7
’
’
7

7

0 TlAg] T ®¢ ag

7
’
’
z
3
4

R;_IOC [x1, ... xg] — R;Q

which shows that R;Q /s = R . Moreover, we know that
dim(R;_lOC [x1, ..., xg]]) = dim(T ®¢ Seo)-
Later we will use this fact together with the two maps

R;—loc[[xl,. “’xg]] — RyQ — ﬁﬂzl,. . .,Z4|T|,1,y1/- . -/yq]]-

4 Modularity lifting

Fix a finite extension E/Q with ring of integers &' and residue field IF. We always

assume that p > 2. We consider a continuous homomorphism
o: GQ,S — GLz(]F),

where S is a finite set of prime numbers containing p, Qs is the maximal extension
of Q unramified outside S and Gg s = Gal(Qs/Q). We fix a Taylor-Wiles datum
of level N

(Q/ (“v)veQ)

for p, which consists of a finite set Q of prime numbers v not in S and such that

(1) v =1 mod pV,

(2) p(Frob,) has F-rational eigenvalues a, and B satisfying that a, # Bo.
Then (ay)yeq is a choice of one eigenvalue for each v € Q in the last property.
Associated with such data, there is a theory on the Galois side that we have studied
in section 3, and a theory on the automorphic side that we will study next.

Fix a torsion-free subgroup I' of SL;(Z) such that I';/(M) C T C TI'y(M) for
some M € Z>1. Assume that p arises from a Hecke eigenform g € S»(T', 0). To
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simplify the notation, we write S,(T') = S,(T, 0).
Remark. We have the following analogy with Hida theory. In Hida theory, one
considers Sp(T' N T1(pN*1)) and take (co)invariants under

(TNTo(pNh) /(TN (pNh) = (2/pN T 2)* = (2/pZ)* x (2/pNZ)

to obtain S (I N To(pN*1)). Then one applies Hida’s idempotent operator to pass
from S, (T N Ty (pN+1))ord to

So(T N To(pN*t1))omd = Sy (T N T (p))ord.

Fixing a tame character, we can build a module over A = &[Z,] which, after
modding out by the augmentation ideal, recovers S»(T N To(p))°.
Taylor and Wiles defined

r(Q) = rmrl(]’[ v) and Ty(Q) = rmro(H v)

veQ veQ

and considered the subgroup I'g of I'o(Q) which contains I'; (Q) and such that
I'0(Q)/I'q is the maximal p-power quotient of

[o(Q)/T1(Q) = [[(Z/vZ)*.
veQ

In particular, I'y(Q) /T g = Ag (the same A that appeared in section 3.7). They
consider S,(T') and take (co)invariants under Ag (which projects onto (Z/pNZ)1,
where g = |Q|) to obtain S>(I'0(Q)) (by the property of Taylor—Wiles primes
regarded modulo pV). After localizing at appropriate maximal ideals m and mq
defined using the condition on the Frobenius-eigenvalues of Taylor-Wiles primes,
one passes from 53(I'g)m,, to

52(T0(Q))mg = S2(I)m.
We use this to build a module over S, = & [[ZZ]] which, after modding out by the

augmentation ideal, recovers Sy (I')m.

4.1 Taylor-Wiles primes and Hecke algebras

Let T%(T) be the subalgebra of End, (H'(T, ©)) = End, (H'(Y, 0)) (where we
write Y = Y(I')) generated by the Hecke operators T, and Sy = (¢) for all primes
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¢ ¢ S. Our representation p arising from the eigenform g gives rise to a max-
imal ideal m of T°(T) (the kernel of the corresponding Hecke eigensystem Ag;
cf. section 2). We assume that p is absolutely irreducible, which means that m
is non-Eisenstein. We showed in proposition 9 that H (T, FF),, = 0 unless i = 1.

Consequently:
(1) The &-module H'(T, &), is free. More generally, if R is an ¢-algebra, then

HY (T, R)y, is a free R-module.
(2) On O—modules, the functor

R+— HYT,R)n

is exact.
(3) In particular, we have a Hecke—equivariant isomorphism

Homg (H'(Y, O)m, 0) 2 H1(Y, O)n.
Recall from section 2 that we have a Galois representation
om: Gos — GLy (T%(T)m)
with the property that, for every prime ¢ € S,
CharPoly (o (Froby)) = X2 — T, X + /S, .
In particular, for v € Q, we have
CharPoly(p(Frob,)) = X* — T, X + vS,

and this is = (X — ay) (X — By) mod m. Theorem 11 says that, for a representation
p: Go,s = GLy(R) with R a complete local ring with residue field F, if the residual
representation is absolutely irreducible, then p can be conjugated to take values in
the subring generated by the traces on a dense subset of Gg 5. We can apply this
to “remove” finitely many more primes apart from those in S (for example, those
in Q) and still recover T°(T'), from the characteristic polynomials of op,.

To make this more precise, by abuse of notation, let m also denote m N T5Y2(T).
The inclusion TSYQ(T) C T5(T) induces an isomorphism T>Y9(T),,, & T5(T)p.
Thus, by Hensel’s lemma, we can find A, € TS UQ(I“)m lifting our fixed root a; for
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every v € Q. Define
T3 %(To(Q) = T2(To(Q)[Us v € Q)
_ SuUQ
and let mg = (m, (Up —Ag)peq) € T~ (To(Q))-
Proposition 58. The ideal mg of TZUQ(FO(Q)) is maximal and the natural map

Hl(YQ(Q), ﬁ) — Hl(Y, ﬁ)
induces an isomorphism
Hl(YO(Q)/ ﬁ)mQ = Hl(Y/ ﬁ)m

that is equivariant for the Hecke operators at primes outside S U Q.

Define TZUQ(FQ) to be the 0[Ag]-subalgebra of End, (H;(Yg, €)) (where

Yo = Y(I'g)) generated by the Hecke operators T, and S, for primes ¢ ¢ SU Q
and Uy, for primes v € Q. We consider the ideal

S
mg = (m,ag, (U —Av)ueq) € Ty'%(Tg),
where ag is the augmentation ideal of '[Ap]. We have a natural map

Hi (Yo, 0)mg — Hi(Yo(Q), O)mg-

But, by Shapiro’s lemma, we can identify
H; (Yo, ﬁ)mg = Hi(Y0(Q), ﬁ[AQ])mQ
and the latter is a free &[Ag]-module with coinvariants
= H; (Yo(Q), ﬁ)mg =H (Y, O)m

(where we used proposition 58). Therefore, the natural map above on homology
spaces has a particularly simple form.

Recall that we can view T°(T') as the image of TSV = ¢[T,,S, : £ € S] in
End, (H'(Y, ©)). We defined m to be the maximal ideal of T%(T) arising from p,
but sometimes we also want to view it as a maximal ideal of TV (its pullback
under the natural map). Apart from that, we used the symbol m to mean the
maximal ideal m N T°Y9(T) too and we get analogous results.
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Lemma 59. Let mQ = m N TSYLUNY | The natural inclusion
T°UC (F)mQ — TS(F)m

is an isomorphism.

Proof. By Nakayama’s lemmua, it suffices to prove that
T°(I)m/(m@) = F

(i.e., sutjectivity modulo m®). But this reduces us to proving that, for every v € Q,
the operators T, and S, act modulo m? as multiplication by an element of F.
Since p is absolutely irreducible, we have Galois representations
* om: Ggs — GLo(T(I')wm) characterized by

CharPoly (on (Froby)) = X — T, X + (S,

forall/ ¢ Sand
* pmo: Gosuo = GLo(T(T),0) characterized by

CharPoly(p,,o(Frob,)) = X — T;X + (S,

forall £ € SUQ.
Consider the Galois representation p = p, mod m?. For ¢ ¢ SUQ, we can

compute

tr(p(Froby)) = (tr(pm(Froby)) mod m?) = (T, mod m<)
= (tr(ome (Froby)) mod m?) = tr(p(Froby)) € F.

By continuity, we deduce that tr(p) is F-valued. In particular, for v € Q,
(T, mod m¥) = tr(p(Frob,)) € F.
The same argument with det in place of tr shows that (S, mod m?) € F too. [
Remark. Lemma 59 shows that
H'(Y, 0) o = H (Y, O)

(and similarly using [F—coefficients instead of &'—coefficients). For this reason, we

will just write m = m< in what follows.
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Define T(SQUQ’umV = TSYQuiv[J, : v € Q]. For each v € Q, choose a lift &, € &

of the eigenvalue «;, € F and define

mQ = (m, (U'U — ,&U)UEQ> g TSQUQ’uniV.

By the theory of oldforms, the ideal mg is in the support of H'(Yy(Q),TF) (we
prove it later) and so also of Hy (Yp(Q), F) & Homy (H' (Yo(Q), F), F). Observe
that the natural map

TSYQ(I(Q)) — T (To(Q))

is a morphism of finite &-algebras. In addition, T*Y2(T¢(Q) ) is a complete local
ring and TSQU
summands is TZUQ(FO(Q))mQ. Therefore, H1 (Yp(Q), 0')m,, is a direct summand of
Hi(Y0(Q), O)m. The same is true if we replace I'y(Q) and Yy(Q) with I'g and Y

(or if we use cohomology instead of homology).

Q(To(Q))m is a complete semilocal ring, one of whose (local) direct

We could prove proposition 58 using that, since
H;(Y, F)m = Homg (H' (Y, F)w, F) =0 ifi #1,

the properties recalled before for H' also hold for H; (also if we replace I with
I'0(Q) or I'g). Instead, we prove the following analogue directly with cohomology

groups:

Proposition 60. The natural map H' (Y, 0) — H'(Y(Q), ) induces an isomorphism

HI(Y, ﬁ)m = Hl (YO(Q)/ ﬁ)mQ

of TSYQUY_ymodules whose inverse is given by the trace map up to units in 0.

To prove proposition 60, it suffices to prove that

H' (Y, F)m = H' (Y0(Q), F)my-

Indeed, both H(Y, &), and H (Y4(Q), 6)m
that

o are finite free &-modules satisfying

HYY,0)n @6 F = HY(Y,F)y

and
H' (Y0(Q), 0)my ©@6 F = H' (Yo(Q), F)mg-
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Thus, we can apply the snake lemma to the diagram

0 — HYY,0)n —2— HY(Y,0)yy ——— HY(Y,F)y —— 0

| | |

0 — HY(Y(Q), O)my, > HY(Y5(Q), O)m, — HY(Y0(Q), Flm, — 0

Q Q Q

and apply Nakayama’s lemma.
Arguing by induction on |Q|, we may assume that Q = { v }. Consider

b
K = GLy(Z,) and 1:{(“ d)eK:CEOmodv}.
C

For an open compact subset U of K, let H;; denote the convolution algebra of
compactly supported U-biinvariant functions f: GL(Q,) — F, which is gener-
ated by double coset operators [UgU] for ¢ € GL(Qy). Its identity element is the
characteristic function [U] of U.

Let M = H(Yy(Q),F) and N = H(Y, F),,.. By definition, M is a H;-module
and N is a Hx—module. We will define some isomorphisms that depend on the
choice of a square root v!/2 € FF. Since v = 1 mod p, we can choose v'/2 = 1.

Observe that Hg = F[Ty,Sy], where

v 0 v 0
T T T
Let T be the diagonal torus in GL, and let X, (T) be the group of cocharacters of T.
We can express X« (T) = ZA1 + ZA,, where

A(t) = (é (1’) and  As(t) = (é ?)

Let W = {1, wo } be the Weyl group of GL,. We will use the Satake isomorphism
F[X,(T)]" = Hy

given by
MFA—=0"2T, =T, and MAy;—0S, =S5,

(where we used that v = 1 in IF). There is an analogous description of H:
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Lemma 61. Since v = 1mod p, we have an isomorphism
Hi = F[X.(T) x W|

characterized as follows:
e A€ Xy (T)y ={ar +bAy:a> b} is mapped to [IA(v)I] € Hjand
* w € W is mapped to [Iwl] € Hj, where w € N(T) is a lift of w.
Under this isomorphism, the centre Z(Hp) of Hi corresponds to F[X.(T)]|W and the
composition
FIX ()™ = Z(H1) — Hx
£ [KIf

is the Satake isomorphism described above.

Remark. Lemma 61 follows from the Bernstein presentation or from the Iwahori-

Matsumoto presentation of H;.

Lemma 62. The inclusion N — M is split by
x — [K]x.
Proof. Geometrically, the morphism

H' (Yo(Q), F)m — H' (Y, F)nm

x — [K]x

is the trace map (equivalently, in terms of group cohomology, it is the corestriction).

Therefore, the composition

N%Mﬁ)N

is multiplicationby [K: I| =v+1 € F*,asv=1€ Fand p > 2. O

By the Bruhat decomposition, in H; we can express

K] = [I]+ [Iwol] =1+ wo = ) w.
weW

Since |W| = 2 is invertible in [F, we deduce that

MY — (Z w)M.

weW

55



But N € M" and, by lemma 62,
N =M" = [K]M.

We know that the operators T, and S, act on N as multiplication by a, + Bo
and &, By, respectively. Consider the maximal ideal

n= (A1 4+ Ay — ap — Bo, MA2 — aoBo) C F[Xu(T)]W = F[T,,S,).

By the explicit description of the Satake isomorphism, we see that N, = N. On the
other hand, since a;, # B, there are exactly two maximal ideals m,, mg C |F [X«(T)]
above n, namely

my = (A —ap, Ap — By)  and mg = (A — Bo, Ap — ap).
But note that Ay corresponds to U, under the isomorphism of lemma 61, whence
My, = Hl(YO(Q)/IF)mQ'

Thus, we have to prove that the composition N - M — My, is an isomorphism.
Since n = m, N IF[X,(T)]", it suffices to show that the composition of natural
morphisms

N = Ny — My — My,

is an isomorphism.

Lemma 63. In the situation from above, we have a decomposition M, = My, ® Mmﬁ

and wo € W maps M, isomorphically onto My, and vice versa.

Proof. Since M is finite-dimensional over F, the action of F[X,(T)], on M, factors
through an artinian quotient A of IF[X,(T)]. Since m, and mg are the two (distinct)
maximal ideals of A, there is a canonical decomposition A = Ay, X Amﬁ, which in
turn induces a decomposition My = My, @ Mmﬁ. It is straight-forward from the
definitions that the Weyl group W permutes m, and mg, whence the second claim
follows. ]

Now, using the isomorphisms

N=M"=[K[M and N,=M! = [K]M,
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together with N, = N, we can conclude that the compositions
N — M, :Mma@Mm,g — M,

and
M, < M, & Mp, = My 5 N

are isomorphisms and are inverse to each other up to multiplication by [F*. This
concludes the proof of proposition 60.

Proposition 64. The homology group Hy(Yg, O)m, is a free O[Agl-module and the
natural map Hy(Yq, O)uny — H1(Y0(Q), O)m,, induces an isomorphism

ClQ Hl(YQ, ﬁ)mQ

= Hi1(Y0(Q), O)mg-

Remark. Proposition 64 is also true if we localize only at m = m N TSYQUniV and
the further localization at mg gives only a direct summand of this more general
result.

Combining proposition 64 with proposition 58, we obtain the main result of
this subsection:

Proposition 65. The homology group Hy(Yg, O)m, is a free O[Agl-module and the
natural map Hy(Yg, O)uny — Hi(Y, O)w induces an isomorphism

H; (Y, O)mg

= Hi(Y,O)n.
ag Hi(Yg, O)mg 1Y, O

To prove proposition 64, we are going to use again the key fact that
H; (Yo, F)m = Homp (H' (Yo, F)w, F) =0 ifi # 1
and so
0 ifi#1,

Hi (Yo, &) —
(Y0, O} {ﬁ ifi=1.

In what follows we switch to group homology (instead of singular homology).
Since I'g is a normal subgroup of I'g(Q) with quotient Ay, there is a Hochschild—
Serre spectral sequence

H;(Ag, Hj(Tq, 0)) = Hiy(Io(Q), 0).
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After localizing at m, only the column j = 1 of the second page of the spectral
sequence is non-trivial. In particular,

HO(AQ' Hy (FQ/ O)m) = Ho(Io(Q), ﬁ)m-

But, by definition,

Ho(g,Hi(Tg, 0)w) = o &7
which means that we have proved the second claim of proposition 64. It remains
to prove that H; (I'g, 0)w is a free &[Ap]-module.

Since O[Ag] is a local ring, a finitely generated &[Ag|-module M is free if
and only if M is flat or, equivalently, Torlﬁ =l (M, F) = 0. Using again that, after
localizing the Hochschild-Serre spectral sequence at m, only the column j = 1 of
the second page is non-trivial, we deduce that

0 = Hy(To(Q), @)m = Hy(Ag, Hi (T g, &) = Tor! “ (H (T, O)m, 0).

But, if we tensor the short exact sequence

0 vy 0 -2 0 s IF

)

with Hy(T'g, 0)m over &[Ag], we obtain an exact sequence

0 = Tor! “ (H (T, O)m, 6) — Tor! “ (H (T, ), F) —
—Hi(Tg, O)n Qojag) € —— H1(TQ, O)n Qpjag) € — Hi(TQ, O)m Qpjag) F

and we can reinterpret the second line (using the part of proposition 65 that we
have already proved) as

Hi(To(Q), O)m —— H1([0(Q), O)m — Hi(To(Q), F)m

But multiplication by @ on H; (I'0(Q), O)w is injective (by proposition 58 and the
properties listed in the beginning of this subsection). Therefore, we see from the
exact sequence above that

Tor! % (H, (T g, ), F) = 0
as desired. This completes the proof of proposition 64.
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Remark. The proof of proposition 64 was completely formal, using only the key
fact that H' (Yo, F)m = 0 if i # 1 (but without using modular forms).

Recall that, given a fixed global deformation problem

S = (ﬁ, S, P, 0, (DU)UGS)I

we have the augmented deformation problem

S0 = ({_), S,9,0,(Dy)pes U (ng)UGQ)

and the universal ring R #, is an 0[Ag|-algebra (depending on the choice of the
ay) satisfying that
R 70 / agp = R_;//,

where a is the augmentation ideal of @[Ag]. We also have Galois representations
pm: Go,s = GLo (T (T)w)

and

Pmg: Gasug = GLa (T (T ).

If we know that py and pm, are of types .#” and ., respectively, then the actions
of R, on H1(Yg, O)m, and of Ry on Hy (Y, 0)w are compatible (with respect to
the projections modulo ag). That is, we obtain a commutative diagram

RyQ Cl Hl(YQI ﬁ)mQ

lmOd ag lmod ag

Rﬁ/j c Hl(Y/ ﬁ)m

of actions.

4.2 Local-global compatibility

Theorem 66. Let f be a cuspidal Hecke eigenform with associated cuspidal automorphic
representation 7ts of GLo(Aq). Let p be a prime number and consider a fixed isomorphism
1: C=Q,. Let pr,: Gg — GLZ(QP) be the associated Galois representation.
(1) The representation pg | Ga, is de Rham with Hodge—Tate weights 0 and k — 1, where
k is the weight of f.
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(2) For every prime number ¢,

) Fr-ss

WD (05, cq, ~ LL(7t, ® |det|, /%) @¢, Q,,

where WD means the Weil-Deligne representation, Fr-ss denotes the Frobenius-
semisimplification and LL means the local Langlands correspondence (suitably
normalized).

Let us write down some more concrete consequences of theorem 66. Take a
newform f € $»(I'1(N),Q,) (i.e., f does not come from I't (M) for any M < N).
Let 17 be the nebentype of f and let C be its conductor (in particular, C | N). Write
again 7 for the corresponding Galois character. Let €, be the p—adic cyclotomic
character. Take a prime ¢ # p.

o If (N, thenp 7 is unramified at £ and

CharPoly(pf(Froby)) = X* — a;X + 5(¢)¢,

where gy is the T/—eigenvalue of f.
o If /|| Nbut £ 1C (ie., at{, f isnew of level [(¢)), then

Y *
Price, = (0 vep1>’

where 7 is the unramified character such that y(Froby) is the U —eigenvalue

of f and
2ot < { (5 1) }

e If /| Nand ? || C, then
Prlco, 1@ ey,

where 7 is the unramified character such that y(Froby) is the Uj—eigenvalue

of f.
o Ifp f|GQé is irreducible, then ¢2 | N.
o If p t N and the T—eigenvalue a,, of f is a p-adic unit, then

‘ ~ (X1 ¥

Price, =\ 0 x2)’

where x; is the unramified character such that x (Frobp) is the unit root of
X? —apX +y(p)pand |1, = €, .
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4.3 Patching

Fix a newform g € S»(I'1(N),Q,) with nebentype 7, a prime number p and a finite
extension E/Q, with ring of integers &, uniformizer © and residue field IF. Let
P =P, Gog = GL2 (IFp) be the associated representation modulo p. We assume
that F is sufficiently large so that the eigenvalues of p(c) are defined in F for all
o € Gq.

We require the following hypotheses:

e p>2andp{N;

. ‘_)‘Gwp) is absolutely irreducible with enormous (equivalently, adequate)
image (e.g., automatic condition if p > 7);

* N is square-free, p is ramified at every prime ¢ | N (restrictive condition)
and 7 has order prime to p; equivalently, p is modular of weight 2 and the
level N = N(p), its Artin conductor, is square-free;

* we have

0lco. = X with %;|;, = 1and X,|;, = €,
PiGq, = 0 % X1, = X2ll, = €p

(this is actually unnecessary but simplifies things).
We define a global deformation problem

(f_)/ S, 170/ 0, (Dv)ves)
with § = { /| N}U{p},tp:qelyl and

{Dvmi“ ifo | N,
D, =

DY ifo = p.

(Taking the deformation problems DI is quite restrictive for modularity lifting
purposes, but still has interesting consequences.) Let

I' = Ker(To(N) — To(N)/T1(N) = (2/NZ)* 2 Q,)

and assume that I' is torsion-free (not completely necessary, but it simplifies things).
Let m be the maximal ideal of T>""" corresponding to p.

Theorem 67. The Galois representation pw: Gg,s — GLo (T°(T)w) lifting p is of type
7. Consequently, there is a morphism

Ry — T°(Dm
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in CNL@

Remark. Our goal is to prove that the morphism Ry — T5(T),, is actually an
isomorphism.

Proof. This theorem is a consequence of two results:
(1) we can express

TN ©,Q, = [] Q,
eigen.
where the product is over the Hecke eigensystems in Sy(T, @p) that are
congruent to that of ¢ modulo p, and T%(T),, is p-torsion-free, and
(2) the local-global compatibility for such eigensystems.

Take a Hecke eigenform f € S, (T, €') congruent to g modulo @.

* The representation p is unramified outside of pN, as T'1(N) C T.

* The nebentype x of f factors through (Z/NZ)* / Ker(n), by the definition
of I'. But x = 1 mod @ because f = ¢ mod @. Since the order of 7 is prime
to p, we have that Ker(#7) = Ker(77). Allin all, x = 7 and det(pf) = 776‘;1.

e Take ¢ ‘ N and write C for the conductor of 7. If ¢ J[ C, we know from

section 4.2 that
1 %

In particular, p(I;) # 1 and pf defines a minimal deformation (in the sense
of example 34). If £ | C, we know from section 4.2 that

ofl, =17

and 7 has order prime to p, so 17(I;) = 77(I;); therefore, p¢ defines a minimal
deformation (in the sense of example 35).
* At p, one can use Fontaine-Laffaille’s theory to deduce that

1Go. = AL with x1|;, = 1and xa|;, = €, .
PflGq, 0 xo Ly 211y p

Therefore, p| Ga, gives an ordinary deformation (in the sense of example 33).

Now we have a Galois representation
. S
Pm: GQ,S — GLp (T (F)m)
lifting p and unramified outside S, which induces a morphism
R — T°(T ) .
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This morphism is surjective because T°(T),, is generated by the operators T, and
Sy for ¢ ¢ S and the fact that

CharPoly (on (Froby)) = X2 — Ty X + (S,

implies that Ty and S; appear in the image. It remains to show that the map
Rgni" —» T°(T) factors through R . As T%(T),, is embedded in T5(T)y ®¢ @p,

it suffices to prove that the composition
RIW — T5(T ) — T°(Im ®0 Q,

factors through R ». But
pm @Qy =] ]ps: Gos — GlLz (H@”>’
f f

where the product runs over the eigenforms f congruent to ¢ modulo @ as above,
and each py is of type .. This completes the proof of the theorem. O
4.3.1 The minimal case

Consider a Taylor-Wiles datum (Q, («y)yc)- From this, we defined an augmen-
ted global deformation problem .7, a finite p—group Ag and T;UQ(FQ)mQ (cf.
section 4.1). Let TSY2(I'o)m,, be the subalgebra of End ¢ (H1(T'g, @)m,) generated
by the operators Ty and Sy for the primes ¢ ¢ SU Q and the operators (J) for
o€ AQ

Theorem 68. There exists a continuous Galois representation
po: Go,sug — GLz(T*V9(T) )

satisfying the following properties:
(1) for every prime £ & SU Q, pg is unramified at £ and

CharPoly(pg(Froby)) = X* — Ty X + £Sy;

(2) for every v € S, the lift pg|c,, is in Dy, and
(3) foreveryv € Q,
(1 0 ,
Palig, = (0 N ) with xy o recg, (6) = (0),
0
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where recg, : 6’60 — Gg; denotes Artin’s local reciprocity map.
Proof. It works like theorem 67, using the local-global compatibility. O

Note that 75 = det(pg)y ! is a finite character of p—power order and so (as
p > 2) admits a square root ;7(12/ 2, The twist

P =po®1g'"

is then of type .#; and we obtain a morphism Ry, — T*YQ(T ), (representing
pQ)- Thatis, Hy(Yg, 0)m, is an R »,—module in a way that is compatible with the
structure of 0'[Ag|-module (cf. proposition 65).

Proposition 69. There exist q € Z > and a commutative diagram

| e

R=Ry & H=H(Y,O)n

of actions, where

(1) Seo = Oy1,...,yql and a = (y1,...,Y4) C Seo,

(2) Reo = Ox1,...,x4] and it admits a surjection Re —% R whose kernel contains
aReo, and

(3) He is a finitely generated Ro.—module that becomes finite free as an Se.—module
and admits a surjection Hoo —% H with kernel aHe,.

Theorem 70. The natural map Ry — T5(T)y (cf. theorem 67) is an isomorphism of
local complete intersection rings.

Proof. Since He, is free over S, and the Seoc—module structure factors through Reo
by proposition 69, we have

1+ g = dim(Re)

> dimg,, (He) > depthy (He)
> depthg (Heo) = di

im(Se) =144

and so all these inequalities must be equalities.
Since R is regular, then Ho has a projective resolution of finite length by

Serre’s theorem. More precisely, we can use the Auslander—-Buchsbaum formula:
projdimRoo(Hoo) = depth(Re) — deptth(Hoo) =(14+4g9)—(1+4qg)=0.
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Therefore, Hy, is a projective Reo—module and must be free because R is local.
By proposition 69, H = Ho, /aH is a free module over R = Ry /aRe. But the

R-action on H = Hy(Y, &)y, is defined via the surjection R > — T°(T),,, which

must thus have trivial kernel. In conclusion, R & =2 T(T'),. Moreover, these rings

are complete intersection rings because we have a presentation

Ry =2 Re/a=0[x1,...,x5]/ (Y1,...,Yq)
and dim(R o) = dim(T*(T)y) = 1. O

Next we want to prove proposition 69. We use the results of the last part
of section 3.7 for T = @ (in particular, see corollary 56 and the paragraphs that
follow). Set g = h(lsﬂ (Q,ad’(p)(1)). We work with S, = 0[Z]] (that can be
identified with &[y1, ..., y4]). For every N € Z>4, define

any = Ker(Seo — ﬁ’[(Z/pNZ)q]),
SN - Soo/(caN/ ClN),

oNy = (a?N,AnnR(H)N) C R (openideal).

Definition 71. A patching datum of level N is a triple (f, X, g), where
* f: Re — R/0y is a surjective morphism in CNL,
* X isan (Re ®¢ Sy)-module that becomes finite free over Sy such that
- Im(Sy — Endy(X)) € Im(Re — Endg(X)) and
- Im(a — Endy (X)) C Im(Ker(f) — Endg (X)),
and
e ¢: X/a — H/(@N) is an isomorphism of Re—modules, with Re—module
structure on H/(@") given by f.
We say that two patching data (f, X, ¢) and (f’, X', ¢’) of level N are isomorphic if
f = f’ and there is an isomorphism X 2 X’ of (Re ®¢ Sy )-modules by means of
which ¢ and ¢’ are compatible.

Remark. Given N € Z>1, there are only finitely many isomorphism classes of
patching data of level N. In addition, given M € Z>; with M > N, every
patching datum D = (f, X, g) of level M induces a patching datum

(D mod N) = (f mod N, X ®s,, SN, & Psy, SN)

of level N.
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Proof of proposition 69. For each M > 1, we can choose a Taylor—Wiles datum
(QOm, (a0)veq,,) of level M such that |Qp| = g and hlyQL (Q,ad’(p)(1)) = 0, by

M
proposition 55. We define a patching datum Dy = (fa, Xp1, $m) as follows:
* we construct the composition

fMZ Roo—»RyQM —»RyQM/aQM = R —» R/0yy,

where the first arrow is given by corollary 56 and the other arrows are the
canonical projections;

e let Xp = Hyi(Yg,, ﬁ’)mQM ®s., Sm, which is a finite free Sy/—module be-
cause Hy (Yg,,, O)m,,, is a free O[Ag,,]-module (see proposition 64) and the
projection Seo —# Sp factors through €'[Ag,,], while the Re—action is via

Reo =# Ry = T¥OM(Tg,)

mQM/

and

e the isomorphism gxr: Xp/a — H/(@™M) is induced by the isomorphism
Hl(YQM/ ﬁ)mQM /(aQM) = Hl(Y, ﬁ)m = H

from proposition 65.
Now, for M > N > 1, we can define a patching datum of level N

Dyn = (Dy mod N) = (fm,n, Xm,N, §MN)-

Since there are only finitely many isomorphism classes of patching data of a fixed
level N but there are infinitely many M € Z such that M > N, we can find a
subsequence (M;, N;);>1 with M; > N;and Nj;1 > N; and such that

(DMi+1/Ni+1 mod N;) = D, N;-

Finally, we define

The desired projections are

l.&nfM,-,Nﬁ Rew — R and l.&ngM,-,Nii Heo — H.

i>1 i>1
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From
Im (Sp, — Endg (X, n,)) € Im(Reo — Endg (X, N;)),
we deduce that
Im (S — Endy(He)) € Im(Reo — Endy(Heo)).

Since S is a ring of power series, we can choose the morphism Se, — R lifting
Sec = End s (Heo). Similarly, from

Im(a — Endﬁ(XMl.,Ni)) - Im(Ker(fMl.,Ni) — Endﬁ(XMi,Nj)),
we deduce that
Im(a — Endy(He)) € Im(Ker(Reo — R) — Endg(Hw)),

whence the diagram

Ll

R ¢ H

commutes. O

As a consequence of theorem 70, we have the following result:

Theorem 72. Let p be a prime number > 2 and let p: Gg — GLz(@p) be a continuous
representation satisfying the following conditions:

(1) p is unramified outside finitely many primes,

(2) we can express

G, = X with x1|1, = 1 and x|, = €,
PlGqg, 0 xo 11, 2|, = €,°,

3) p Gaty) is absolutely irreducible with adequate image,
(4) for every prime ¢ # p at which p is ramified,

(10

and the reduction map p(Iy) — p(Iy) is an isomorphism

(1 =*
P|14=(0 1)
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but p(1;) # 1,

whereas at p we have

I

- X1 % o _
p|GQp (O Xz) with X1 X, * # 1 0r €,

and
(5) p =, for some g € $»(T'1(N),Q,) with

N=]]¢

t#p

where the product runs over the primes where p is ramified.
Then p = pg for some Hecke eigenform f € S»(T'1(N),Q,).

Sketch of the proof. One checks that the assumptions of the theorem imply, after
fixing a model p: Gg — GLy(&"), for ¢’ the ring of integers of some finite ex-
tension of Q,, that p defines a morphism R » — ¢’ of '-algebras, where .7 is a
global deformation problem as in the rest of this section. Combining this with the
isomorphism Ry 2 T°(T)w, where S = { £ | N } U {p }, we obtain a morphism
A: T5(T)w — O of O-algebras with the property that, for every prime ¢ ¢ S,

CharPoly(o(Frob,)) = X? — A(Ty) X + £A(Sy).
Such a A is the eigensystem of some f € S,(I'1(N),Q,). O

Remark. Condition (4) is very restrictive. To remove it, Wiles defined a “numerical
criterion” (which seemed hard to generalize but experiences a revival in current
research). Alternatively, Kisin presented global deformation rings as algebras over
local framed deformation rings (that is what we will do next).

4.3.2 The non-minimal case

, is absolutely

irreducible with adequate image, but let us drop the “minimality hypotheses”, so

Continue to assume that p is modular (i.e,, = p,) and that ﬁ|G(D @
maybe the integer N appearing in the level I'; (N) is not square-free and we want

to allow lifts ramified at primes ¢ at which p is unramified.
Say that we have a global deformation problem

7 = (9,5,¥,0,(Dy)ves)
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such that we can prove that
pm: Go,s — GLo(T%(T)m)

is of type . and that we expect all deformations of p of type . come from
T5(T)m. Assume that, for every place v € S, we have D, C D" and the ring R,
representing D, is 0—flat and pure with

1+3 ifv#p,

dim(R,) =
1+3+1 ifo=p,

where the first 1 comes from &, the 3 comes from the dimension of the space of
values of Frobenius (which are 2 x 2 matrices with a fixed determinant) and the
last 1 is the index of Q, over Qy itself (cf. the assumptions of section 3.7).

We consider frames at T = S and

S—1
R = ® Ro,
vES

which is &—flat of dimension 2 + 3|S|. Recall also that
R;gRy @ﬁT, WhereT: ﬁ[[zl,...,z4‘s|,1]].
Proposition 73. There exist q € Z>q and a commutative diagram

lmod a lmod a

R=Ry & H=H(Y,O)n

of actions, where

(1) Seo = Ty1,---,yq) and a = (21,...,z4|5‘_1,y1,. ., Yq) C Seo,
(2) Reo = R51xy, ..., xo]|, for some g € Z such that

dim(Se) = 4|S| +9 =g+ 2+ 3|S| = dim(Rw),

and it admits a surjection Roo —» R whose kernel contains aRe, and
(3) He is a finitely generated Ro.—module that becomes finite free as an Se—module

and admits a surjection He, — H with kernel aHco.

Sketch of the proof. The proof of this result is analogous to that of proposition 69:
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* One needs to use the computations of Galois cohomology from section 3.7
(especially corollary 56) in the case that T = S.
* We have to use the framed deformation rings R;Q to define the maps
N

. S
fN: Reo — RyQN — R/0N.
¢ The modules Xy have to be defined using
~ S ~ -~
Hl(YQN’ ﬁ)mQN ®R5ﬂQN RyQN = Hl(YQN’ ﬁ))mQN ®ﬁ T/

where the last module is free over 7T [Ag, ]. O

We can try to proceed as in section 4.3.1. From the chain of inequalities

and the fact that dim(Re) = dim(S« ), all the inequalities must be equalities. In
addition, He is a Cohen-Macaulay Re—module and Suppy (He) is a union of
irreducible components of Spec(R« ). However, in this case the ring Re might
not be regular and we cannot apply the Auslander-Buchsbaum formula as in
section 4.3.1.

Proposition 74. If Suppyp (He) = Spec(R), then Suppy (H) = Spec(R) and the
natural map
R=Ry — T5()y

has nilpotent kernel.

Proof. Take p € Spec(R) and let po be its pull-back in Re. By hypothesis, we
know that (He )y, # 0. Since Hy, is finitely generated over Ro,, by Nakayama'’s
lemma,

Hp = (Heo/aHeo)p = (Heo)poo / 8(Hoo)po, 7# 0

and so p € Suppr(H). Therefore, Suppi(H) = Spec(R). This implies that
Anng (H) is nilpotent and, as the action of R on H factors through the natural map

R — T°(I)n

and T5(T),, acts faithfully on H, the kernel of the last map must be nilpotent. []

Remark. The ring R (i.e., the quotient of R » by its nilpotent ideal) is = T5(T'),
and that is good enough for modularity lifting. (However, it is not enough for
applications to adjoint Bloch-Kato conjectures.)

70



For modularity lifting, we want to know that He, has full support in Spec(R).
Since Suppy, (He) is a union of irreducible components of Spec(R« ), we have to
prove that it contains all these irreducible components. But the map

Spec(Rw) = Spec(R%,1[xy, ..., x4]) — Spec(RS, 1)

induces a bijection on the sets of irreducible components and an irreducible com-
ponent X of Spec(R3,1°°) is of the form

X=T]]Xo

veS

where X, is an irreducible component of Spec(Ry) for every v € S. Thus, for each
v € S, we want to
(1) understand the irreducible components of Spec(R) and
(2) produce congruences from g (as p = p,), which lies on one component, to
modular forms lying on other components.
There are two clearly different cases to consider.
e Ifv )( p, one can use level raising /lowering using Ihara’s lemma (this method
has not been generalized to higher ranks) or Taylor’s Thara avoidance trick.
e If v | p, the situation is more complicated. It is related to the Breuil-Mézard
conjecture and to the weight part of Serre’s conjecture.
The minimal modularity lifting follows from an R = T theorem. Similarly,
the non-minimal modularity lifting follows from an R™9 = T theorem assuming
that He has full support over Roo. Next, we want to show how to prove this full

support result in some cases.

4.4 A result over totally real fields
We will sketch the proof of the following modularity lifting theorem:

Theorem 75. Let F be a totally real field and take a prime number p > 5 that is unrami-
fied in F. Let p: Gp — GLQ(@p) be a continuous irreducible representation satisfying
that

(1) p is unramified outside finitely many primes,

(2) for every place v | p of F, the restriction oly, is crystalline and all its labelled

Hodge—Tate weights are 0 or 1,

(3) the representation p|g,. @) is absolutely irreducible with adequate image and

(4) p = p, for a Hilbert modular cusp form of parallel weight 2 and level prime to p.
Then p = p¢ for some Hilbert modular cusp form f of parallel weight 2.
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Using cyclic base change (work of Saito and Shintani), we can prove the fol-
lowing result:

Theorem 76. Let L/F be a finite solvable totally real Galois extension. Consider a
representation p: Gp — GLp (@p) and a Hilbert modular form g as in theorem 75.
(1) If pg|g, is irreducible, then there exists a Hilbert modular cusp form G over L which
is the base change of g to L. In particular,

Pg|GL = oG-

(2) Ifplg, = pn for a Hilbert modular cusp form H over L, then p = p for a Hilbert
modular cusp form f over F.

Lemma 77. Let K be a number field and let S be a finite set of places of K. For eachv € S,
let K|,/ Ky, be a finite Galois extension. There exists a finite solvable Galois extension
L/K with the property that, for every place w of L above a place v € S, Ly, = K/, as
Ky—algebras.

Idea of the proof. It is an application of the Grunwald-Wang theorem. O

Let S, = {vplaceof F: v | p} and Seo = {vplace of F : v | o0 }. Let ¥ denote
the set of finite places of F at which p or g are ramified. In particular, 2N S, = @.
Let M/F({p) be the extension cut out by plc,, 0 which is a Galois extension. We
can find a finite set V of finite places of F such that V N (S, UX) = @ and every
non-trivial conjugacy class in Gal(M/F) is of the form Frob, for some v € V. Now
we apply lemma 77 with K = Fand § = S U S, UZ U V with the following local
extensions:

(1) forevery v € Se, K, = F, 2 R;
(2) forevery v € Sy, K;, = Fy;
(3) for every v € X, we take K|,/F, to be an extension such that, if p|G1<;, is
ramified, then the ramification is unipotent, and similarly for g, such that
0| Gy =1 and such that the cardinality of the residue field of K/, is = 1mod p;
(4) foreveryv € V, K] = F,.
Thus, we obtain a finite solvable Galois extension L/ F with the following proper-
ties:
(1) Lis totally real;
(2) pisunramified in L;
(3) for every prime w of L at which p|¢, is ramified, the ramification is unipotent;
similarly, writing G for the base change of g to L, for every prime w of L at
which G is ramified, G has Iwahori level at w;
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(4) MNL = F and, in particular, p|g, @) is absolutely irreducible with adequate
image.
Therefore, after replacing F with L, we have simplified our original situation
because now ramification of p or g is of a simple kind. By further replacing F
with F - Fy for an appropriate quadratic extension Fy/Q (i.e., Fy/Q is disjoint from
M/Q and p is unramified in Fy), we can assume that [F : Q] is even.
Now we can consider the unique (up to isomorphism) quaternion algebra D
over F which is ramified exactly at Se. For every place v of F, write D, = D ®r F,.

Fix a maximal order &p of D and an isomorphism

Op Q7 7 Mz(ﬁp KRz Z) = HMz(ﬁpv).

ofeo

We have an isomorphism

(0p ®z Z)* 2 GLy(0p ®7 Z) =[] GL2(6F,)

vfoo
which can be extended to
(D®fr AF)™ = GLy(AF).

Fix an open compact subgroup U of (0p ®z Z)* and identify it with an open
compact subgroup of

[]GL2(6F,).
U"'OO
(Later we will need a precise choice of such U.)

By our assumptions on p and g, the characters det(p)e, and det(p )€, are finite
(and unramified) and det(p) det(pg) ! is finite of p—power order. Since we assume
that p > 2, the character det(p) det(p,) ! admits a square root and, up to twisting,
we can assume that

det(p) = det(py) = 7€,

for some unramified character 7 of finite order. Let & be the ring of integers
of some finite extension of Q, such that p takes values in GL,(&). For every
O—algebra A, define

So(U,A) = {f D*\(D ® A¥)* — A continuous :
f(gu) = f(g) forallu € U and
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f(g2) = n(2)(g) forall z € (AF)* |,

where (by abuse of notation) we write 7 for the composition of # with the Artin
reciprocity map recp: F*\A; — ¢*. This space has an action of the Hecke

operators

T, = {GLz(ﬁFv) (a())v (1)) GLz(ﬁFv)}

and 0
w
S, = [GLZ(ﬁFv) ( 0” > GLz(ﬁFv)]
for all places v of F such that U, = GL(0F,). (Observe that S, simply acts by
11(@y).) That is to say, defining S = {v | p} U{v: U, # GLy(0p,) }, we have an
action of

0

"ﬂ"S,uniV — ﬁ[Tv,Sv .0 g S]
on Sy, (U, A).

Theorem 78 (Jacquet-Langlands). Recall that we have a fixed isomorphism @p =C.
The Hecke eigensystems appearing in the space of Hilbert modular cusp forms of parallel
weight 2 and level U and nebentype 1 are in bijection with the Hecke eigensystems
appearing in Sy, (U, C) that do not factor through the reduced norm of D.

Remark. The Hecke eigensystems of S, ,(U, C) that factor through the reduced
norm of D are Eisenstein, which means that their associated Galois representations

are reducible.

Consequently, we can transfer statements of Hilbert modular forms into state-
ments in terms of S ,, (U, @p) In particular, it suffices to prove that p = p for some
f € S2,4(U, 0). Also by theorem 78, we have that p = p, for some g € 52,4 (U, 7),
where the level

UC (0p@z2Z)" 2[]GL(6F,)

UJ[OO
satisfies that
e forevery place v ¢ X, U, = GL,(0F,), and
* for every placev € %,

a b
u, =Iw, = { (c d) € GLy(0F,)) : ¢ =0 mod cov}.

(Since X might contain places at which g is unramified, this U is not the “optimal”
level in which g appears; however, it is the “optimal” level in which both g and the
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desired f appear.)

Writing
(D®p AF)* =| | D*{U(AF),
icl
we can decompose
52’7 u A @A —1 ﬁi‘_lDt)/F><

icl
and this isomorphism is given by f — (f(t;))ie]-

Lemma 79. Each group (U(AY)* Nt; D) /F, fori € I, is finite and (since p > 5
and is unramified in F) has order prime to p.

Corollary 80. The functor on O'-algebras given by A — S, ,(U, A) is exact. In particu-
lar, S, (U, O) is a free O~module and

Sz,q(u, ﬁ)/((@) = SZ,U(U,IF).

Given a Taylor-Wiles datum (Q, (#y),cg) for p, we can proceed as in the
beginning of section 4 (where we defined levels I'y(Q) and I'p) and define levels
Up(Q) and U as follows:

e forv & Q,set Up(Q)v = Ugn = Uy and

e forv e Q,set Up(Q)y = Iwy, and

b
Ugp = { (Z d) celwy:ad ' e Ker(ﬁg — Ay) },

where A, is the maximal p—power order quotient of (OF, /@,)*.

In particular,

Up(Q)/Ug = Ag =[] Ao
veQ

Analogously to section 4.1, we can define maximal ideals

c TS,univ and mo c TSQUQ,uniV

and can prove that S, (Ug, O)w,, is a free 0[Ag|-algebra with Ag—coinvariants
> Sy (U, O) as TSNV modules (cf. proposition 65).
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4.4.1 Taylor’s Ihara avoidance trick

Recall that, for every v € X, we have N(v) = 1mod p. (This is one of the
assumptions that we imposed when we potentially used lemma 77 for a base
change.) Fix a non-trivial character

Xv: ﬁ;; _» (ﬁFv/wv)X _> ﬁ)(
of p—power order. From this, we obtain

x=[lx:u=]]U — &~

veEL UJ[OO

((i Z)) — [ [ xo(aody™)

VEL
and we can define
S;"”(U,A) = {f3 D*\(D ®f A¥)”* — A continuous :

fguz) = n(z)x(u)~'f(g) forall g € (D @ AF)*,
uelandz € (A%")X}

Observe that
sgﬁﬂ(u, 0)/ (@) = S%{U(U,IF) = Sz,q(u,]F) =~ 52,,7(11, 0)/(@).

We again argue as in the proof of proposition 65 and see that ng W(UQ’ O)mg 18
a free 0|Ag]-module with Ag—coinvariants = S;C/ W(U, O')m. Furthermore, as in
section 4.1, we have that

qu(UQ/ O)my/ (@) = Sp4(Ug, O)my  as O[Agl-modules.

Recall that, for every v € X, we assume that K_J‘Gpv = 1. (This is another of the
assumptions that we imposed in the base change step.)

Theorem 81 (Taylor). Let v € 2.
(1) There is a local deformation problem D} corresponding to the lifts p of PlGy, with
det(p) = ye, ! and such that

CharPoly(p(c)) = (X —1)* forallo € I,
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The ring R} representing D} satisfies the following properties:
o all irreducible components of Spec(R}) have dimension 3 and generic point of
characteristic 0, and
e every irreducible component of the special fibre Spec(RL / ()) is contained in
a unique irreducible component of Spec(RY).
(2) There is a local deformation problem DX° corresponding to the lifts p of Plcy, with
det(o) = e, and such that

CharPoly(p(0)) = (X — xo(0))(X — x5, 1 ()  forall o € I,

The ring RY" representing D" satisfies that Spec(R}") is irreducible of dimension
3 and its generic point has characteristic 0.

Remark. We are interested in studying R} but it is easier to work with R}". We will
use that Rl /(@) = R}"/ (@) because x, = 1 mod @.

We define a pair of global deformation problems as. In what follows, the

symbol ? means either 1 or x. Consider the global deformation problem

?

where for every v | p the local deformation problem D, corresponds to crystalline
lifts with all labelled Hodge-Tate weights equal to 0 or 1. It turns out that such D,
are represented by

RU = ﬁ[[zl,. . "Z3+[F01Qp}]]'

One can show that the Galois representations valued in
Im (T3 — End(Sa, (U, O)m))

are of type .1 and, similarly, the Galois representations valued in
Im (T — End (S} (U, O)w))

are of type .#X. Also, our fixed p is of type .71,

As before, we can augment with a Taylor-Wiles datum to obtain global deform-
ation problems Yé and 5”5 . We patch both (towers of) deformation problems
simultaneously incorporating an isomorphism modulo @ between the two patch-
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ing data. In this way, we get a pair of diagrams

Seo — RL & HL Seo — RYL & HE
l l and l l
Ro1 & Sppy(U, O)m Ryx & sg{n(u, O)m

that are identified modulo @. We know that H_, is supported on a non-empty
union of irreducible components of Spec(R%,). Our goal is to prove that HY, has
full support in Spec(RL,). But

((@m) Be ((?;R ))ﬂxl, - xg]]

and, as the R, for v ‘ p are formally smooth, the irreducible components of RZ,
arise from the R} for v € £. More precisely, the canonical morphism

Spec(R%,) — [ | Spec(R?)
vEL
induces a bijection on irreducible components.

The second part of theorem 81 implies that Spec(R%,) is irreducible and so
HX has full support in it, as it must be a union of irreducible components. Thus,
HY /(@) = HY /(@) has full support in Spec(RL /(®@)) = Spec(R%/(@)). But
Suppg1 (HL) must be a union of irreducible components too and, by the first part
of theorem 81, each irreducible component of Spec(RL /(@)) is contained in a
unique irreducible component of Spec(RL,). All in all, HL, has full support in
Spec(RL,), as desired.

Once we know this, we can apply the analogue of proposition 74 (whose
proof was formal at this point) to deduce that the action of R ;1 on Sp , (U, O)n
via the Hecke algebra has nilpotent kernel and so p arises from an eigenform

f € SZ,U(UI ﬁ)m.

4.5 More general number fields

Previously our field F was either Q or a totally real number field. This assumption

was used in two places:
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® On the Galois side, we used it in the “minimal case” to obtain that

iy (ad’(p)) = R, (ad’(p)(1)).

Thus, if we “kill” the dual Selmer group with a set Q of g = hly L (ad%(p)(1))
Taylor-Wiles primes, then R g, is a quotient of &[xy,...,x4] and we can
deduce that dim(Re) = dim(Se). In the “non-minimal case”, we used it
analogously.

* On the automorphic side, after localizing at a non-Eisenstein maximal ideal
m, we used that the cohomology

H*(Y,F)n

is concentrated in a single degree d to deduce that, at the Taylor-Wiles level,
Hy(Yg, O)m,, is a free O[Ag]-module with Ag—coinvariants = Hy(Y, O)n.
Combining these results, we obtained a commutative diagram

wis| |

Ry ¢ Hy(Y,O)n

of actions that we used for the patching step.

Now say that F is any number field and write [F : Q] = r + 2s, where r (resp.
s) is the number of real (resp. complex) places of F. Let p: G — GL,(F) be a
continuous representation such that

* the restriction p|g, @) is absolutely irreducible and

e for every real place of F and a choice of complex conjugation ¢, at v,

det(p(cy)) = —1.

Suppose that we are in a “minimal regular” situation:
o for every place v | p, we consider regular crystalline deformations of fixed
weight and

¢ for every ramified place v,

[Fy: Q] ifv ] p,

dimp(Ly) — h°(F,,ad’(p)) = {0 ifofp
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Then (see theorem 50 and the computations in section 3.7)

Iy (ad’(p)) = k', (ad’(P) (1)) + ) (dimp(Lo) — h*(F,,ad’(p)))

veS

— ) H(Fy,ad’(p))

o]0

=h',, (ad’(P)(1)) +[F: Q] —r—3s =k, (ad’(p)(1)) —s.

Thus, if s # 0, the rings S and R will not have the same dimensions.
On the other hand, let

X = (H PGLz(FU)> /Ue,
v|oo
where U is a maximal compact open subset. Then

X 2 (PGLy(R)/ PO(2))" x (PGLy(C)/ PU(2))° = Hj x H;,

where Hy denotes the hyperbolic k—space. Choose an open compact subgroup U
of

[ ] PGL2(6F,)

VE

that is “sufficiently small”. We obtain a smooth manifold
Y (U) = PGLy(F)\X x PGLy(A%) /L.

Let S ={v|p}U{v: U, # PGLy(0F,) } and consider for every place v ¢ S the

Hecke operator

T, = {PGLZ(@:U) (‘g” (1)) PGLz(ﬁ’Fv)}

For every O-algebra A,
H*(Y(U), A)

has an action of TSV = &[T, : v ¢ S]. Fix an isomorphism 71: Q, = C.

Theorem 82 (Harder, Franke). There are T5"™V_stgble decompositions
H*(Y(U),C) = Hg,,n (Y(U), C) & He(Y(U), C)

with
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(1) Héusp(Y(ll), C)=h ((nm)u)mi(ﬂ‘”) as TS —modules, the sum ranging over

T
the cuspidal automorphic representations of PGLy(Ar), and
(2) the TS“™WV_qction of Hy, (Y (U),C) “is Eisenstein”.

Theorem 83 (Borel-Wallach). Set go = r +s. Let A: TS — C be an eigensystem
corresponding to a cuspidal automorphic representation 1t of PGLy(AF) such that 7
is tempered. If H3op (Y(U),C)[A] # O, then Héusp(Y(U),C)[)\] # 0 exactly for
i € [qo,q0 + 5.

Remark. The key philosophy (also valid for more general ranks or groups) is that,
in “nice situations”, the difference between the dimensions of the dual Selmer
and of the Selmer groups is ¢ if and only if the cohomology appears in § + 1
consecutive degrees.

For PGL; /F, we have § = s (the number of complex places of F).

Conjecture 84 (Ash, Calegari-Geraghty). Let m be a maximal ideal of TSV such
that H*(Y(U),F)m # 0. There exists a continuous semisimple representation

ﬁml GF,S — GLQ(]F)
such that, for every placev € S,
CharPoly(p,, (Frob,)) = X* — T, X + N(v) mod m.

Remark. When § > 0, there can exist classes in H*(Y(U), F) that do not lift to
characteristic 0.

Assuming conjecture 84, we say that m is non-Eisenstein if p, is absolutely
irreducible.

Conjecture 85 (Calegari-Geraghty). Let m be a maximal ideal of TSV, If m is
non-Eisenstein, then

H'(Y(U), F)m =0 ifi ¢ [q0,90 + ]
Our goal next is to construct a diagram of actions

Seoc — Reo C' He(Coo)

lmoda

Ry C He(C) ZHo(Y(U),O)n
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in which
* S is a power series ring over ¢ with augmentation ideal a,
® dim(Rs) — dim(Ss) = —9,
* Cq is a complex of finite free Seo—modules concentrated in degrees [go, qo + 9|
and C = Cy ®s,, Seo/a computes He (Y(U), 0) and
* H.(C) is a finite Re—module.

Theorem 86. Assuming that we have a diagram of actions as above,
(1) Suppy_ (Hy,(Ceo)) is a non-empty union of irreducible components of Spec(Re),
(2) if every irreducible component of Spec(Re) is in Suppy (Hgy(Coo)), then

Ker (Ry — Endg (Hy, (Y(U), ﬁ)m)>

is nilpotent, and
(3) if Reo = Ofx1,...,xg]] (with 1+ ¢ = dim(Seo) — ), then Hyy (Y(U), O)m is a
free R o—module.

Proof. We claim that depthg_(Hy,(Ce)) = dim(Seo) — 6. We will prove this claim

later; now we use it to prove the statements of the theorem (in a way that is similar
to the proofs of theorem 70 and proposition 74).

(1) The Se—action on He(Cs) factors through R and He(Co) is a finitely gen-
erated Ro—module. Thus, for every i € Z,

depthg_(H;(Cw)) < depthy (H;(Coo)) < dimg,, (H;(Coo))
In particular, for i = gy, all the inequalities must be equalities (by the claim)
and the result is a restating of dimg_ (H;(Ceo)) = dim(Re).

(2) Take p € Spec(R ) and let p denote its pull-back to Re. By assumption,
Hy,(Coo) # 0, whence

Hy, (Y(U), 6)p = Hyy(Coo @5, O)p = ((Coo)go/ (0, Tm(dgy-1)))
= (qu(coo)/a)p 2~ Hyy(Coo)po /0 # 0

p

by Nakayama’s lemma. Here, we used that gg is the smallest degree in which
the complex Co is non-trivial (in general it is not true that taking quotients
commutes with homology).

(3) Since R is regular and dimg,, (Hg,(Ceo)) = depthyp (Hg,(Coo)) (as we saw in
the proof of (1)), we can use the Auslander-Buchsbaum formula to deduce
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that Hy,(C) is a projective R,—module and so must be free because R is
local. Therefore,
Hy, (Y(U), O)m = Hyy(Coo) /@

is a free (Ro/a)-module. But the (Re/a)—action factors through R o and
we conclude that R /a = R ». ]

Lemma 87. Let S be a local reqular noetherian ring of dimension n. Let P = P, be
a homological complex of finite free S—modules concentrated in degrees [0,4]. In this
situation, dimg(He(P)) > n — & and moreover, if equality holds, then

(1) P is a projective resolution of Ho(P) and

(2) Ho(P) has depth n — ¢ (as an S—module).

Proof. Write d,,: P, — P,_; for the differentials of the complex P,. Let m € Z>
be the largest integer such that H,,(P) # 0. Then

0 > Ps » Ps_q —— -+ —— Py

is a projective resolution of M = P,/ Im(d,,11). Therefore,
projdimg (M) < 6 — m.

On the other hand, H,,(P) = Ker(d,)/ Im(d,;+1) € M, which implies that
dimg(H;;(P)) > depthg(M). Using the Auslander—Buchsbaum formula, we ob-
tain that

dimg(H;;(P)) > depthg(M) = n — projdimg(M) > n — 6 4 m.

If dimg(Ho(P)) < n —J, then we must have m = 0, which means that P is
a projective resolution of M = Hy(P) and all the inequalities above must be
equalities. In particular, depthg(Ho(P)) = n — 4. O

It remains to discuss, at least conjecturally, how to create the patched diagram
that we used to prove theorem 86.

On the Galois side, just as for GL,(Q), we can use that ,T)\GF@) is absolutely
irreducible with enormous image to prove that, for every N € Z~1, we can find a
Taylor-Wiles datum Qy of level N such that

i (ad(7)(1)) =0
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in such a way that |Qn| = g is independent of N. Then R;Q is a quotient of
N
Reo = R1xy, ..., x,] with g = h}sﬂQL (ad’(p)) = g +|S| — 1 — 8. Therefore,
N

dim(Rs) = dim(Se) — .

On the automorphic side, we consider G = PGL; and the quotient X of G(F ®¢
R) by some maximal compact. Let U be a sufficiently small subgroup of G(AFY).
We obtain a smooth manifold Y (U) = G(F)\X x G(AY)/U. Every Taylor-Wiles
datum Q still gives rise to levels Uy C Uy(Q) C U such that Uy(Q) is the Iwahori
level at every v € Q and Uy(Q)/Ug = Ag (formed from the maximal p-power
quotients of the residue fields).

Again, we can define a maximal ideal m of TéUQ’uniV. The problem is that

He(Y(Ug), O)my ®piag) € = He(Y(Uo(Q)), O[Ag])mg ®piag) €
% He(Y(Uo(Q)), O)mg

because homology and tensor products do not commute (unless, say, homology
is concentrated in one single degree). A workaround is to use a complex Cq of
free O[Ag]-modules that computes He (Y (Ug), @)m,, in which case Co ®g(a,)
computes He (Y(Uo(Q)), O)mg-

* We will have to define a Hecke action on C and an action on R 7 Via a map
to a Hecke algebra with operators outside S U Q. If we use singular chains to
define Cg (i.e., the usual complex that computes singular homology), then
we automatically have a Hecke action.

* However, for patching, we need Cg to be a bounded complex of finite free
O[Ag]-modules (in order to have only finitely many isomorphism classes of
patching data of a fixed level) and that will not be preserved by TS,

The most natural way to resolve this “contradictory” requirements on the
complexes is to work in the derived categories D(¢') and D(&[Ag]) of 6—modules
and O[Ag|-modules, respectively.

Roughly, for a ring A, the category D(A) is constructed as follows. Let Ch(A)
be the category of chain complexes of A—-modules and let K(A) be the category
whose objects are the same as in Ch(A) but whose homomorphisms are morph-
isms of complexes up to chain homotopy. The category D(A) is obtained from
K(A) by formally inverting quasi-isomorphisms (i.e., chain morphisms that in-
duce an isomorphism on homology). In particular, every morphism f: X — Y in
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D(A) is represented by a roof
Z
X Y

formed of a quasi-isomorphism Z — X and a general morphism of complexes
Z — X. There are full subcategories D~ (A) (or K~ (A))and DT (A) (or KT (A)) of
bounded above and bounded below, respectively, complexes. Let K™P™/(A) be
the full subcategory of K™ (A) consisting of complexes of projective A—-modules.
It turns out that the obvious functor K™P™(A) — D™ (A) is an equivalence of
categories.

Let C € Ob(D (A)). (We often identify chain and cochain complexes by
C; = C~'.) Choose a complex P of projective A—-modules isomorphic to C in D(A).
Given an A-module M, we define

CRYM=P®,M (e, (CR%M); =P o4 M)
and R Hom4 (C, M) by
RHOIIIA(C, M)i = HOIIIA(P_,', M)

with d(f) = (—1)98/)+1f o d. These objects are independent of the choice of P
up to unique isomorphism in D(A). If M = B is an A-algebra, we obtain a functor

. ®%B: D (A) — D (B).
There is a spectral sequence
(B2 = TorA (), M) — Hiy (C 5% M)

(and a similar spectral sequence computing the same homology in terms of a
resolution of M).
The category D(A) is idempotent complete: if e € Endp,)(C) satisfies that

2

= ¢, there exists a decomposition C = eC @ (1 —e)Cin D(A).

We say that C is perfect if it is isomorphic in D(A) to a bounded complex
of finite projective A-modules. If A is local and noetherian, the complex C is
called minimal if it is a bounded complex of finite projective (equivalently, free)

A-modules and the differentials are 0 modulo m 4. When A is local and noetherian,
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every perfect complex is isomorphic in D(A) to a minimal one. Moreover, if C is a
perfect complex such that He (C ®% A/m ) is concentrated in degrees [a, b], then
C is isomorphic in D(A) to a complex concentrated in degrees [a, b]. Observe that
there is a natural map

EndD(A) (C) — EndA (H. (C))

and, if C is perfect and concentrated in degrees [0,d] and f € Endp4)(C) acts as 0
on He(C), then f4*1 = 0in Endp4)(C). More generally, for a perfect complex C,
the kernel of

EndD(A) (C) — EndA (H. (C))

is nilpotent.
Going back to our automorphic setting, it turns out that there exists a perfect
complex C(U) € Ob(D(&)) such that

and then H* (Y (U), €) is computed by
RHomg(C(U), 0).
There exists a morphism
T — Endp ) (C(U))

of O-algebras and we define T°(U) to be its image. In particular, T°(U) is an
O'-algebra of finite rank and so must be semilocal (equal to the product of its
local subrings). For the maximal ideal m of TSV that we constructed before,
the localization C(U),, makes sense in D(¢) and He (C(U)n) = He(Y(U), O) .
Therefore, the kernel of

T5(U)m — Endg (He(Y(U), O)w)

is (at least) nilpotent.

Conjecture 88 (Calegari—-Geraghty). There exists a continuous Galois representation

om: Grs — GLy(T%(U)w)
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such that, for every v € S,
CharPoly(pn (Frob,)) = X*> — T, X + N(v).

Moreover,
(1) for every place v | p such that U, = G(OF,), if p is unramified in F, then pn|c,. is
Fontaine—Laffaille with all labelled Hodge—Tate weights equal to 0 or 1, and
(2) for every v € S such that v | £ # p and Uy, contains the pro-¢ Iwahori group,

CharPoly (pm(¢)) = (X — (recy,!(¢))) (X — (recg ' (¢ 1))

for every o € I, and we can also describe CharPoly (pm (Froby)) similarly. (Here,
recr,: Op — G%E is Artin’s local reciprocity map and ( -) denotes the diamond

operator.)

Conjecture 88 would give a morphism
Ry — T5(U)n
for a suitable type ., whence we obtain an action
Ry CHe(C(U)m) =Ha(Y(U), O)m.

Adding a Taylor-Wiles datum Q, we can similarly construct a perfect complex
C(Ug)my € Ob(D(0[Ag])) such that

C(UQ)mg ®giag) € = C(U)m.

In particular,
C(Ug)ng ®(ay F = C(U)n &5 F

and the latter computes Ho (Y (U), F)w. Then conjecture 85 implies that C(Ug)m,
is concentrated in degrees [qo, go + ¢]. Therefore, assuming conjectures 85 and 88,
we can patch the (minimal) complexes and get the desired diagram of actions.

Conjecture 85 can be proved if F is a quadratic imaginary field because then
dim(Y(U)) = 3 and we only need to understand H® (and H). But it is very hard
to prove it in general. There is a workaround due to Khare and Thorne if one only
wants to prove that R = T5(U)%4 (or Ry [p~!] = T5(U)m[p~']). We at least
know that

H;(Y(U))F=0 fori ¢ [0,d],
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where d = dim (Y (U)). We can still patch to obtain a diagram of actions

lmoda

Ry C He(C) = He(Y(U),O)m

but we only know that C is concentrated in degrees [0, d]. We need concentration
in (g0, 40 + 6] instead. Suppose that we know that Hy, (Y(U), &)m[p~!] # 0 and
localize the previous diagram at the augmentation ideal a of Se, to obtain

Soo,a — Roo,a G HO(COO)G = H.(Coo’a)

!

Ry[p~'] & Ho(Y(U), O)nlp™]

(where we used that localizing at a and then modding out by a is equivalent to
just inverting p). Let E = &[p~1]. Then

Coop 5, E= COBE

and theorems 82 and 83 imply that He (C ®L E) = Hq(Y(U), O)wm[p '] is concen-
trated in degrees [qo, g0 + 6]. Now we can apply the arguments from proposi-
tion 74 (cf. theorem 86 too), based on commutative algebra results, to prove that
the morphism

Ry[p™] = T5(U)u[p™"]

has nilpotent kernel if Hy; (Ce o) has full support in Spec(Reo,a).

Remark. We need Galois representations for this argument to work; then one uses
that m is non-Eisenstein to show that

H*(Y(U), O)mp™]

is all cuspidal.

Conjecture 88 can be proved if F is a CM field with many technical conditions
up to replacing T°(U)y, with T°(U)y /I for a nilpotent ideal I with nilpotence
degree depending only on F and the rank n = 2 (appearing in PGL;). Then
one can build I into the patching argument and still get a theorem of the form
Ried = TS(U)™d. This crucially relies on viewing Resy,r+ GL, (where F* is the
maximal totally real field of F) as a Levi on a unitary 2n—dimensional unitary

88



group over F'. Via the Borel-Serre compactification, one can find the cohomology
of the locally symmetric space associated with GL, in the cohomology of the
unitary Shimura variety. That is why we restricted to CM fields.
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