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1 Overview

The topic of the course is complex multiplication, a beautiful theory developed
in the 19-th century with many arithmetic applications. This theory tells us

something about the values of certain modular functions at certain points.

Definition 1. A modular function is a holomorphic function f: $ — C satisfying
that

az+b a b
f(cz—l—d)_f(z) for all (c d)erandZEC,

where
* § is the Poincaré upper half-plane {z € C : Im(z) > 0 }, and
e T'is a congruence subgroup of SL(Z).

Remark. We will only use the following congruence subgroups:

= {()=(; 3 mar}
0= {( )= 5) e}
{2 )« () ).

Also, sometimes we consider modular functions having values in P! (C) (i.e., with

poles) or even in E(C) for some elliptic curve E.

Example 2. The following are examples of modular functions:
(1) The j-invariant j: SLy(Z)\$ — C is an analytic isomorphism and generates
the ring of modular functions on SL,(Z)\ .
(2) The A—function A: T'(2)\$ — C\ { 0,1} is an analytic isomorphism related

to j by
o (AP=A41)
j =256 A1)
It also satisfies the equations
8 16 16 8
A= 161E 22Ty 2 1E/2) P22
n(z)* n(z)*

where

n(z) = g'/% H(l —q")  ifg =e*™ (Dedekind eta function).

n>1



(The g—expansion of 7(z) together with the previous formulae for A and
1 — A show that, indeed, A does not take the values 0 or 1.)
(3) The Siegel units: we have a modular function Uy : T'o(N)\$H — C* given by

Uy = where A(z) = n(z)*.

(4) Modular parametrizations: every elliptic curve E/Q of conductor N admits
a non-constant analytic map ®r: T'h(N)\$H — E(C) (modularity theorem).

1.1 The main theorem

Definition 3. A CM point of §) is a point T € §) which satisfies a quadratic equation
over Q, so that T = a + b\/d for some a,b,d € Q withd < 0 and b > 0.

Theorem 4. Let T € $NQ(V/d) (for some d < 0) and let f be a modular function. If
the g—expansion of f has coefficients in Q, then f(7) is algebraic and is defined over an
abelian extension of Q(+/d).

This theorem suggests that we might be able to generate almost all abelian
extensions of a quadratic imaginary fields (i.e., explicit class fields) from the values

of modular functions.

Example 5. The CM values of j(z) are called singular moduli. Consider a quadratic
imaginary field K with D = disc(K), D < 0, and class number /#(K) = 1. Then the
CM point
o — D+ VD
2
satisfies that j(1p) € Z.

Table 1 shows all these singular moduli. One can observe several patterns: all
the numbers in the second column are perfect cubes and have many small prime
factors but not all (no 7 or 13); in contrast the numbers in the third column are
almost perfect squares (except for a factor of D) and includes the prime 7 but no 5.
This kind of patterns were explained by the work of Gross and Zagier.

Writing

(j(t0), j(tp) — 1728) = (x*, Dy?),

we obtain an integral solution to the equation

x® — Dy? = 1728.



D j(tp) j(tp) — 1728

-3 0 —2633

—4 2033 0

-7 —335° —367

-8 2653 2772

—11 —215 —207211

—-19 —21533 —26319

—43 —2183353 —26387243

—67 | —2153353113 —26367231267
—163 | —2183353233293 | —203672112192127%163

Table 1: Singular moduli for quadratic imaginary fields with class number 1.

These kind of numbers seem to contradict the ABC conjecture. Of course this is
not really the case because we only have a finite number of quadratic imaginary
fields with class number 1.

Example 6. In the spirit of the last observation in the previous example, Granville
and Stark proved that a strong version of the ABC conjecture implies that /(D)

grows asymptotically like
VID|

log(|D])

as D — —oo. In particular, the Dirichlet L-function L(xp, s) has no Siegel zeros.

1.2 More applications

Let D be a negative discriminant as before. We have the following associated data:
(1) a quadratic order &p = Z[(D + /D) /2];
(2) the class group CI(D) = Pic(p), and
(3) a ring class field Hp such that, if K = Q(v/D),

Gal(Hp/K) = CI(D)

by class field theory. Furthermore, if we write D = Dyc?, where Dy is a
fundamental discriminant (square-free) and c is the conductor of the order,
then Hp is unramified outside c.

Proposition 7. If f is a modular function for some group I with rational g—expansion,
then f(tp) is defined over an abelian extension L of Hp satisfying that



(1) L is unramified outside the level N of I' and
(2) [L: Hp] < [SL2(Z) : T7].

Proposition 8. In the situation of proposition 7, if f($)) is contained in V(C) for an
algebraic variety V (such as A', A1\ {1} or an elliptic curve E), then

f(m) € V(OLINT)).

Example 9.

(1) j(mp) € Or.
(2) A(tp) is a solution to

(x> —x+1)°>=278j(mp)x*(x —1)2 =0

and so A(tp) € Op[1/2]*. Exercise: 1 — A(tp) € Op[1/2]*. The pair
(A(tp),1 — A(1p)) is then a solution to the 2—unit equation in L.

(3) Un(1p) € OL[1/N]* (and often even Un(Tp) € O[°). These units are called
elliptic units. There is an interesting analogy summarized in table 2.

Q K (imaginary quadratic)
Circular units 1 — {y Elliptic units Un(tp)
Class number formula: Kronecker limit formula:
L'(x,1) <+ log(1— ) L'(,1) < log(Un(7p))
for an even Dirichlet character xy | for a finite-order Hecke character ¢
Work of Thaine, Rubin Work of Coates—Wiles, Rubin
(Iwasawa main conjecture) (Iwasawa main conjecture)

Table 2: Analogy between the theory over Q and over K.

Theorem 10 (Coates—Wiles, Rubin). Let A/Q be an elliptic curve with CM. If the
Hasse—Weil L—function of A satisfies that L(A,1) # 0, then A(Q) < oo (Coates—Wiles)
and III(A/Q) < co (Rubin).

Remarkably, CM theory has applications towards the proof of the BSD con-
jecture for general elliptic curves (not just those with CM). Consider an elliptic
curve E/Q and a modular parametrization ®r: I'o(N)/$H — E(C). Choosing an
appropriate D, we get ®¢(tp) € E(Hp). Define

Pp= )  @(1) € E(K).
disc(t)=D



Theorem 11 (Gross—Zagier). In the situation above and if D is perfect square modulo
N, then
L'(E, 1) ~ htr(Pp).

In particular, Pp has infinite order precisely when L'(E, 1) # 0.

Theorem 12 (Kolyvagin). If Pp has infinite order, then E(K) is generated by Pp and
II(E/K) < oo

Corollary 13. Ifords—1(L(E,s)) <1, then
rank(E(Q)) = ords—1(L(E,s)) and UI(E/Q) < oo.

These are essentially the best known results towards a proof of the BSD conjec-
ture, and they would not be available without the theory of complex multiplication.

1.3 Topics of this course
1.3.1 Basic theory and elementary applications

We are going to introduce the geometric ideas that justify the apparently miraculous
fact that values of certain analytic functions turn out to be algebraic or integral.
More precisely:
e The analytic space SL,(Z)\$ as the points Y (C) of an algebraic curve Y that
is a moduli space of elliptic curves over Q. Models of Y over Q and Z.
¢ Correspondence between the CM points T € §) and elliptic curves “with
extra endomorphisms” (i.e., with CM).
 Given a CM point T € $ and K = Q(7), we study the value j(t) € K.
* Factorization of Gross—Zagier for differences of singular moduli.
* Heegner and Stark’s classification of negative discriminants D < 0 with class
number h(D) = 1.
¢ The work of Granville-Stark on the ABC conjecture and Siegel zeros.

1.3.2 Generalizations

The most natural and fruitful ideas to generalize CM theory come from the work
of Shimura-Taniyama. The theory of elliptic curves with CM is a particular case
of the theory of abelian varieties with CM (already considered by Hilbert and
developed by Blumenthal and other mathematicians until the culmination of
Shimura and Taniyama). However, we will not cover this topic but only focus on

the question of why explicit class field theory is accessible for CM fields.

8



Consider a CM field K, that is a totally imaginary quadratic extension of a
totally real field F. The group of units
Og,p=1{u€ 0y :Ngp(u) =1}
is finite and we can study it by means of class field theory. In general, class field
theory provides a description of the Galois group Gal(K®"/K) in terms of an idele
class group and it turns out that one can get a good understanding of explicit class
tield theory if this description does not involve a group of units.
In contrast, the simplest non-accessible case is that of a real quadratic field
K. In that case, there is a fundamental unit (Dirichlet’s theorem) that appears as
a solution to Pell’s equation. This unit appears as an obstruction to the explicit
description of all abelian extensions of K. A general approach that one can follow
to remedy this is to generalize the analytic statements without the geometric
proofs. In our setting, the naive statement that we would like to have is that, given
a modular function f and a point T € $ N K, the value f(7) lies in K?%. However,
this statement cannot be true because H N K = @.
One possibility is to consider a geodesic on §) going from 7 to its conjugate
7. The subgroup of SL,(Z) which leaves this geodesic invariant is isomorphic
to Z up to torsion and so admits a generator corresponding in some sense to the
fundamental unit of Ox. There is work of Kaneko, Zagier and Duke-Imamoglu-
Téth in this direction.
Another possibility is to replace $) with a non-archimedean analogue: given
a prime number p, the p-adic upper half-plane is $, = P!(C,) \ P1(Q,). The
reason to consider this space is that KN $ p # @ if p is either inert or ramified in K.
There is a theory of p—adic uniformization of certain curves which allows one to
have a variant of the theory of complex multiplication. Thus, the second theme of
the course will be p—adic variants of CM theory.
This part will be less complete and self-contained and we will treat the follow-
ing topics:
¢ Shimura curves, which are moduli spaces of “fake elliptic curves”. These are
analogues of modular curves and are attached to quaternion algebras.
¢ Jacquet-Langlands theory relating modular forms and some kind of dif-
ferentials on Shimura curves: if E/Q is an elliptic curve satisfying certain
conditions, there is a modular parametrization X — E from a Shimura curve
X.
¢ Cerednik-Drinfeld theory: given a Shimura curve X, for certain p one can
identify X(C,) = I'\$), for some arithmetic subgroup I of SL,(Qp).

9



One can then develop a variant of CM theory by studying the points in a Shimura
variety that correspond to fake elliptic curves with extra endomorphisms. Then
these points are defined over abelian extensions.

We will also talk about certain computational aspects:

¢ Algorithmic aspects (work of Greenberg and of Negrini).

* Gross—Zagier factorizations (work of Giampietro).

Unfortunately, one gets no immediate insights into the theory of real multiplic-
ation just from this theory. The problem is that the special points on I'\§),, arise
from tori K* C B*, where B is a definite quaternion algebra (so the quadratic
tields are automatically imaginary). Instead, we would like to obtain I' from an

indefinite quaternion algebra.

1.3.3 RM theory

We may consider I' = SL,(Z[p~!]) acting on £, but this action is not discrete.
That is, writing .7 for the ring of (rigid) analytic functions on $ p and .Z for the
ring of meromorphic functions on ), we obtain that HY(T, o) =HT,.#)=C p-
To obtain an interesting theory, one has to look at higher cohomology groups. The

next objects that one might consider are

HY(T, <) or HY(T, &),
HY(T, .#) or HY(T,.4*).

Theorem 14 (Darmon-Vonk).
(1) HYT, &) = HY(T,.#) = 0.
(2) The group HY (T, .4 *) is not finitely generated.
(3) Consider a rigid meromorphic cocycle |: I — .#*, which represents a class in

HY(T,.2*). If
(o 1) =

then for every vy € T the function [(vy) has its zeros and poles in the set f)l;M of RM
points (i.e., points of $), that satisfy a quadratic equation with rational coefficients
and generate a real quadratic field).

The basic idea is that there should be an RM theory in which rigid meromorphic
cocycles play the same role as modular functions in CM theory.

If J: T — .#* is a rigid meromorphic cocycle and T € $, N K for a quadratic
field K with disc(K) > 0, then Stabr(7) = Z up to torsion and we can choose a

10



generator y; of this free part. It turns out that the eigenvalues of -y are essentially
powers of the fundamental unit of K.

Definition 15. The value of | at T is

JItl =J(v=)(7) € CpU {0}
(This value is well-defined because there is a canonical choice of 7+.)

Conjecture 16. The rigid meromorphic cocycle | has a field of definition Hj such that
[H ] Q] < o0 and
][T] €EH ] H:

for all T € HM, where Hy is an abelian extension of Q(T).

These RM values of rigid meromorphic cocycles seem to behave like CM
values of modular functions. For example, there are conjectural Gross—Zagier
factorizations. We might also comment about some modular generating series of
RM values from the work of Darmon-Pozzi—Vonk.

Theorem 17 (modular parametrizations). For every elliptic curve E of conductor p,
there exists a non-trivial Jg € H'(SLo(Z[p~1]), o> /%), where q is the Tate period of
E. In particular,

Jelt] € C; /g% = E(Cp).

Conjecture 18. In the situation of theorem 17, Jg[t] € E(K?), where K = Q(1).

11



2 Modular forms

Our goal is to define modular forms as some sort of “functions” on spaces para-

metrizing elliptic curves.

2.1 Framed elliptic curves

Definition 19. An elliptic curve over a field K is a smooth proper algebraic curve E
of genus 1 over K equipped with a rational point O € E(K) (the origin or identity

element for the group law).

Theorem 20 (Riemann-Roch). The space Q)% sk Of regular differentials on E over K
has dimension 1.

Definition 21. A framed elliptic curve is a pair (E,w) where E is an elliptic curve
over a field K and w is a K-basis of Q] /K

Theorem 22 (classification of framed elliptic curves). Let K be a field in which 6 is
invertible and let (E, w) be a framed elliptic curve over K. There exists a unique pair of
functions x,y € Op(E \ { O }) satisfying the following conditions:

(1) ordp(x) = —2and ordp(y) = —3;

(2) x and y satisfy an equation of the form

y> =2+ gux + g

for some g4, g6 € K with the property that A = 4¢3 + 27¢% € K*, and

dx
3) w=—.
®) y

Remark. One can get an analogous result working with framed elliptic curves over
aring R (that might not be a field) such that 6 € R*.

Definition 23. We say that two framed elliptic curves (E,w) and (E/,w’) over a
field K are isomorphic if there exists an isomorphism of elliptic curves ¢: E — E’
over K with the property that ¢*(w') = w.

Remark. In particular, Autg(E,w) = {1}, in contrast to what happens when
we only consider (not framed) elliptic curves, in which case we have at least 2
automorphisms. This fact will be important when we consider moduli spaces.

12



2.2 Modular forms

Definition 24. A weakly holomorphic modular form (or weak modular form) over a
field K is a rule
(E,w)/R — f(E,w),

assigning to each framed elliptic curve (E, w) over a K-algebra R a scalar value
f(E,w) € R, with the following properties:
(1) f(E,w) depends only on the isomorphism class of the framed elliptic curve
(E,w)/R, and
(2) it is compatible with base change in the sense that, given a morphism
¢: R1 — Ry of K-algebras and a framed elliptic curve (E, w) /Ry,

f(¢"(E,w)) = f((E,w) @k, ,p R2) = ¢(f(E, w)).

We say that f has weight k € Z if it satisfies that
f(E,Aw) = A7 f(E, w)

for all framed elliptic curves (E, w) over K-algebras and all A € R*.

Example 25.

(1) The rule g4 that assigns to each (E,w) the coefficient g4 appearing in the
canonical equation (as in theorem 22) is a (weak) modular form over Z[1/6]
of weight 4. Similarly, the rule g4 that assigns to each (E, w) the coefficient g¢
appearing in the canonical equation (as in theorem 22) is a (weak) modular
form over Z[1/6] of weight 6. Indeed, to pass from (E,w) to (E, Aw), one
must apply the change of variables

(x,y) — (A2x,A7%)

in the canonical equations arising from theorem 22.

(2) Any homogeneous polynomial in g4 and g of degree k (where g4 has degree
4 and g4 has degree 6) is a (weak) modular form of weight k.

(3) A = 4¢3 + 2742 is a (weak) modular form of weight 12. By definition, for
every framed elliptic curve (E,w) over a ring R in which 6 is invertible,
A(E,w) € R*.

(4) If F(X,Y) is a homogeneous polynomial of degree of the form k + 12m for

some k, m € Z>q, then
F(84,86)

A
13



is a weak modular form of weight k.
(5) j = g3/A is a weak modular form of weight 0; that is, a weak modular

function.

Fact 26. The space WME(R) of weak modular forms over a ring R in which 6 is invertible

is a graded ring isomorphic to R[4, g6, A™] (where g4, g6 and A have degrees 4, 6 and

12, respectively).

Definition 27. For every ring R with 6 € R*, we define
Ell* (R) = { Isomorphism classes of framed elliptic curves (E,w)/R }.

Remark. Theorem 22 shows that there is a natural bijection between Ell* (R) and
Homy 1 /61-a1g (Z[1/6][84,86, A7 '], R). In fact, ElI" is a functor representable by
Spec(Z[1/6][g1, 86, A71]).

2.21 Analytic theory

Next we work over R = C. In this situation, one can check that Ell* (C) cor-
responds to the space L of lattices in C. Indeed, to each framed elliptic curve
(E,w)/C we can assign the period lattice

{[wirenmEo,2)]

7

and to each lattice A we assign (the isomorphism class of) the framed elliptic curve
(C/A,2midz).

Using this interpretation of Ell " (C), we can give a more concrete definition of

weak modular forms over C.

Definition 28. A weak modular form over C of weight k is a function f: £L — C
with the property that

F(AA) = A7Ff(A) forall A € C* and all A € L.

In order to understand these weak modular forms, one needs to study the
space L of lattices.

Lemma 29. C* acts on L by multiplication and there is a canonical bijection

L/C* = SLy(Z)\$.

14



Idea of the proof. Given A € L, we can choose an R-basis (w1, wy) of A with the
property that wi/w> € $H. One checks that different bases differ by a matrix in
SLy(Z). O

Now we can redefine weak modular forms analytically. If f is a weak modular

form over C (of some weight k), we define
f(t)=f(ZraZ) = f(C/(ZT & Z),2nidz),

which is an analytic function on §. Furthermore,

fc;tZ) - f(ZZj:Z ©Z) = f((ct+d) " (Z(a +d) DZ(cT +d)))

= (ct+d)f(Z(at +b) @ Z(cTt +4d)) = (cT+d)f (7).

In this way, we recover the usual analytic definition of weakly holomorphic
modular forms.

2.2.2 The Tate curve

The map ¢ induces an isomorphism

ot
(C/(Z@Zr),Zmdz) = (C /qz,7>,

where g = 27 and t = ¢?”"Z. One should think of T as a variable on $) and of g as

a variable on the (punctured) unit disc.

Proposition 30. The framed elliptic curve (C* /q%,dt/t) is described by an affine equa-
tion
Ep: y* =2 +84(9)x + go(q)

with invariant differential

o= B
Ty
where
ga( 24O+203 )g" mod Z[1/6]%,
g6 504+205 )g" mod Z[1/6]*,
:de.
d’n

15



Remark. We may make a change of variables to avoid the factors 2 and 3 in the
denominators and obtain an equation

Eq: v* 4 xy = x° + a4(q)x + a¢(q)

with coefficients in Z[[q]. The discriminant of E; is given by

) =g - q",

n=1

which makes sense as a formal series in Z((g)) *.

Definition 31. The framed elliptic curve (E;, wq)/Z((q)) given by the equations
in proposition 30 is called the Tate curve.

Remark. By abuse of notation, given a ring R, we write (E;, wg) (or (Eq, wgq)/R((9)))
also for the base change of (E;, wy)/Z((q)) to R((q)).

Definition 32. The g—expansion of a weak modular form f over a ring R is

f((Eg,wq)/R((9))) € R((q))

Definition 33. A (holomorphic) modular form is a weakly modular form f over a
ring R whose g—expansion f(E;, wy) lies in R[g] (not just in R((g))). We write
MEF(R) for the space of modular forms over R.

Remark. Suppose that 6 € R*. The identification WMF(R) = R|g4,gs, A~ ] re-
stricts to MF(R) = R[g4, L6)-

16



3 Elliptic curves with complex multiplication

3.1 Endomorphisms of elliptic curves

Let E be an elliptic curve over a field k. Let Endi (E) denote the ring of endomorph-
isms of E/k (i.e., morphisms E — E of algebraic curves over k mapping O to O).
In Endy(E) there is a sum induced by the (commutative) group law of E and a
multiplication given by composition.

The ring End(E) is equipped with a canonical anti-involution that sends an
isogeny ¢ to its dual ¢*. The fact that this operation is an anti-involution means
that (¢p*)* = ¢ and (¢ o 9p)* = ¢* o ¢*. Recall that ¢ 0 ¢* = ¢* o ¢ = [deg(¢)].

Fix an algebraic closure k of k. One can prove that End;(E) is a free Z-module
of rank < 4. Indeed, Endy(E) is Z—torsion-free because

ng =0 = n>deg(¢) = deg(np) =0 = deg(¢p) =0 = ¢ =0.

Moreover, Endg(E) is free of rank < 4 over Z because, given a prime ¢ # char(k),
Endz(E) ®z Z, acts faithfully on T,(E) (k) = Z2.

Proposition 34. In the situation above, there are only the following possibilities:
(1) Endg(E) = Z,
(2) Endg(E) is an order in a quadratic imaginary field or
(3) char(k) = p > 0and Endg(E) is an order in the quaternion algebra ramified at p

and at oco.
The proof of this result can be found in Silverman’s books on elliptic curves.

3.1.1 The theory over C

Lemma 35. Let E be an elliptic curve over C. Then End¢ (E) is either Z or a quadratic
imaginary order.

Proof. Consider an isogeny ¢: E — E and regard it as an analytic function
¢: C/A — C/A by means of the complex uniformization of E. Then

Pp(z+w)—¢(z) e A forallze Cand w € A.

In particular, if we fix w € A and view this as a function of z € C,
¢'(z+w) —¢'(z) =0,
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Therefore, ¢’ takes all its values on a fundamental parallelogram, which is compact
in C, and so must be bounded. Liouville’s theorem implies that ¢’(z) is constant
and so, using that ¢(A) C A, there exists « € C such that ¢ is of the form

$(z) =w-z forallz e C/A.

In conclusion, every endomorphism of E acts as a scalar on Q}S /C
In fact, we may identify

Endc(E) ={a e C:aAC A}

Hence, End¢(E) is a discrete subring of C (because it preserves a lattice) and so

must be either Z or a quadratic imaginary order. O

Remark. The ring Endc (E) acts faithfully both on H; (E(C), Z) and on Q)] /c (that
can be regarded inside Hi (E/C)). These actions provide embeddings of End¢ (E)
into My (Z) and into C, respectively.

Definition 36. We say that an elliptic curve E/C has complex multiplication or CM
if End¢ (E) is an order in a quadratic imaginary field.

Remark. Quadratic orders are uniquely determined by their discriminant. Every
discriminant can be decomposed as D = Dyc?, where Dy is a fundamental dis-
criminant: the discriminant of a maximal order (the ring of integers in a quadratic
imaginary field). A fundamental discriminant Dy must be

e of the form 2!m for m odd and square-freeand 0 < ¢t < 3, and

e Dy =0or1mod 4.

3.2 Complex multiplication by &

Let & be an order in a quadratic imaginary field K. (Sometimes we will assume
that & is the ring of integers Ok to simplify the exposition). We write D for the
discriminant of ¢ and consider the class group Cl(D) = CI(¢), which is the
group of invertible fractional ideal classes of & (the precise definitions become
somewhat more complicated if & is not a maximal order). Let k be a field with a
tixed inclusion & — k.

Definition 37. We define CM () to be the set of k-isomorphism classes of elliptic
curves E/k equipped with an isomorphism & = Endy(E) with the property that,
for every a € O (that we identify with an element in Endi(E)), the induced
morphism a*: O}, — QF . is given by a*(w) = aw.
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Remark. Given an elliptic curve E/k with CM by &, there could be two ways to
define ¢ = Endi(E) (as we can always compose with [—1]). The last condition
pins down one of the two isomorphisms.

Proposition 38. The set CM¢(0) is finite and has the same number of elements as
Cl(0).

Proof. We use the correspondence between elliptic curves E/C and lattices A in
C up to homothety. If E has CM by &, then A is a projective module over & and
there are h = |Cl()| homothety classes of such modules. O

Remark. We can use the complex uniformization of elliptic curves to describe
CMc¢(0) as the set of T € SLy(Z)\$ that satisfy a quadratic equation

at?+bt+c=0

with a, b, c coprime integers such that D = b? — 4ac (i.e., they are zeros of a prim-
itive binary quadratic form of the given discriminant D). We fix representatives
T,---, Ty of CMc(ﬁ)

Proposition 39. If E/C has CM by O, then j(E) is algebraic and generates a field of
degree < h = |Cl(0)| over Q.

Proof. The group Aut(C/Q) acts on CM¢ (). Indeed, given o € Aut(C/Q) and
¢ € Endg(E), we have ¢7 € Endg(E?). Thus, ¢ — ¢ gives an identification
Endg(E) = Endg(EY).

Therefore, Aut(C/Q) permutes the j-invariants j(11),...,j(7,) of the elliptic
curves in CM¢ (). In particular, j(E) is the zero of a polynomial of degree < h.[]

Let L be the field generated by j(71),...,j(7,) over the quadratic imaginary
field K = Frac(&). We fix an embedding L — C. By proposition 39, we obtain
that CM(0) = CM¢(0). Our next goal is to relate C1(&') and CM[ (&) (which
are finite sets of the same size) algebraically (without relying on the complex

uniformization of elliptic curves).

3.3 The action of C1(&') on CM(0)

We continue with the notation from section 3.2. Let us assume that & is a maximal

ideal for simplicity.
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Definition 40. Let a be a fractional ideal of ¢. We define
ax E =Homg(a,E).

Fix an elliptic curve E/L with CM by 0. Since E/L is an algebraic group and
End; (E) = 0, we may identify E with the functor

Homj_ai( -, E): L-Alg — 6-Mod.

Given [a] € Cl(0), we interpret Hom 4 (a, E) again as a functor L-Alg — ¢-Mod
and try to see next that it is represented by another elliptic curve in CM(&).
We may assume, up to multiplication by a scalar in &, that a is an ideal of &

(not just an integral ideal). In that case, there is a short exact sequence

0 s O s O0/a —— 0

~
et

of ¢—modules to which we can apply Hom( -, E) to obtain another short exact

sequence
0 —— Homy(60/a,E) —— Homy(0,E) —— Homg(a, E) —— 0.

We can interpret the last exact sequence as the definition of the algebraic group
Hom(a, E):

Homg (6 /a,E) —— E Homg(0,E) —— E

and
f——f(1) f—f)

allow us to identify
Homg (0 /a,E) = E[a] and Homg(0,E) =E

and so a * E = Homg (a, E) must be the (isomorphism class of the) elliptic curve
E/E[a]. That is, we obtain a short exact sequence

0 > Ela > E yaxE —— 0

and so we have an isogeny ¢q: E — a* E with Ker(¢,) = E[a]. In particular, if a
is a principal ideal generated by a« € &, then ¢, =a: E — E (and ax E = E). All
in all, we defined an action of C1(&') on CM (7).
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Working over C, the elliptic curve E/C corresponds to a lattice A giving rise to

a short exact sequence

0 > A > C » E(C) —— 0.

After applying Hom(a, - ), we obtain a short exact sequence

0 —— Homg(a,A) —— Homg(a,C) —— Homg(a, E(C)) —— 0

0 —— a A y C > (a*E)(C) ——— 0

and so a * E corresponds to C/(a"'A). In particular, the action of Cl(&) on
CMc(0) is simply transitive.

Corollary 41. The set CM[ () is a principal C1(O')—set with an action of Gal(L/K).
Proposition 42. The natural actions of Gal(L/K) and of C1(€) on CML (&) commute.

Proof. Take a € C1(0) and ¢ € Gal(L/K). We want to prove that (with the nota-
tion from before) Hom (a, E)” = Homg (a, E”). We use the short exact sequences
characterizing these algebraic groups. Namely, a * E is defined by the sequence

0 —— E|q] » E >y axE —— 0.

After applying o to it, we obtain another short exact sequence

0 —— Ela]” » E > (axE)” —— 0.

But E[a]” = E7[a] because ¢ acts trivially on K. Therefore, the last short exact

sequence is that which characterizes a * (E”) and we conclude that

(axE)” =ax(E%). O

Lemma 43. Let G be a group and let X be a principal G—set (with a left action of G). Let
xo € X. If X is also equipped with a commuting right action of another group I, there is a
homomorphism r: T — G defined as follows: for every o € T, r(0) is the unique element
of G such that

xg = r(0) * xp.
Proof. The existence and uniqueness of r(c") with the property that x = r(c) * xo
follow from the fact that X is principal as a G—set.
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To see that 7 is a group homomorphism, take o, T € I' and compute

xgt = (x§)" = (r(0) = xo)T =r(0) x x5 = r(0) * (r(7) * x0) = (r(0)r(7)) * x0.
Therefore, r(ot) = r(0)r(T). O

Remark. The homomorphism r: I' — G depends on the choice of xy € X, but
replacing xo with h * xy conjugates r by h.

Corollary 44. Let E € CM(0O). There is a homomorphism r: Gal(L/K) — Cl(0)
(independent of E) characterized by

E? =r(o) = E.

Recall that L = K(j(71),...,j(7,)) and so r is injective. In particular, L is an
abelian extension of K of degree < h. But observe that we have yet to prove that r

is surjective.

3.3.1 The effect of r on Frobenius elements

Let S be the set of prime ideals p of & = O satisfying one of the following
properties:
(1) pisramified in L/K,
(2) some of the elements j(17),...,j(7,) fails to be integral at p or
(3) the natural map {j(),...,j(m) } — O /B is not injective for some prime
ideal P of 0}, lying over p or, equivalently,

p | Nu (TG0 = () ).
k<l
Proposition 45. Let p be a prime ideal of Ok such that p ¢ S and let 0y, € Gal(L/K) be
the Frobenius element at p. Then r(oy) = p.

Proof. Let E € CM[(Ok). Recall that we have an isogeny ¢,: E — p * E, defined
over 0, with Ker(¢,) = E[p]. We consider its reduction modulo B (for a prime
of 01 lying over p), 9,: E — p * E.
* Case 1: pOx = pp with p # p. Then ¢, is an isogeny of degree p and we
claim that ¢, is (purely) inseparable. Indeed, we can choose an ideal a such
that ap = a0 for some a € Ok and p 1 N(a). Then the composition

E-2y pvE 0 qup+EXE
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is inseparable (as it induces multiplication by « on differentials) and this is
only possible if the first arrow is inseparable. On the other hand, there is a
unique inseparable isogeny of degree p (up to isomorphisms) which is the
p—th power Frobenius. Therefore, j(p * E) = j (E(p )). By the last condition
on the set S, we conclude that p x E = E%.

e Case 2: pOk = p*. We can apply the same argument as above.

* Case 3: p0Ok is a prime ideal. In that case, ¢, is the multiplication-by-p
morphism. On the other hand, E must have supersingular reduction at ‘3
and so, on E, the endomorphism [p] differs from the p?>~th power Frobenius

morphism by an isomorphism. O

3.4 Elliptic curves over finite fields

Let E be an elliptic curve over a finite field k with ¢ = p/ elements. We have a
(relative) Frobenius morphism

¢p: E— EW)

given on coordinates by ¢,(x,y) = (x7,y”). One can check that ¢ is a purely
inseparable isogeny of degree p and so admits a dual isogeny

¢ EP) — E.

Write E[p] for the kernel of the multiplication-by-p morphism [p]: E — E, re-
garded as a finite flat group scheme over k. Since [p] = ¢, o ¢, and ¢, is purely
inseparable, Ker(¢) is a connected group scheme and so E[p] can have at most p
points (over an algebraic closure k):

either E[p](k) = 0 or E[p](k) = Z/pZ.

Observe that E(*") = E and so qb{; € Endi(E). Often (more precisely, when E
is ordinary) this endomorphism (p{; is not in Z (i.e., is not multiplication by an
integer).

Theorem 46. Let E be an elliptic curve over k as above. The following conditions are
equivalent:
(1) E[p](k) = Oand [p]: E — E is purely inseparable;
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(2) Endy(E) is an order in a quaternion algebra B such that

B ®q Q = My(Qy) for all primes £ # p

and
B ®q Qp and B ®q R are division algebras.

If these conditions hold, j(E) € F .

Definition 47. We say that an elliptic curve E/k is supersingular if it satisfies the
equivalent conditions of theorem 46; otherwise, we say that E/k is ordinary.

Theorem 48. If E/k is an ordinary elliptic curve, then
(1) E[pl(k) = Z/pZ and ¢;: EW) — E is separable, and
(2) the ring End(E) is a quadratic imaginary order.

3.4.1 Reduction of elliptic curves with CM

Let & be an order in a quadratic imaginary field K and let L = K(j(11),...,j(m))
for a set of representatives 1y, ..., T, of the classes in CM¢(&'). Write k for the
residue field of L.

Proposition 49. Let E be an elliptic curve over L and let B be a prime ideal of Oy at
which E has good reduction. Write E for the reduction of E modulo 3. The canonical
morphism

End; (E) — End(E)

is injective.
Proof. If ¢ € Endp(E) lies in the kernel of the reduction, then ¢ induces the 0
morphism on E[¢"](k) for every prime ¢ # p and every n > 1. But reduction

modulo P induces an isomorphism E[¢"](L) = E[¢"](k), so ¢| p(en)(T) = 0. As the

kernel of a non-trivial isogeny is finite, this is only possible if ¢ = 0. O

Theorem 50. Let E € CM(0Ox) and let 3 be a prime ideal of Oy at which E has good
reduction. Let p (resp. p) denote the prime of Ok (resp. Z) below *B.

(1) If p splits in K, then E has ordinary reduction at *3.

(2) If p is inert or ramified in K, then the E has supersingular reduction at *B.

Proof. First suppose that p splits in K and write pOx = pp. The isogeny
¢5: E—p+E
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with kernel E[p] introduced in section 3.3 is a separable morphism modulo ‘.
Indeed, we can choose an ideal a C Ok such that ap = aOx with p )( «. Then the
composition

wFE - 5xE " aprEXE

induces a map on differentials given by a*(w) = aw, which is # 0mod . Thus,
the reduction of @5 must be separable (of degree p) and E[p](k) = Z/pZ. In
particular, the reduction E has k-rational points of order p, which means that E is
ordinary.
Conversely, suppose that E is ordinary. For every n € Z-1, consider the
restriction
End;(E) — End(E[p"](k)).

We know that E[p"](k) = Z/p"Z and taking the projective limit over n we obtain

an injective morphism
Endz(E) < End(T,(E)(k)) 2 End(Z,) = Z,

(the injectivity follows because a non-trivial isogeny cannot have infinitely many
points in the kernel). Therefore, we obtain

Ok = El’ldL(E) — Endk(f) — Zp

and this is only possible if p splits in K. O

3.5 Class field theory

Let K be a number field with ring of integers 0. Let ¢ be an ideal of Ox. We define
I(c) to be the set of fractional ideals I of Ok such that (I,¢) = 1 and P(c) to be the
subset of principal fractional ideals («) of Ok such that « = 1mod .

Main theorem of class field theory. There is an abelian extension H. of K equipped
with an isomorphism

rec = rec.: I(¢)/P(¢) — Gal(H./K)

satisfying the following properties:
(1) the extension H./K is unramified away from ¢, and
(2) rec(p) = oy for all prime ideals p C Oy such that p J( ¢ (where o, denotes the
Frobenius at p).
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The abelian extension H,, called the ray class field of K of conductor ¢, is uniquely

determined by these properties.

Remark. When ¢ = 1, the field H = H is the Hilbert class field of K: the maximal
unramified abelian extension of K, which satisfies that Gal(H/K) = CI(K).

Theorem 51. If K is a quadratic imaginary field, the extension L = K(j(E1),...,j(Ep))
generated by the j—invariants of the elliptic curves { E1,...,E, } = CMc¢(0x) is the
Hilbert class field of K.

Proof. Recall that we constructed
r: Gal(L/K) — Cl(Ok)

characterized by r(o,) = p for all prime ideals p of Ok outside a finite set S.
Therefore, r must be the inverse of rec. l

3.6 Galois action on torsion points

Let Ok be the ring of integers of a quadratic imaginary field K and consider
CMc(0k) = { Ey,...,E; }. We saw that the values j(E;),...,j(E;) are defined
over the Hilbert class field H of K. Thus, we can fix E € CMp/(0x). Our next goal
is to study the action of Gal(H/H) on the torsion points of E.

Let ¢ be an ideal of 0. Then E[c|(H) is a free (Ok /c)-module of rank 1 with
an action of Gal(H/H). We write

pEc: Gal(H/H) — Autg, /(E[c|(H))

for the corresponding representation.

Corollary 52. In the situation above, the representation pg . has abelian image.

Proof. We have
Autg, . (E[c](H)) = (0k/¢)*,

which is clearly abelian. O]
Proposition 53. The field L. cut out by pg . is the ray class field H. of conductor .

Proof. We have a short exact sequence

1 —— Gal(H./H) —— Gal(H,/K) —— Gal(H/K) —— 1
112 112 12
1—— P(1)/P(¢c) —— I(¢c)/P(¢c) —— I(1)/P(1) —— 1
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and so, by looking at generators,
Gal(H./H) = P(1)/P(c) = (Ox/c)*/ O%.

Define CMy_( 0k, ¢) to be the set of isomorphism classes of pairs (E, P), where
E is an elliptic curve defined over L, with CM by Ok and P is a generator of
E[c](L;). This set is endowed with an action of I(c)/P(c) given by

ax (E,P) = (axE, ¢q(P)),

where ¢q: E — a* E is the canonical isogeny associated with a as described in
section 3.3. The actions of I(¢)/P(c) and of Gal(H/H) on CM (0, ¢) commute.

Therefore, by lemma 43, we obtain an isomorphism
r: Gal(L./K) — I(c)/P(c).
On principal ideals, we have
r~!(a0k)(E,P) = (E, ¢a(P)) = (E,aP).

By a density argument, we see that r must be the inverse of the reciprocity map
rec,. In conclusion, L, = H, by the main theorem of class field theory. [

Corollary 54. The values j(t1),...,]j(T),) together with the coordinates of all the torsion
points of Ey, . .., Ej generate the maximal abelian extension of K.

3.7 Integrality

Let K be a finite extension of Q, and let E be an elliptic curve over K. Let Ok be the
ring of integers of K and let p denote its maximal ideal. By hypothesis, j(E) € K.
Suppose that ord, (j(E)) < 0. Recall that the g—expansion of j is of the form

) 1
i(q) = §(1 + 7449 + 19688407 + - ) € Z((9)"
and so we can express

q:%<1+744q+---) :%(1+744%(1+744q+---)+---)
1

1 1 .
:7_|_a2j_2_|_g3]__3+...ez[[] 1]]
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Write jg = j(E) and

q 1+a1+a1—|- €p
E=_—Ta25 ta3z+ - €p,
-

which is the Tate period of E/K. The ring homomorphism

®q:: Z((q9)) — K
q—4qE

induces an isomorphism E; ®z,),o, K = E (i.e., allows us to view E in terms

Py
of the Tate curve E,). In particular, E(K) = K" /q%. If E has split multiplicative

reduction, such isomorphism is even defined over K.

Theorem 55. In the situation above, consider a prime number £. If j(E) ¢ Ok, the
representation
Gal(K/K) < Autgz,(T,(E)) = GLy(Z,)

is not abelian.

Proof. We may assume, up to replacing K with a quadratic extension, that the

isomorphism E(K) = K" /g% is compatible with the action of Gal(K/K). Then
E[C")(R) = (R*/q2) (") = { Gug? " 1 a,b € 2/0°7.).

Therefore, the field generated by the ¢"—torsion points of E is K({yn, q}:/ ), which

is not abelian over K if n > 0 (e.g., using Kummer theory). O

Corollary 56. Let K be a quadratic imaginary field and let H be its Hilbert class field. If
E is an elliptic curve with CM by Ok, then j(E) € Oy.

Proof. Suppose that there exists a prime ideal p of &y at which j(E) is not integral.
We can take the base change of E from H to Hy and apply the previous theorem to
conclude that the image of the decomposition group at p under the representation
Gal(H/H) — T,(E)(H) is not abelian, thus contradicting corollary 52. O

3.8 The class number 1 problem (revisited)

Theorem 57. Let D € Z _ be a fundamental discriminant and let K = Q(+/D). If the
class number of Kis h = 1, then

(237) <z
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and, in fact, this value is a perfect cube.

Proof. Let E be the elliptic curve over C corresponding to the point

D D

One checks that g = ¢?™7 € R and so j(q) € R. Therefore, j(E) € 6xNR = Z.
The fact that this value is a perfect cube can be proved using the theory of modular
curves of higher levels. O

Definition 58. Let E be an elliptic curve over a field L and let N € Z>. A full
level N structure on E is a basis (Py, P») of E[N|(L) as a (Z/NZ)-module.

Remark. Using the Weil pairing ( -, - ) of E, the level structure (P, P») provides a
primitive N-th root of unity (Py, P») in L.

Fix a primitive N-th root of unity {y € Q. Consider the functor
I['(N): Q({n)-Alg — Set
that sends a Q({y)-algebra L to the set of L-isomorphism classes (E, Py, P,), where

E/L is an elliptic curve with full level N structure (Py, P;) such that (P, P,) = (.

Proposition 59. If N > 2, the functor T (N) from the previous paragraph is represented
by a smooth affine curve Y (N) over Q({n) that is geometrically connected.

We will prove that we can express Spec(Q[;j'/%]) as a quotient of Y(3) and that
will allow us to conclude the proof of theorem 57.

3.9 Modular curves

Let N € Z-; and fix a primitive N-th root { of 1. The modular curve Y(N)
(of full level N) is an affine curve over Q({y) whose L-rational points, for an
extension L/Q({y), correspond to the L-isomorphism classes of triples (E, Py, P»),
where E is an elliptic curve over L and Py, P, form a basis of E[N](L) and satisfy
that (Py, P,) = {N.

Proposition 60. If N > 3, the map
(E, Pl/ pz) — E
defines a Galois covering Y (N) — Y (1) with Galois group PSL,(Z/NZ.).
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Proof. An automorphism of Y(N) over Y (1) must be of the form
(E, Py, Ps) + (E,aP; + bPy, cP; + dP,)

for some

a b
(c d) € SL,(Z/NZ)

because
(aPy + bP,, cPy +dPy) = (P;, P)™ ¢ = 7.

In fact, since (E, Py, P») = (E, —P;, —P;) via the automorphism [—1], we obtain an
isomorphism Aut(Y(N)/Y(1)) — SLo(Z/NZ)/{£1} = PSLy(Z/NZ). O

From now on, assume for simplicity that N is prime. We will see that the base
change Y(N)g — Y(1)g has the same Galois group.
The maximal subgroups of PSL,(Z/NZ) are:
¢ the exceptional subgroups Ay, S4 and As,
¢ the Borel subgroup of upper triangular matrices and
e the normalizer H of a Cartan subgroup C, which satisfies that [H : C] = 2
and can be

— either the normalizer

=0 )1 o)

of the split Cartan subgroup

{62}

— or the normalizer H of the non-split Cartan subgroup C = IF, inside
GLy(Z/NZ).
Now we have to produce elliptic curves E/Q with automorphisms of E[N](Q)
not contained in any of the proper subgroups of PSL,(Z/NZ).

Let E be a Tate elliptic curve defined over a number field L, with j(E) & 0L,
for some prime B of 7. If N { —ordy(j(E)) = ordy(qg), then the image of the
representation

PEN: Gal(f/L) — SLQ(Z/NZ)
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given by E[N](L) contains an element of order N, namely

{@N — CN,

1/N 1/N
qE/ '—>CN‘7E/ .

Therefore, (at least for N > 5) Gal(Y(N)/Y(1)) cannot be contained in an excep-
tional group or in the normalizer of a Cartan subgroup because the orders of those
groups are not divisible by N.

To rule out the Borel, let E be an elliptic curve with CM by Ok with N inert in
K. We may assume that E is defined over the Hilbert class field H of K. By class
field theory, pg n(Gal(H/H)) is contained in a non-split Cartan subgroup IF N2 (@s
E[N](H) is a vector space over Ox /N Oy = Fyp) and cannot be contained in the
Borel subgroup.

Alternatively, we can work over C. The points of Y(N)¢ correspond to the
quotient I'(N)\ $ via

T (C/(z @ZT),%,%)

and then the covering is given by the natural projection I'(N)\$ — T'(1)\$.

Given a subgroup H of PSL,(Z/NZ), we have the quotient Yy (N) = Y(N)/H
attached to H. The element j(E) of Y(1) lifts to an L-rational point on Yy (N) if and
only if the representation pg n: Gal(L/L) — SL,(Z/NZ) has image contained in
a conjugate of H.

For example, for N = 3, the group PSL,(Z/32Z) can be identified with A4
(viewing the elements of the group as permutations on P!(IF3)). Consider its
2-Sylow subgroup H = Z /27 x Z/2Z, so that Yy (3) is a cyclic Galois cover of
Y (1) with Galois group Z/3Z.

Proposition 61. In the situation from the previous paragraph,

Y1(3) = Spec(Q(23)(j'/?)).

Proof. By Kummer theory, the function field F of Yy (3) has to be of the form
Q(23)(j)(?1/3) for some element ? € Q(Z3)(j). But this extension is ramified
precisely at j = co and j = 0. That is, the polynomial X® — ? has zeros or poles
only at j = 0 and j = co. Thus, at least over C we see that Fc = C(j)(j/3). A
descent argument implies that F = Q(Z3)(j1/3). O

Corollary 62. Let E/L be an elliptic curve. The value j(E) is a cube in L if and only if
oe3(Gal(L/L)) contains no element of order 3.
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Proof of theorem 57 (continuation). If E/C has CM by a maximal order 0k with class
number /(0x) = 1 and discriminant D, then D must be prime.

e If3| D, then D = —3and j(E) = 0.

e If 31 D, then 3 is either split or inert in K and pr3(Gg) is contained in the

normalizer of a Cartan subgroup, either split or inert. That is,

0e3(Gg) C {{il} % <(Z/3Z)X X (Z/3Z)X> if 3 splits,
£3(Go) C

{£1} x Fg if 3 is inert.

The orders of these groups are not divisible by 3.
Hence j(E) is a cube by corollary 62. O

Remark. The condition that D is a fundamental discriminant is important. For

example, for D = —12, we have the order

1+\/—_3}

ﬁ:ﬁD:Z[\/—_s]gz[ :

and j(1/—3) = 24353 fails to be a cube.

Definition 63. We define Y, (N) to be the modular curve Yy (N) for the normal-
izer H of a non-split Cartan subgroup of SL,(Z/NZ).

Theorem 64. Let D be a fundamental discriminant of class number 1. If D > 4N, then

=59

lifts to a rational point on Y ;(N)/Q.

Therefore, one can study the class number 1 problem by classifying the integral
points on X (N). This has been done

¢ for N = 24 by Heegner and Stark;

¢ for N =7 and 9 by Kenku;

¢ for N = 5by L. Chen (after a suggestion of Siegel);

e for N = 16,20 and 21 by Baran;

e for N = 13 by Balakrishnan, Dogra, Miiller, Tuitman and Vonk.

More generally, for an elliptic curve E with CM by an order & = 0Op, the
j-invariant j(E) lifts to Yo(£) = Yporel (£) if £ splits as a product AA with A # A in
K = Q(+/D): we obtain a point (E, E[A]) € Yo(¢)(H), where H is the Hilbert class
field of K. Such points are called Heegner points on Yy(¢) and they can be used to
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obtain rational points on elliptic curves. Moreover, on Yy(¢) there are interesting

units such as
A(z)

uN(Z) = A(EZ)

whose values at Heegner points give units in &y[1//]*.

3.10 Factorizations of singular moduli

Let D; and D, be two distinct (negative) fundamental discriminants. Define

J(D1,D2) = [T (i(w)—j(w)),
disc(t)=D1
disc(m)=D,
where the product is over the points 71, T» € SLy(Z)\$ such that disc(t) = Dy
and disc(1) = D,. This quantity is in fact in Z because of its Galois invariance.

Theorem 65 (Gross—Zagier). Let { be a prime number. If { | [(Dy, D,), then

D D,
(1) (7) 41+ (7) and
(2) ¢ divides a positive integer of the form

DD, — x?

1 with x € Z.

Remark. The prime numbers appearing in the second column of table 1 are all = 0
or 2 mod 3. We can justify that fact using the first part of the theorem as follows:

Wwe Ccan express

j(tp) = j(p) = j<3 +2\/§)

and this difference can only be divisible by the primes that are either inert or
ramified in Q(1/3). One can also check that the bound on the prime numbers in
terms of the discriminant given by the second part of the theorem is satisfied.

Proof. Fori = 1or 2,let Op. be the (maximal) order of discriminant D; and let H;
be the corresponding Hilbert class field. Since ¢ | J(D1, D,), we can pick a prime
ideal A of O, lying over £ and such that A | (j(71) — j(12)) for some 7 and 1
appearing in the definition of J(D1, D;). Let E1/On, and E,/ O, be the elliptic
curves associated with 71 and 1, respectively. Observe that both E; and E; have
good reduction at A and let E; denote the reduction of E; modulo A.

(1) Suppose, for the sake of contradiction, that

(%=1
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By theorem 50, E; has ordinary reduction at A and so
EndE (El) = End@(El) = ﬁDl .

But, as j(11) = j(12) mod A, we deduce that E; = E,. Therefore, we obtain
an inclusion
ﬁDz = End@(Ez) — EndE(Ez) = ﬁpl,

which is impossible because D; # D, and both are fundamental discrimin-
ants.

In conclusion, both E; and E; must have supersingular reduction at every
prime dividing J(D;, D3).

We argue again using how endomorphisms of CM elliptic curves behave
under reductions. By the arguments in the previous part, there exist an order

R in a quaternion algebra ramified at £ and co (isomorphic to Endg, (E;) for
i = 1 and 2) and inclusions

ﬁpl — R < ﬁDz

(cf. proposition 49). Now we can find conditions that such an order R must
satisfy in order to contain both &p, and &p,. The theorem will follow from

the next proposition. O

Proposition 66. Let R be an order in a quaternion algebra ramified exactly at ¢ and oo.
If R contains both Op, and Op,, then { divides

DD, — x2

1 >0 forsomex € Z.

Proof. Let B be the quaternion algebra ramified exactly at £ and at co. That is,

B ®q Qp = M,(Qp) for every prime p # £,

B®qgR = H and B ®q Qy is a division algebra over Q,. We may assume that R is

its maximal order. Consider the pairing

(1)

(x,y) = Tr(xy),

which satisfies that

(-, -) isbilinear and positive definite and
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(2) if e1, ep,e3, €4 is a Z-basis of R, then
det(R) = det({e; e;)) = £*.

Let ¢;: Op, — R denote the given inclusions and write 6; = ¢1(v/D;) and
92 = ¢2(\/D3). Consider the lattice A = Z & Z61 & Z6, & Z616, inside R. We
have det(A) = [R : AJ>det(R). The pairing (-, -) on A is determined by the

pairing matrix
(1,1) (1,61) (1,67) (1,6167)

(61,1)  (61,61)  (01,02)  (01,6102)
(62,1)  (02,61)  (02,00)  (02,610)

(6162,1) (8162,61) (6162,62) (6162, 6167)
2 0 0 X
0 —2D1 —X 0
“lo —x —2p, o0 |
x 0 0 2D;D,

where we defined x = Tr(616,). Hence,
det(A) = det(M) = (4D1D, — x?)?.

On the other hand, to obtain the determinant of A = ¢, (Op,)92(0Op,) we observe
that A is generated in the same way as A but replacing D; with (1 + D;)/2. In
particular, [A : A] = 16 and so

det(A) = (DlD#)

All in all,

D1D2 — X2>2

(* = det(R) | det(A) = ( 1

The fact that D; D, — x? is positive follows from Cauchy-Schwartz’s inequality:

(61,00)% < (81,61) (82, 87). O
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4 Complex multiplication on Shimura curves

The course will now shift to more analytic aspects of the theory. Next, we are
going to study p-adic variants of singular moduli based on CM points on Shimura

curves.

4.1 Quaternion algebras

Definition 67. A quaternion algebra over a field k is a central simple algebra of

dimension 4 over k.

Example 68. The algebra of matrices My (k) is a quaternion algebra. In fact, for
every quaternion algebra B over k, B ®; k = M (k) (as algebras over the algebraic
closure k).

Example 69. Over Q, we have Hamilton’s quaternions H = Q(i, j, k), where
?=j=k=-landij=k= —ji,jk=i= —kjand ki = j = —ik.

Let B be a quaternion algebra over k and take « € B\ k. Then K = k(a) is a
quadratic algebra over k. If K is a quadratic field extension of k, we can regard
B as a right K-module with a left action of B itself and in this way we obtain an
embedding of B in M;(K). Moreover, we can pick j € B such that B = K & Kj
(eigenspace decomposition for the B-action) with 6 = j* € k and ja = wj. We
sometimes write B = (K, J), as this quaternion algebra is determined by K and the
image of 4 in k™ / Ng /¢ (K*).

4.1.1 Classification over Q

To classify quaternion algebras over Q, we first look at the local situation.
(1) Over R, there are only two (isomorphism classes of) quaternion algebras:
M;(R) and H = (C, —1).
(2) Similarly, for a prime number /¢, there are two (isomorphism classes of)
quaternion algebras over Q,: M,(Qy) and a division algebra D over Q.

Definition 70. We say that a quaternion algebra B over Q is split at a place v if
B ®q Qy = M (Qy); otherwise, we say that B is ramified at v.

Theorem 71. Let B be a quaternion algebra over Q and let Ram(B) be the set of places
of Q at which B becomes a division algebra (after base change). The set Ram(B) is finite
with even cardinality and determines B up to isomorphism. Conversely, for every finite set
S of places of Q with even cardinality, there exists a quaternion algebra Bg over Q such
that Ram(Bg) = S.

36



Example 72. Let S = { o0, p }. Then we can construct Bg = Ende (E) ®zQ for a
supersingular elliptic curve E over the finite field IF ..

Remark. The Brauer group of a field k classifies the central simple algebras over k
and the 2-torsion corresponds to (isomorphism classes of) quaternion algebras.

Theorem 71 can be reinterpreted as the short exact sequence

0 —— Br(Q), —— @Br(Qy), —= Z/2Z —— 0.
0
Definition 73. A quaternion algebra B over Q is called definite if co € Ram(B);
otherwise, B is called indefinite.

Definition 74. An order in a quaternion algebra B over Q is a subring R of B which
is a free Z-module of rank 4.

Example 75.
(1) The ring M (Z) (or a conjugate of it) is an order in M, (Q). Similarly, given
N ¢ 221,
a b
MO(N):{( d):a,b,deZandceNZ}
c
is an order in M (Q).

(2) In the hamiltonian quaternion algebra B = Q(i, j, k), we have orders such as
Z[i,j,k] and Z[i,j, k, (1 + i+ j + k) /2] (maximal).

More generally, we are going to use Z[N~!]-orders for N € Z>1 (i.e., subrings
that are free Z[N~!]-modules of rank 4).

Lemma 76. Let R be an order in a quaternion algebra B over Q. If B is definite, then R*
is finite.

Proof. The group R* is a discrete subgroup of (B ®g R);, which is a compact
group. Therefore, R* must be finite. O

Remark. If B is indefinite, we can just say that R* is a discrete subgroup of GL,(RR),

but not finite in general.
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4.2 Shimura curves

Let S be a finite set of places of Q. Suppose that S has an odd number of elements
and that co € S. There is no quaternion algebra ramified exactly at S. However,
we can pick v € S and get a quaternion algebra Bg\ (). Let Rg, be a maximal

Z [%] —order in Bg () if v is finite or a maximal Z-order in Bg) (o} if v = c0. Define

Tso=(Ry,); = {0 €R}, am=1}.

We can fix an isomorphism i, : Bg\ ) ®q Qv — M2(Qy) that allows us to regard
I'sy, € SLp(Qy). In particular, I's o € SL(IR) acts discretely on the upper half-
plane ) by Mébius transformations. Analogously, for every p € S\ {0 }, T,
acts discretely on $), = P}(C,) \ P1(Q,) and it turns out that I's ,\ ), is a rigid
analytic curve.

Theorem 77 (Cerednik-Drinfeld). Let S be a finite set of places of Q of odd cardinality
and containing co. There is a curve Xg over Q satisfying that

(1) Xs(C) = 1“5,00\55 and

(2) Xs(Cp) =T, \$Hyp forevery p € S\ {0 }.

Remark. If S = {00 }, then I's oo = SL(Z) and so we obtain a generalization of
the modular curve (of level 1).

4.3 Uniformization of Shimura curves

Keep the notation from section 4.2. We want to make some comments on the idea
of the proof of theorem 77.

Observe that there is an equivalence between elliptic curves E over Q and
abelian surfaces A endowed with a morphism ¢: My(Z) — End(A) given by

E—+EXE and A~ (1 0>A.
00
We can use this equivalence to generalize the moduli interpretation of modular
curves as follows: given a field L, we define Xs(L) to be the set of isomorphism
classes of abelian surfaces A/L endowed with a morphism : Rg . — End(A).
We would like to understand Xg over Q, when p € S\ { o0 }.

Fact 78. If A is an abelian surface over F, with quaternionic multiplication by Rg «,
then A is isomorphic to a product E x E, where E is a supersingular elliptic curve over
. Moreover, Q ®z Endg, (a) is contained in the centralizer of Bs\ (o) in My (Bpeo).
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4.4 The p-adic upper half-plane

Consider the p-adic upper half-plane #, = $, = P'(C,) \ P}(Q,). More gener-
ally, we may view it as a functor that sends a complete field extension L of Q, to
Hp(L) =P(L) \ P1(Qp). (Most of the time, it will suffice to work with L = Qur,
the completion of the maximal unramified extension of Qy.) It turns out that H is
represented by a rigid analytic space endowed with an action of SL,(Q,). Let us
try to understand its affinoids.

4.4.1 Some basic subspaces

Observe that we can write points as follows:
PY(C,) = ]Pl(ﬁcp) ={z=[z1,22] 1 21,22 € O¢, and (z1,22) = 1}.
Thus, we can consider the reduction modulo p
red: PY(C,) — P'(F,).
The region
A* =red ' (P'(F,) \ P (FF,))

is called the standard affinoid of $,. We get an induced action of SL,(Z,) on A* and
we find other affinoids as the translates of .A* by elements of SL,(Q,). However,
that will not be enough to see all affinoids.

We will need to use the following annuli. For t € {0,1,...,p —1}, set

Wy={zeCp:pl<|z—t, <1}

Similarly, define
Weo={z€Cp:1<z], <p}.

Then we obtain a wide open subspace W* = A*UWpU---UW), 1 U W.

4.4.2 The action of PGL,(Q) on A* and W*

This action has the following properties:
(1) Stabpgr,(q,)(A") = PGL2(Z));
(2) PGL2(Z)) permutes the annuli (W) ep1 (g, by acting in the obvious way
on the subindices, and
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(3) we obtain a covering

4.4.3 The Bruhat-Tits tree

Definition 79. The Bruhat-Tits tree T of PGLy(Qp) is the graph whose vertices
are in bijection with similarity classes of Z,-lattices in Q% and whose edges join
(vertices corresponding to) lattices A and A, such that

pA2 © A1 C Aa.
Write 7 for the set of vertices of 7 and 7 for the set of (unoriented) edges of 7.

Let us describe T locally. Consider the standard vertex v* = [Z%]. The edges
containing v* can be labelled as ey, . . ., €, 1, €x and one can define an action of the
group PGL,(Q,) acts on 7 with the following properties:

(1) Stabpgy,(q,)(v*) = PGL2(Zy);

(2) PGL,(Z,) permutes (et)te]Pl(]Fp) by acting on the subindices in the obvious
way, and

3) To={yv*:v € PGLy(Qp) } and T1 = { e : v € PGL2(Qp), t € P(FFp) }.

Proposition 80. There is a unique map
riHy, =T,

called the reduction map, with the following properties: for every z € Hp,
(1) r(z) = v* ifand only if z € A%,
(2) r(z) = ejifand only if z € W; (here, j € P1(IF,)), and
(3) r(vz) = yr(z) for all ¥ € PGLy(Qy).

Definition 81. A subgraph X of 7T is called closed if, for every edge (v1,v2) in %,
the vertices v; and v, are also in X.

Definition 82. An affinoid subset of H, is a subset of the form r~1(X) for some
finite closed subgraph X of 7.

Remark. These affinoids are actually the ones that one gets on the upper half-plane
over @;}r (there are more if one adds ramification).
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4.4.4 Rigid analytic and meromorphic functions

Definition 83. A function f: H, — C, is rigid analytic if, for every affinoid A of
H p, the restriction f| 4 is a uniform limit of rational functions with poles only in

PL(C,) \ A.

Definition 84. The distance between two points x = [x1,xp] and y = [y1,y2] of
Pl(C,) is
X1 X2
det ( " y2>

Remark. The action of GL,(Z,) preserves distances.

d(x,y) =

p

For z € Hp, we have
d(z,P1(Q,)) = min{d(zt) : t € P'(Q,) } > 0.
We define for each N € Z the affinoid
HiN ={z€Hy:d(z,P Q) >p N}

This corresponds to the part of 7 that is at distance < N (edges) from v*. It is easy
to see that
<N
N>1

Each ’H?N is obtained by removing (p + 1)pN~! residue discs of radius p~N
centred at the points of P1(Z/pNZ).

Since the affinoids ’HEN for N € Z> form an admissible covering of H,, we
can rephrase the definition of rigid analytic functions on H, using only these
affinoids (cf. definition 83).

Definition 85. A rigid meromorphic function on ‘H, is a quotient of rigid analytic
functions on H .

Our main goal now is to produce I'-invariant rigid analytic (or meromorphic)
functions, where I' = I's , = (Rg p)l as in section 4.2. To simplify the notation, we
also write R = Rg , and B = Bg, () (recall that R is the maximal Z[p~1]-order in
B). Keep that notation for the following sections.
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4.4.5 The action of I' on Hp

Let v be a vertex of 7. The “vertex stabilizer”
Ry={x€R:xv=0v}U{0}

is a maximal Z-order in R, as it is formed of those elements that preserve a lattice.
But recall that Bg, (,,) is a definite quaternion algebra (i.e., Bg\ (,; ®q R = H). A
consequence of this will be:

Lemma 86. Let v € Ty. The stabilizer Stabr(v) is a finite set.

Proof. Tt is easy to see that Stabr(v) = (R} );. But R, is a maximal Z-order in the

quaternion algebra B and so lemma 76 implies the result. O

Lemma 87. Let Ay and A; be two affinoids in H,. The set
{reliy AN A #0}
is finite.

Proof. Let G1 and G, be the two finite subgraphs of 7 corresponding to .A; and A,
(i-e., r(A;) = G; fori =1 or 2). We can express

{yelir AN #0={reT:7G1NG# D}
= U {rer:ra=n}

v1€G1N7y
Uzegzﬂ'ﬁ)

But each of the latter sets (for v1 and v,) is finite. The result follows from this
because G; x G» is also finite. O
4.4.6 The Weil symbol

Given D € DiVO(]Pl(Cp)), we can take a rational function fp satisfying that
div(fp) = D; this fp is unique up to multiplication by constants.

Definition 88. The Weil symbol attached to two divisors Dy, D, € Div?(P1(C,))
with disjoint supports is
[D1; D3] = fp,(D2),

where functions on P! (C,) are extended to DivY (P! (Cp)) by multiplicativity.
Proposition 89. The Weil symbol satisfies the following properties:
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(1) It is bilinear: for every Dy, D, D3 € Div® (PY(Cp)),
[D1 + Dy; D3] = [D1; D] - [Do; D3]

and
[D1; Dy + D3] = [Dy; D3] - [Dy; D).

(2) It is symmetric: for every Dy, D, € DivO(IPY(C,)),
[D1; Dy) = [Dy; D1]  (Weil reciprocity).
(3) It is SLy(Qy)—equivariant: for every D1, D, € DivP(IPY(C,)) and v € SL»(Q,),
[YD1;vDa] = [Dy; Dol

(4) For (distinct) points x1,X2,Y1,Y2 € ]Pl(Cp),

—(x2); — _ i zy)(xe =y cross-ratio
[(x1) = (x2); (y1) = (y2)] = 1=t —y1) tio).

Lemma 90. Let D1, D, € Div?(PY(C,)) and let N € Z1. If thereis t € P1(Q,) such
that d(x,t) < p=2N for all x € Supp(D,) and d(y,t) > p~N for all y € Supp(D>),
then

[D1;Da] 1], < pN.

Proof. Since SLy(Z,) acts transitively on IP!(Q,) and preserves distances, we may
assume that + = 0. Moreover, by bilinearity, we may assume that D; = (x1) — (x2)

and D; = (y1) — (y2). In this simplified situation,

[Dy; Ds] = (31 = y1)(x2 = y2) =1 mod pV
(x1 = y2)(x2 —y1)
by the conditions on the valuations of the x; and the y;. [

Corollary 91. Let Dy, D, € Div(H,). The infinite product

[D1; Dar = [ [[D1; D]
yerl

converges absolutely.

Proof. Choose N € Z 1 large enough so that Supp(D;) and Supp(D,) are both in
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H;N. By lemma 87,
’yHEN N H;ZN =@ for all but finitely many € T

For such v, the connected space 'yH;N must be contained in one of the residue
discs of radius p~2N excluded in H;*", which implies that there is t, € P'(Q))
(a “centre” of such disc) with the property that

d(yz,ty) <p N and d(zt,) >p N
forallz € ’H;N . In particular,
d(z,t,) > p~N forall z € Supp(D;)

and
d(z,t,) < p 2N forall z € Supp(yDa).

Therefore, we can apply lemma 90 to D; and YD, using t, and deduce that
[Dl; ’)/Dz] =1 mod PNﬁC,,-

Since these congruences hold for all but finitely many € T, the product be-
comes finite modulo pN. All in all, [Dy; D;|r converges absolutely in the p-adic
topology. O

Definition 92. Consider Dy, D, € DiVO(HP) that have supports with disjoint I'-
orbits. The I'-Weil symbol attached to Dy and D; is the value [Dy; D1 defined in
corollary 91.

4.4.7 The p-adic period pairing
Given 1,72 € T', we define
(11,72) = [(Mm21) = (21); (1222) — (22)]1,

where the “base points” z1,z, € H, are chosen arbitrarily.

Proposition 93. Let 1,2 € I. The value (7y1,y2) is independent of the choice of zq
and z».
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Proof. Take two points z,z' € H, and let D € Div’(H,) and v € T. By the
bilinearity and the I'-invariance of the I'-Weil symbol,

[(v2) = @:Dlr _ [(72) = (@)D _ [(0) = ()P _,
(v#)— @D~ 1@ -EiDr & - @)Dk

Applying this result twice concludes the proof. O
Proposition 94. The period pairing (-, - ) takes values in Q.

Proof. We can embed B ®qg Q, into M>(Qy) and so I' into SL,(Q,). For every
71,72 € I'and every ¢ € Aut(C,/Qp),

(11,72)7 = [n(27) = (20);72(23) = (23)Ir = (71, 72)
by proposition 93. O
Proposition 95. The period pairing ( -, - ) is a homomorphism in each variable.

Proof. Take 1,72,73 € I'. Let z,z' € H,. We can compute

(M2, 73) = [(11722) — (2); (132") — (Z)]r
= [(11722) — (122); (732) = (Z)]r - [(722) — (2); (732") — (2)]r
= (711,73) - {(72,73)

and similarly for the second variable. O
Allinall, (-, -) induces a symmetric bilinear pairing
(-, ): rab » rab —HQF)’(
Theorem 96. The function
—vp((+, )): TP xT® — 7Z
modulo torsion is positive definite in the sense that, for every v € T,

vp({7,7)) <0

with equality if and only if -y is in the torsion subgroup of T2,
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Corollary 97. The period pairing (-, - ) induces a map j: T — Hom(I', Q) such that
the kernel of
vp(j(+)): T® — Hom(T, Z)

is precisely the torsion subgroup of T2,

We will see that the quotient Hom(T',Q;)/j(I') can be identified with Js(Q,),
where Js = Jac(I'\'Hp).

4.4.8 p-adic 6—functions

Next we would like to produce rigid meromorphic functions on I'\’H,, having
prescribed zeros and poles given by A € DiVO(F\’Hp). To do that, take a lift
D € Div?(H,) of A.

Definition 98. The p—adic 0—function associated with D is the function

where 17 € H,, is an arbitrary base point.

Proposition 99. Let D € Divo(’Hp).
(1) The function 0p is a rigid meromorphic function on H,.
(2) The function 0p is I-invariant up to multiplication by scalars, in the sense that

there exists cp: I — C with the property that
0p(vz) = cp(v) -Op(z) forally € Tandz € Hp.

Proof. Using the properties of the '-Weil symbol, we can compute

0p(7z) = [(v2) = (1); Dlr = [(z) — (v"'1); Dlr
= [(z) = 0 Dlr - [(n) = (v"'n); Plr = 0p(2) - [(v7) — (1); Dlr

and so we can define cp(y) = [(7%) — (n); D]r. Moreover, this expression does
not depend on the choice of 7 € H,. O

Definition 100. Let D € Div’(#,). The function cp: I’ — C, defined by propos-
ition 99 is called the factor of automorphy associated with 0p.

Theorem 101. Let D € Div’(H,) and let A € Div(T'\'H,,) be its image. If the factor
of automorphy cp belongs to j(T'), where j is the map from corollary 97 induced by the
period pairing, then there exists a rigid meromorphic function Fo: T\H, — P*(C,) such
that div(Fp) = A.
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Proof. Since cp € j(I'), there exists a € T such that

cp(y) = (v,a) = [(9m) — (n); (an") = (")]r-

After replacing D with D — ((an’) — (1’)) (which gives another lift of A), we may
assume that cp(y) = 1for all v € T. But in that case the function 6p is [-invariant
and so descends to a function on I'\’H, that we call Fy. By the definition of

Fa(z) = [(2) = (1); Dlr
as an infinite product, one checks that div(Fa) = A. O

In general, for D € Div’(H,) lifting A € Div’(T\H,), the image of cp in
Hom(T',C};)/j(I') encodes the image of the divisor A in the jacobian Js(C)) (where
Js = ]ac(T\Hp)).

4.4.9 Cohomological formulation

Let .#* denote the multiplicative group of non-zero rigid meromorphic functions
on H,. Observe that .Z * is a '-module with the action given by

(vf)(z) = f(v '2).

Given D € Div’(H,), we defined 6p € H(T, .2/ C, ). Taking cohomology of
the short exact sequence

0 — C) — A" — M*/C; — 0,
we obtain an exact sequence
0 — C; — HO(F,//{X) — HO(F,///X/C;) — Hl(l",C;) :Hom(l",C;)

The automorphy factor cp represents the obstruction to lifting 6p to an element in
HY(T,.2").
4.5 CM points on X

Let S and Xg be as in theorem 77. For every field L/Q, the points in Xs(L)
correspond to isomorphism classes of abelian surfaces A over L endowed with a
morphism 1: R < End(A), where Re is the maximal order in Bg) {c)-
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Definition 102. A quaternionic abelian surface A is called special if
EndR o (A) 7'é Z.

Theorem 103. Let A be an abelian surface defined over a field L of characteristic 0
endowed with an embedding 1: Reo — End(A). If E = Endr_(A) # Z, then E is an
order in a quadratic imaginary field K in which all places ¢ € S are non-split (i.e., the
discriminant D of K satisfies that

(9) £1  ifCisfinite
14
and D < 0 for the condition at o).

Sketch of the proof. To shorten notation, write My = End(A) and M = My ®z Q.
The algebra M contains Bg\ (o} ®q K, where K = Endg,(A) ®z Q and so we
deduce that dimg (M) > 4 dimg(K). Since M acts faithfully on H; (A(C), Q) and
M preserves a lattice Hi(A(C), Z), we have

rankZ(Mo) = dlmQ(M) = dlm]R(M XQ ]R)

But M ®q R can be embedded in M, (C) via its action on Q! (A/C). Therefore,
dimg (M ®g R) < 8 and dimg(K) < 2, which implies that K is a quadratic field.
Finally, from

Mz (K ®q R) & Bg\ (o0} ®@ K®Q R = M ®g R < M(C)

we deduce that K ®g R = C, which means that K is quadratic imaginary. All the
inequalities above are in fact equalities.

The quadratic imaginary field K splits Bg\ (1 because
K= EndRoo(A) ®z Q C Ende (Hl(A(C),Z)) Rz Q

and the latter is the normalizer of Re in End(H;(A(C),Z)) ®z Q = My(Q),
which is just Bs\ {co}- Thatis tosay, K C B\ foo}- Therefore, the subalgebra K ®¢q Q)
of the division algebra Bg\ ()} ®q Qp is a field for every place p € S\ {0 }. [

Let 0 be the order of discriminant D < 0 in a quadratic imaginary field
K. We define CM(©) to be the set of CM points of discriminant D in Xg(K2).
(Combining the actions of K and Bg) (.}, one can prove that the CM points on X
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are isogenous to products of two CM elliptic curves and so must be defined over

an abelian extension of K.)

4.5.1 Description over C

LetI' = (RS )1 We want to view CM(&) inside Xs(C) = I'\h. The points in
CM(0) are in bijection with classes of embeddings ¢: & — Rg; let Ty be the
unique fixed point of h under the action of {(K*). Then

CM(ﬁ) = {T¢ c F\h cP: O — RS,oo }

4.5.2 Description over C,

LetT = (Rsx,p)l' We want to view CM(&) inside Xs(C,) = I'\'Hp. The elements
of CM(0) are indexed by embeddings ¢: & — Rg, and now the action of ¢(K*)
on H, has two fixed points 7, and Ty.

By theorem 101, a divisor A € Div?(CM(&)) C Div?(I'\'H,,) is principal if it
admits a lift D € Div’(H,) such that

cp(y) =[(y1) —(n);Plr=1 forally €T.

Proposition 104. Let Dy, D, € Divo(”;’-[p) and suppose that these two divisors are
supported on CM(01) and CM(03), where 0y and O, are two orders of discriminants
Dy and D, giving rise to ring class fields Hp, and Hp,, respectively. If Dy is principal
(ie., cp, = 1), then [Dy; Dy)r € Hp, Hp,.

4.5.3 Concluding remarks

In conclusion, given a finite set S of places of Q of odd cardinality and containing
oo, we have a Shimura curve Xg containing a supply of CM points leading to
extensions of singular moduli and their differences and of Heegner points on
elliptic curves. Moreover, for S = { o0 }, we recover the theory over the j-line
X(1).
Associated with a finite set S of places of Q, we have the following objects:
e If S has even cardinality and co € S, then we get a definite quaternion algebra
(ramified exactly at the places in S).
e If S has even cardinality and co & S, then we get an indefinite quaternion
algebra (ramified exactly at the places in S).
¢ If S has odd cardinality and co € S, then we get a Shimura curve Xg.
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* If S has odd cardinality and co ¢ S, it is not clear what kind of object we
should consider. However, it should contain some “real multiplication”
points because we do not add a restriction to the sign of the discriminant of
quadratic fields.
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5 RM theory

The key example of this theory will be the case of S = { p }. Then we only need to
study the action of T's , =2 SL(Z[p~']) on the p-adic upper half-plane H,. This
has been studied by Darmon and Vonk. (A more general quaternionic setting
has recently been studied by Guitart, Masdeu and Xarles.) From now on, write
T = SLy(Z[p~!]). One of the main results of this theory is the following:

Theorem 105. Let o7 (resp. .4 *) be the multiplicative group of non-zero rigid analytic
(resp. rigid meromorphic) functions on Hy.
(1) The vector space H' (T, 7> /C » ) @z Q is finite-dimensional and the Hecke action
on it factors through the algebra To(T'o(p)) C End(Ma(To(p))).
(2) The vector space HY (T, .#*) @z Q is infinite-dimensional and has no finite-
dimensional Hecke-stable subspaces.

We keep this notation in the following subsections.

5.1 p-adic integration onI'\'#,
We revert to the setting where I acts discretely on H,. Let 7 denote the Bruhat-
Tits tree of 1, (cf. section 4.4.3). We assume that I'\ 7 is a finite graph and that,
for every edge e and every vertex v, Stabr(e) = Stabr(v) = 1.
5.1.1 Rigid differentials on I'\'H,
Moditying the constructions from section 4.4.8, we can define a map
®: T — H)(T, &> /C;)

given by

Oy (2) = [(2) = (1); (v€) = (O)]r,

where 77 and ¢ are arbitrary base points on H . Consider the logarithmic derivative
dlog: &> /C; — Q'(H,) given by
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We obtain by composition a morphism (of groups) j: T2 — Q! (I'\Hp) defined by

i) = diog(@,(2)) = -

On the other hand, we can use the period pairing ( -, - ): [ x [ — Q, and
theorem 96 to identify %P ®, Q with its dual. We will want to define

[w=titw)ec,
Y

which will make sense later once we prove that the map j induces an isomorphism
I @, C, = QY(T\H,) of Cp—vector spaces.
5.1.2 The residue map

Let v be a vertex of the Bruhat-Tits tree 7. For every oriented edge e in 7, we write

s(e) and t(e) for the source and the target vertices, respectively, of e. Consider
s(e)=v

where r: H, — T is the reduction map and D, denotes the residue disc corres-
ponding to the edge e. Given w € Q(H,), we write w, = w| 4,. If & is a rational
differential on P'(C,) that is regular on A,, then we can define

Res,(a) = Resp,(a) = ZD Res, («).

Now, writing

wy = lim &;  for rational differentials «; as above
]

(the limit being with respect to the supremum norm of A,), we want to define

Res,(w) = lim Res,(«;).
]

One checks that this limit is well-defined. (To prove that it does not depend on the
choice of the a;, one can use that, for t,t, € B(t, p_N ),

1 1

< p" N forallz ¢ HZ".
z—H Z—tzp_p ora HP )
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Let 71 denote the set of oriented edges of 7. Given w € O (Hp), we define the
residue of w to be the map ¢, 71 — C, given by ci(e) = Res,(w).

Proposition 106. The function cy: T1 — C, satisfies the following properties:

(1) for every e € T; with inverse edge €, ¢, (2) = —cy (e), and
(2) forevery v € Ty,
Y cwle) =0.
s(e)=v

Proof. Tt follows by the residue theorem (for rational differentials on IP1(C p)). For

example, for the second part, we get that

Y Resp,(aj) = ), Resy(aj)=0

s(e)=v x€P1(Cp)
because «; is regular outside the residue discs D, appearing in the first sum. [

Definition 107. A function c: 7; — C, is called a harmonic cocycle if it satisfies
conditions (1) and (2) of proposition 106. We write C,.(7) for the space of

harmonic cocycles on 7.

Lemma 108. Let w € QY (T\'H,). The harmonic cocycle c., has the property that
cw(ve) =co(e) forally € Tandalle € T;.

That is, cy € Cpar(T)T.

Corollary 109. The image of c,, is contained in a bounded subset of Cp.

Theorem 110. The residue map

Res: Q' (T\Hp) — Char(T)F

is surjective.

Proof. We produce an explicit (left) inverse. To do so, we first pass from harmonic
cocycles to boundary measures. Observe that { D, NPP'(Q,) : e € T1}is a
collection of compact open balls in IP!(Q,) which is a basis of the topology of
P1(Q,). Given ¢ € Char(T)T, we define a measure y by requiring that

#(DeNPH(Qy)) = cle).
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(The fact that such p is a measure and not just a distribution follows from corol-
lary 109.)

Our objective is to construct w € O (T'\'H,) such that ¢, = ¢; we will do it by
means of the p—adic Poisson transform:

wlz) = (/uﬂ(Qp) Zy—(tr?) =

We claim that Res.(w) = c(e).
Given z € Hy,

t—

z—t
defines a continuous Cp—valued function on P!(Q,). But, dividing IP*(Q,) into

residue discs of radius p~N for N € Z~, the differential w can be expressed as a
limit of Riemann sums

Wy = Z dz . M(Dej) — Z ﬂdzl

jepl(z/pNz) © jePl(z/pNz) * 1

where ¢; is the edge of 7 corresponding to the ball B(j, p~N). These wy are rational
differentials which converge to w uniformly on affinoids. One can check (exercise)
that

Res,(wn) — c(e)
N—c0
for every e € 7. O

With the same notation as in the proof of theorem 110, one checks that w is
I'-invariant if ¢ is. Indeed,
1 (cz+d)?

. a b
T@ =A@~ et e M:(C d>

and so

d(v(z) _ dz
@) (B z-1

Since u(z) dz does not depend on t, after integrating we deduce that

(/1131(@;» ’V{Z)(t—) t) (e = (/Pl(Qp) ’Y(Zc;y—(ti(t)) tre) = (/11)1(% iy—(? ) *

which is to say that 7*(w) = w.
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Theorem 111 (Drinfeld-Manin). The residue map
Res: QN (T\Hp) — Char(T)"

is an isomorphism.

Sketch of the proof. By theorem 110, it suffices to compare dimensions. Using the
rigid GAGA principle, we can express

dim (Q'(T\H,)) = g(I\H,),

where g is the genus. Thus, by the surjectivity of Res, dim (Cp,, (7)) < g(T\H,p).
We will need some basic facts about the action of SL,(Q,) on 7.
* Givenv € Tpand 7 € SL»(Qp), the distance d(v,y(v)) is an even integer.
¢ Given two Z,-lattices A1 and A, with generalized index [A; : Ag] € p?%, we
have [A : Ay = [Aq : y/Ap] forall v € SLy(Qy).
* Let v* be the standard vertex corresponding to [Z%,] We say that a vertex
v € Ty is even (resp. odd) if d(v, v*) is even (resp. odd). We can decompose
To = ’76+ LT, , where 76+ consists of the even vertices and 7, consists of
the odd vertices.
Consequently, the quotient I'\ 7 is a bipartite graph.
There is an exact sequence

0 — Char(T)T 5 Map(T\T1,C,) > Map(T\T5,C,) — W — 0

(where W is just the cokernel of j) defined as follows:
* i(c)(e) = c(€), where € is the oriented version of e going from an even to an
odd vertex, and

* j(f)(v) = Y f(e) where the sum runs over the edges e containing v.
vee

Now we can check that dim(W) > 1 because

Y. (A=Y i)

v even v odd

(i-e., there is a non-trivial relation on Im(j)). But, writing V = |[I'\7y| and E =
IT'\ 71|, we conclude that

dim Cpor(T) = E — V + dim(W) > E— V +1 = ¢(T\T),
and one can prove that g(I'\H,) = g(T\7). O
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We have seen two approaches to constructing elements of Q! (I'\H,):
(1) We have a morphism j: I'®® — Q}(T'\H,) defined by

j(7) = dlog (@5 (2)).

(2) We have a map Cp,(T\7)T — Q!(I'\'H,) given by the p-adic Poisson

transform of measures (i.e., the inverse of Res above).

Remark. Since the last approach gives a very explicit description of differentials in
QY(T'\H,), we can find line integrals explicitly too:

[ o= [ gy 250 8= fo, (7257 a0

T —t
= 1 du(t).
P1(Qy) Og(T1 —t) H(t)

5.2 Rigid analytic and meromorphic cocycles

Consider T' = SL(Z[p~']). Let &7 (resp. .#*) denote the multiplicative group

of analytic (resp. meromorphic) functions on H,.

Definition 112.
(1) A rigid analytic cocycle is a class in H'(T, .7 ¥).
(2) A rigid analytic 6—cocycle is a class in H'(T, &> / C,).
(3) A rigid meromorphic cocycle is a class in HY(T, .4 ).

Definition 113. An RM point is a point T € H, such that Q(7) is a real quadratic
field. Then Stabr(7) & 7Z modulo torsion (where 7y, denotes a generator). Given

a rigid meromorphic cocycle J, we define the RM value

Jltl = J (<) (7).

These RM values ][] are conjectured to be defined over class fields of Q(7).

There should be the following analogy:

‘ RM values CM values

Analytic cocycles | Gross—Stark points Elliptic units
f—cocycles | Stark-Heegner points | Heegner points
Meromorphic cocycles | “Singular moduli” | Singular moduli
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Example 114. The tautological cocycle Jyiy: I — o7 is defined by

]triv(c Z))(z):chrd forz € H,.

Given an RM point T € H,, we can compute the corresponding RM value using
a generator of Stabr (7). That is a matrix for which (7, 1) is an eigenvector or,

equivalently, satisfying that

(¢ 2))-rra() -irso ()

so cT + d is an eigenvalue or, equivalently, a fundamental unit of the real quadratic

order 0; associated with 7. This tautological cocycle is an example of an Eisenstein

cocycle: for every prime ¢ # p, the Hecke operator T, acts by
TE(]triV) - tl;-—;,l

5.2.1 The cohomology of I

Theorem 115. Let T = SLy(Z[p~1)).
(1) HY(T,Q) = 0.
(2) HX(I', Q) = H'(To(p), Q).

We follow a proof of Ihara and Serre using the Bruhat-Tits tree 7 of H,. Let
76+ (resp. 7, ) denote the set of even (resp. odd) vertices of 7 and let 7_? (resp.

711_) denote the set of oriented edges of 7 having even (resp. odd) source vertex.

—

Lemma 116. The group T acts transitively on each of the sets Ty", Ty, T,", T, and Ti.

Proof. Let A1 and Aj be two Z,-lattices in Q%. There exists v € GL2(Qy)/ Q;
such that yA; = Ay. To pass to I, we use that [PGL,(Qp) : PSL,(Q,)] = 4
(assuming p > 2) and there is a homomorphism PGL,(Q,)/ PSL>(Q,) — Z/2Z
given by

7 vy(det(y).

We have seen that PGL,(Qy) acts transitively on 7y and one checks that the
matrices 7y that interchange the sets 7;" and 7~ are precisely the ones satisfying
that vy (det(y)) = 1 mod 2. Thus, PSL,(Q,) acts on 7; with the two orbits 7;"
and 7, and then we can use that I' is dense in SL,(Q}) to deduce the same result

for I'. The statement for edges can be proved similarly. O
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By lemma 116, the quotient graph I'\'7 has two vertices joined by an edge.
We use as representatives the standard vertex v* and the standard edge e* going
from v* to another vertex v*/ (corresponding to the lattice pZ, © Z,). We have
Stabr(v*) = SL,(Z) and

b
¢ ):a,dez,beéz,cepz}.

Stabr(0™') = SLa(Z)" = { (c d

Therefore, Stabr(e*) = Stabr(v*) N Stabr(v*') = Ty(p).
For every '-module M, there is a short exact sequence

0 y M —— Map(Ty, M) —4— Map(T;, M) —— 0

given by i(m)(v) = mand d(f)(e) = f(v') — f(v™), where v and v~ are the
even and odd vertices of ¢, respectively. The corresponding long exact sequence of

cohomology is
0 — M" — Map(To, M)T — Map(T;, M)T -2 HY(T, M) -

— HY(T,Map(75, M)) — HY(T,Map (77, M)) —>+ H2(T, M) -
— H*(T,Map(To, M)) —> - --

By lemma 116, we can express
Map(To, M) = Indng(Z)(M) ® Indng(Z),(M)

and

Using Shapiro’s lemma, we can rewrite the long exact sequence as

0 — M — MSL2(@) g pSL2(Z) y pTo(p) 2 (T, M) -
— HY(SL»(Z), M) & H'(SLo(Z), M) — H!(To(p), M) —— H2(T, M) -
— H2(SLy(Z), M) ® H2(SLy(Z)', M) — - - -

o If M = Q, from the surjectivity of QSL2(Z) g QSLZ(Z)/ — QMo(P) and the fact
that H (SLy(Z),Q) = 0 = H'(SLy(Z)’,Q) for i = 1 or 2, we deduce that
HY(T,Q) = 0and 6: H(I'y(p),Q) — H?(T, Q) is an isomorphism.

e If M = Z, we obtain an injective morphism J: H! (To(p), Z) — HZ(F,Z)
with finite cokernel.
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5.3 The Dedekind-Rademacher cocycle

We consider certain Eisenstein series of weight 2 and level I'y(p), which can be

constructed as follows. From the modular discriminant

Alq) =qJ(1—¢")* (of weight 12 and level SL,(Z)),

n=1

we construct a modular unit

Aq")
u, =
P Ag)
on Yp(p). Then we define an Eisenstein series Eép) (that we identify with a differ-
ential form on Yy(p)) by
Y (2)dz = dlog(Uy) = ((p=1)+24 X o mg" ) %,
n=1
where
dPn)=Y d
pid|n

Conceptually, we view U, as a morphism Yy(p) — Gm and then Eép ) (z) dz is the
pull-back of . Define ¢pgr: Io(p) — Z by

1 [7(z0)
oor(1) = 5= [ B (2)dz

2711

for some base point zg € H,. One checks that gpr € H'(Io(p), Z). Now take
apr = 0(¢pr) € H*(T, Z). We view p*or € H*(T, p#) inside H*(T, C; ).

Theorem 117. The natural image of p*°® in H*(T, .o/ ¥) is trivial.

Corollary 118. There exists a 1-cochain Jpg € C!(T, o7 *) characterized by

y1Jor(72) - Jor(7172) "'+ Jor(11) = pror(172)

forall 1,7, €T.

Definition 119. The Dedekind—Rademacher cocycle is the image of the 1-cocycle Jpr
from corollary 118 in H!(T, 7> /p%). (This class is not uniquely defined, but its
image in H\(T, &> / p%) @z Q is).

Remark. The RM values of Jpg, defined in C; / p?, are analogues of elliptic units.
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5.3.1 Siegel units

Let 07, denote the non-zero complex analytic functions on the upper half-plane
H = b, which is endowed with a right action of SL,(Q) given by

(hl7)(2) = h(72).

Consider (&, B) € (Q/Z)? with & # 0 or B # 0 and let N be the order of («, 8) in
this group.

Proposition 120. There exists g, g € ﬁ;( N) Oz Q with

Su,p = _qw . H (1 _ qn+txe2ni,3) . H(l _ qn—txe—zmﬁ)/

n>1 n>1

where
1 & o

““hRTaTaN
and we choose the representatives of a and B in the interval [0,1).

There is a right action of SL,(Z) on the set { g, : v € (Q/Z)*\ {0} } given by
%0y = gy (Where we view v as a row vector).

One gets the following norm-compatibility relations:

IT 202 = ges(5)

noe'=u

and

%’—[,B 8a,p’ (z) = 8u,B (nz).

5.3.2 The Siegel distribution

Let Xp = (Z%)’ denote the primitive vectors in Z% (i.e., such that one of the two
coordinates is in Z ) and let X = Q% \ {0}. We can express

X = | | p'Xo.
jez

Let LC(Xo, Z) be the space of locally constant Z-valued functions on Xy and
consider a right '-module A.
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Definition 121. An A-valued distribution on X is a homomorphism (of groups)
u: LC(Xp,Z) — A. We write ID(Xy, A) for the space of such distributions.

Remark. There is an action of SL(Z) on ID(Xj, A) characterized by

(uIm) W) = (pUy™H)|r
for all compact open subsets U of Xp.

Since we want to get [-modules but I = SL,(Z[p~!]) does not preserve
primitive vectors, we next consider distributions on X. Since X (as opposed to Xj)
is not compact, we need to work with locally constant functions that are compactly
supported. Apart from this, the definition of distributions on X is analogous to
definition 121.

Definition 122. A distribution y on X is called p—invariant if u(pU) = u(U) for
all compact open subsets of X. We write ID(X, A) for the module of p—invariant
A-valued distributions on X.

Remark. Since

X =[] pXo,
jez

we identify p—invariant distributions on X with distributions on Xy via restriction.
Thus, we obtain an SL;(Z)—equivariant isomorphism ID(X, A) = ID(Xj, A). But,
on ID(X, A), the action of SL,(Z) extends to an action of T..

Given a locally constant compactly supported function f(x,y) on X and a
distribution p € ID(X, A), we have

[ myatuin = ([ 5w an)

Definition 123. The Siegel distribution is the unique ps;. € ID(X, €7;) such that
.uSie((a’ b) + pNZIZ?) = gclzapN,b/pN = ﬁ;—i
for all (a,b) € Z*and all N € Z>.

Remark. It seems that Henri thought that the exponent 12 was enough to “kill
denominators” (i.e., get rid of the ®z Q) in proposition 120. However, David
Loeffler pointed out that the exponents should be unbounded (depending on N).
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See section 5.3.3 below for the necessary corrections. Then one can check from
the norm-compatibility relations that the formula above (once suitably modified)
defines an element ygie € ID(X, 0)).

Theorem 124. The distribution ugie is I'-invariant.

Proof. If a = piN and B = pLN, we define U, g = (a,b) + pNZ3. For T € SLy(Z), it
is clear that

tsie(Unp|T) = psie(Uap)|T.

Thus, it suffices to show the same relation for

as I’ is contained in the group generated by SL,(Z) and T. But we can express

Uy p|T = Upep = (pa+pNt1Z,) x (b+pNZ,)
= U (pa+p""zZ,) x (V +pNT2Z,) = | Uyp.
V'=b mod pN pp'=p

Therefore, using the norm-compatibility relations,

Hsie(UnplT) = TT 85(2) = 8ap(p2) = 85IT = pisie(Un,p)|T. .
pp'=p

Lemma 125.
(1) usie(Xo) = 1mod pf.
(2) psie(pZy X Z) =

Idea of the proof.
(1) psie(Xo) is a unit on SL,(Z)\ H, but those are all constants.
(2) We can compute

p—1 A(
, 2 _12A(9P)
VSle(pr XZ HVSle 0 1 +pZ HgOz/p =P A(q) B
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5.3.3 A correction on Siegel units

Consider the theta function 0(7, z) (for T € H fixed and z € C variable), which is

“almost” an elliptic function in the sense that
0(t,z+1) =6(t,z) and 6(t,z+ 1) = e (Tt (1,2).

The only zeros of 6(7, - ) are the points z € Z & Zt. Let ¢ € Z such that (6,c) = 1.
We define a variant of 6 (depending on c) as follows:

This function still satisfies that
HO(t,z+A) =.0(t,z) forallA € ZDZrt.

By definition, if E is the elliptic curve over C corresponding to C/(Z & Zt), we
have div( (7, -)) = c*(0) — E[c]. Now we can define modified Siegel units

Cgoc,/i("f) = b(t,a+1B) € ﬁ?(N) whenever (¢, N) = 1.
These units are related to the ones defined in section 5.3.1 by

8C2 (7)

«,B
wg(T) = ———.

Cg /ﬁ( ) gca/C’B(T)

The correct characterization of pge € ID(Xp, ﬁﬁ)SLz(Z) is

a b
P‘Sie((arb) + PNZP) = Cga,,g(T) fora = P_N and 8 = p_N
As explained in section 5.3.2, we obtain in this way pge € D(X, 6;))F with the

property that

A(qP) )(CZ_”/ 24
A(q)

From now on, we assume that p > 5 and we can take ¢ = 5 (to forget about the

,uSie(XO) € pZ and ,uSie(pZP X Z;;) = (p

exponent in the last formula).
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5.3.4 The cocycle valued in distributions

Let A denote a '-module.

Lemma 126. Let u € ID(X, A). For every Z,—lattice A C Q%, the subset Aprim of
primitive vectors in A is compact and

V(Aprim) = 1(Xo).

Proof. Choose N € Z> such that pNZ% CAC p‘NZ%. For every v € Aprim,
there is j € [N, N] such that p/v € X,. That is, we can decompose

Aprim = p" Uy U - - - U p™ Uy
with —N < m; < N and
X = (Zg)pﬂm =U; U UU.

Therefore,

#(Aprim) = p(Un) + -+ p(Ur) = p(Xo)- O
Lemma 127. The rule A — ID(X, A) is an exact functor on T—modules.
Proof. Left as an exercise. The key issue is right exactness. O

From the short exact sequence

f,_me‘f

0 y Z > Oy y Oy —— 1

of '-modules, we obtain by lemma 127 a short exact sequence
0 — D(X,Z) — D(X,0y) — D(X,07) — 1
from which, taking cohomology, we get a connecting homomorphism
6: HY(I,D(X, 05)) — H (I, D(X, Z)).
We define a Dedekind—Rademacher cocycle valued on distributions

upr = 6(pusie) € H'(T, D(X, Z)).
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Writing
1

lisie = i log(#sie),

Wwe can express

UpR(Y) = Fsiely ™ — Fisie-

Lemma 128.
(1) ppr(7)(Xo) = 0forally € T.
(2) upr(7)(PZp X Z;;) = @pr(7) for all 7y € To(p).

Proof. By the last formula for upg,

upr (1) Xo) = (fisie|r ™) (Xo) = fisie(Xo) = Fisie(Xo7) |7 " — Hisie(Xo) =0

because Jigie(Xo7Y) = Hsie(Xp). Similarly, but using also that

A(pz)
Hsie(pZp X Zp) = p A(z)
and so log(p) 1 A(pz)
_ <y _ log(p P=
Hsie(pZp X Z)) = 2mi | 2m 1Og< A(z) )’

we check that for every v € To(p), which preserves pZ, x Z,

(z0) z
Hpr(7Y) = ZLm /7 dlog(%) = ¢pr(7)-

20

5.3.5 The multiplicative Poisson transform

Given u € D(X,Z) and a compactly supported function f on X with values in
Cp, we define

[ Fantey) = tim ¥ £ o, ) (o),

wel

where the limit is taken over finer and finer coverings

X=||Us

wel

and (Xa, Ya) € Uy.
We have a multiplicative version of these integrals: given y € ID(X,Z) and a
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compactly supported function f: X — C, we define

j[ fdp= hme xa/yzx ),

el
where the limit is taken over coverings as above.

Definition 129. Define the subset ID(X, Z) of u € ID(X, Z) such that u(Xo) =0
(or, equivalently, y(Aprim) = 0 for all Z,-lattices A of Q%,). The multiplicative
Poisson transform of u € Dy (X, Z) is the analytic function J(i) € o7 defined by

JG(@) = (vt y)duxy).

Definition 129 gives rise to a SL,(Z)—equivariant function J: Dy(X,Z) — o7 *.
In fact, | becomes even I'-equivariant modulo pZ. That is, regard

J: Do(X,Z) — o [ p*”
and observe that, for y € T,

JEm(© = f GTr gy = f (<0 +y)dp(oy).

0Y

Decomposing
Xov Y= p™MU; L --- "M
0y ~=p it U UpTiU;

with Xy = Uj U - - - L U} as in lemma 126, we can write
J(ul7) (T Hf x(77) +y) du(x,y) Hf x(77) +y) du(x, y)
j=1
= ¥ (0 +y)dp(xy) = J(u)(77) mod” p*.
0

Therefore,

J(ul) () = J(w) () = (J(u)ly) ()

5.3.6 Proof of corollary 118

Definition 130. We define
Jor = J(upr) € H'(T, &>/ p%).

We have to check that the Jpr from definition 130 satisfies corollary 118.
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Namely, we have morphisms

HY(T, & /p?) —— HX(T, p?) «—— HY(To(p), p?)

Jor F------------3 > p*DR ¢ p¥DR

and, letting 7: HY(T, o7 /p%) — H'(Ty(p), p%) denote the composition, we have
to check that 77(Jpr) = p?PR. To do so, we give an explicit description of the
(inverse) morphism H?(T', Z) — H!(T(p), Z). Given a € Z*(T, Z), we consider
the restrictions a|gy,(z) = dx and &gy, (zy = dx’, where x € CY(SLy(Z),Z) and
k' € CY(SLy(Z)',Z). Since To(p) = SLy(Z) NSLy(Z)', we obtain

(k= &)Iry(p) € H' (To(p), Z).

Next, we want to describe 7 (Jpr). Take two lifts Ipg € H!(SLy(Z), o7 *) and
ILg € H(SLy(Z)', &) of Jpr. We can express

I
7(Jpr) = ;?—R
DR

7

To(p)

so it remains to describe Ipg and If) on Ty(p). But

Ior(7)(v) = (e +y) dpor(x,y)

and

Ior(1)(7) = (rT+y)dppr(x,y)  (where Xg = (PZ; x Zy)prim).

0

Now the key point is that SLy(Z) acts on X and SLy(Z)’ acts on X[ and, using
that

XoNX)=pZ, x 25, Xo\Xy=2Z5xZp, Xi\Xo=pZ) x2Z,),
Wwe can express

Ipr(7)(7) ][ZXXZ (x7+y) dpor(x,y)

Ipr(7)(7) ﬁ(zx . )(xr+y) dupr(x,Y)

= d — »Por(7)
Z;szr’ upr(Y) =p
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as desired.

Conjecture 131. Let T € Hp be an RM point of fundamental discriminant D such that
p { D. Let H denote the Hilbert class field of Q(t). The RM value Jpr|[t] belongs to

(Gulp™)".

This conjecture has not been proved yet, but we have partial results in this

direction:

Theorem 132. In the setting of conjecture 131, we have

Jor[T] € (Gulp™])" @z Q.

Remark. There are two approaches to prove this kind of results: one by Dasgupta
and Kakde using a tame refinement of the Gross—Stark conjectures and another by
Darmon, Pozzi and Vonk using modular generating series. We will see the latter.

5.4 Elliptic cocycles
(p)

The main idea now is to replace E,"” with some cusp form of weight 2 and level
I'o(p). Let E be an elliptic curve over Q of conductor p, which by modularity
corresponds to fg € Sy(T'p(p)). We obtain a homomorphism ¢r: I'o(p) — C
defined by

per) = [ 2rife(2)

20
(for some base point zg € H), whose image is “essentially” the period lattice of
E. Atleast we can get periods OO, QO € R such that Of Z @ iQ); Z contains the
image of pr. We define two Z-valued morphisms

1 _ 1
¢ = Q—;Re((PE) and ¢ = Q—Elm(%)-

In this way, we obtain a},a; € H?(T,Z) (exactly as we defined apg from @pg in
section 5.3, using 6: H!(To(p), Z) — H*(T, Z)).

Theorem 133. In the situation above, there exists q € pZ,, (depending on E) satisfying
that

(1) the cohomology class q“f € H%(T, g%) becomes trivial in H*(T, o/ *) and

(2) the Tate curve Gy /% is isogenous to E over Qy.
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Corollary 134. There exist 1-cochains |, [z € C'(T, ./ *) such that

NI (1) - T () ™ - T () = g (1)

forall y1,v2 € T.

Definition 135. The classes J§ and J; of H'(T, &> /q%) given by corollary 134
are called the even and odd, respectively, rigid analytic 6—cocycles associated with E.

Let T be an RM point with fundamental discriminant D such that p { D. From
these two cocycles, we obtain the RM values J£ [1] € C; /q” that we can view
inside E(Cp).

Conjecture 136. Let H (resp. HT) be the Hilbert class field (resp. the narrow Hilbert

class field) of Q(7).
(1) The value [ [t] belongs to E(H).
(2) The value J; [t] belongs to E(H™) and, in fact, to the (—1)—eigenspace of complex

conjugation.

These RM values would (conjecturally) provide a large supply of Q-rational
points of E called Stark—Heegner points.

5.4.1 Modular symbols

The homomorphisms (p;;IE from section 5.4 can be described by modular symbols,
which are functions mg: P'(Q) x IP'(Q) — Z satisfying that

mg(r,s) = —mg(s,r) and mg(r,s) +mg(s, t) = mg(r,t)

forallr,s, t € P1(Q). For example, let us focus on ¢}. We define

me(r,s) = QLERe(/rsZm'fE(z) dz) eZ

(we might have to slightly modify the period ()} to obtain a Z-valued function)
and then

¢f(7) =me(r,7(r))  foranyr € PH(Q).
Let MS(Z) denote the Z-module of Z-valued modular symbols for I'. Another

way to express the last equation is saying that ¢} (and similarly ¢z) is in the

image of a “connecting homomorphism”
6: MS(z)"0P) — HY(Ty(p), Z).
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5.4.2 The construction of | ,:5':

Consider again the Bruhat-Tits tree 7 and recall how I acts on its vertices and
edges from lemma 116.

Lemma 137. There exists a collection (m.), . of modular symbols m, € MS(Z) such
that, for every r,s € P1(Q),

(1) mex(r,s) = mg(r,s),

(2) Mmooy (v(r),7(s)) = me(r,s) forall v € T and

(3) mg(r,s) = —me(r,s).

Proof. Since I' acts transitively on unordered edges, these three properties de-
termine completely the collection (1), 7, SO long as they do not give rise to
“contradictions”. But mp is invariant under Stabr(e*) = I'o(p). O

As in section 5.4.1, we continue to focus on the + versions of all cocycles. Fix
r,s € P1(Q). One can check that the map e + m,(r,s) is a harmonic cocycle on T~
and, by (the proof of) theorem 110, we obtain a measure i(r,s) on P1(Q,) with

Fe(rs)(2) = | d(p(r,s))(t)

PYQy)  z—t

Poisson transform

Varying r and s, we obtain Fr € MS(@5)!, where % is the group of rigid analytic

functions on H, with an action of I' of weight 2 given by

(Fly)(z) = (cz+d)_2F<Z§_—::Z> for v = (i Z) erl.

Our goal is to define cocycles with values in & /C,;, so we just need to find
“preimages” under dlog: &/ /C; — % dz. We already did that in section 5.3.5.

d r,s))(t
]EU’S)(Z) :][ (]/lE( ))( ),
P1(Qp) z—t
which gives rise to |} € MS(&* /C; ).
It remains to prove that J7 lifts to a class in MS(&* /gZ)T. If J{ lifts to
MS(o7*/G)!, where G denotes any subgroup of C,, then we should be able

to write

Thus, we define

TE(v(1),7(5))(7(2)) = J£ (r,5)(z) mod™ G

for all r,s € P1(Q) and all v € T. (Of course, the previous equation is not well
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defined because J; € MS(&/* /Cj )L.) In particular, taking (7,s) = (0,0) and
p O
= el,
! (0 p‘l)

J£(0,00)(p?z) = J(0,00)(z) mod* G.

we would have

This motivates the need to study the period

_ Je(0,00)(p*2)

zZ X
=T 0eo)E <%

(well-defined).

Lemma 138. In the situation above,
(1) vp(Q) = QLEL(E,l) and
(2) log,(Q) = L},(E, 1) (where Ly(E, - ) is the Mazur-Swinnerton-Dyer p-adic
L—function of E).

Idea of the proof. The first claim is a direct calculation using the definition of L(E, )
as a Mellin transform (i.e., an integral). The second claim follows from the theorem
of Greenberg—Stevens (proving a conjecture of Mazur-Tate—Teitelbaum) which

states that /
L Ly(E, 1) log,(qr)

FLEL)  vplge)

Greenberg and Stevens proved this formula using deformations of Galois repres-

entations along a Hida family. O

5.5 Lifting obstructions

Recall that when we had a discrete action of I' on H,, we could construct a map
AJ: Divl(Hp) — HI(T, C, ) given by

AJ(D)(v) = [D; (vz) — (2)]r

(see section 4.4.9). More precisely, AJ(D) is the “lifting obstruction” of a class
0p(z) € H(T,.4*/C}).

We can imitate this construction for the action of I = SL,(Z[p~!]) on the
RM points of H, after shifting the cohomological degree by 1. Consider an RM
point T € H,, with fundamental discriminant D such that p { D. We will define a
meromorphic §—cocycle . € HY(T,.#* /C; ) and AJ(T) = 6(J7) € Hz(l",C;).
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Our next goal is to define the rigid meromorphic f—cocycle J. € H(T, .#* /C )
“having poles and zeros at I't”. By assumption, the point T € H, satisfies an equa-
tion

at> +bt+c=0 withabceZ

and D = disc(t) = b* — 4ac > 0. We assume moreover that

3)--

Consider the p—adic upper half-plane #, and its Bruhat-Tits tree 7 = (7o, 71).
Letred: H, — T denote the reduction map from proposition 80.

5.5.1 Discrete divisors

Recall that a formal divisor

D= ) my(x)

erp

is discrete if, for every affinoid A C H,, the formal sum

DNA=)_ my(x)
xeA
is a genuine divisor (i.e., a finite sum). We say that D has degree 0 if D N A has for

all affinoids A C H,. In particular, when we have a group I' acting discretely over
Hp, then

Dy = Z (w)

wel't

is a discrete divisor. However, the Thara group T' = SLy(Z[p~!]) does not act
discretely on H, and

Dy = Z (w)

wel't

is not discrete because (for example, assuming that red(7) = v*)

D Nred ! (v*) = Y. (w)
weSLy(Z)t

is not a finite sum.

We will construct a discrete divisor as follows. Fix r,s € P1(Q). For every RM
point w € H,, let w' denote its conjugate. Write (w,w’) - (r,s) for the topological
intersection number of the geodesic from w to w’ and the geodesic from r to s on
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the archimedean upper half-plane H, which is a number in { 0, +1 }. We define

D= Y [(ww')-(r,s)](w).

wel't

Proposition 139. The divisor D+(r,s) defined above is a discrete divisor of degree 0.

Proof. Since p t D, we can express

It= {J ((T't)Nred ' (v)).

veT

Given v € Tg, set A, = red " (v). It suffices to show that D (r,s) N A, is a divisor
of degree 0. By definition,

De(r,s)NA = ). [(w,w)-(r,s)](w)

weltNA,

and, up to replacing T with another representative of I't, we may assume that
red(t) = v. As ', = Stabr(v) is conjugate to SL,(Z),

De(rs)N Ay = ). [(ww)-(rs)(w)= )} [(yr,97) (r,9)](r7),

wGFUT ’)/ery/')’-rz

where ¢ is a generator of Stabr, (7). Assume that, for every point zy (other than
the endpoints) of the geodesic (7, 7’) in H,

1YPzo =7 and Y;¥zp=7T

(i.e., T is a repulsive fixed point and 7’ is an attractive fixed point), so that we can

decompose
, ™
(T, 7) = Y (vrz0, ;" 20).
j€Z
Then
. ™
De(r,s)= Y. Y [(rrz097F 20) - (r,9)] (77)
Y€l /72 jeZ
= Y [(vz0,77720) - (1,8)] (7).
r€ly
But

Y (720, 77<20) - (1,5)
vely
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is the topological intersection number of the projections of (zg, yrzo) and (7, s)
onto I',\’H. Therefore, D(r,s) N Ay is a divisor and it has degree 0 because I', \ H
has genus 0. O

Let DiVO'Jr(HP) be the group of discrete divisors of degree 0 on H,. Observe
that the map
(r,s8) — Dx(r,s)

defines an element D; € MS(Div""(#,))T. Moreover, for a fixed v € T, the map
(r,s) > deg(D<(r,s) N Ay)
defines an element of MS(Z)"*. We define

Je(r,5)(2) = [(2) = (1); D(r,8)] = lim [(z) = (1); Dx(r,5) N A]

A—=Hp

(for some base point 7 € H,), where the limit is taken over affinoids A of an
increasing admissible covering of H, and converges absolutely. One can check
that [ (r,s) € .4 and so J; € MS(.#* ). Moreover, for every v € T,

Je(rr,s)(vz) = [(vz) = (1); De(yr, )] = [(v2) = (1); 1D (7, )]
=[(2) = (v ')i De(r,8)] = Je(r,5)(2) - [(1) — (v" ') D= (7, 9)],

whence we can view J; € MS(.#* /C;)r or J; € H.

par(rrj‘/>< /C;)

5.5.2 Stark-Heegner points as lifting obstructions

Consider the composition

HL(To(p), Z) ----- HL(To(p),C¥)

| J

Hl},ar(r,gﬂ/c;) — Hf)ar(r,cg)

and define the period lattice

A = i(Hpar(To(p), Z)) € H'(To(p), C;),

which is a discrete lattice.
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Conjecture 140. The rigid analytic torus H(T, C,)/ Ais isogenous to Jo( p)? over Q2
where Jo(p) is the jacobian of Xo(p).

Consider the connecting homomorphism
6: HY(T,.#*/C;) — H(T,C)).

Then 6(J+) should map to a point in Jo(p)(H)? @z Q, where H is the Hilbert class
field of Q(7).
When we had a group I acting discretely on H,, (in section 4), we had a diagram

HO(T, &% /C) ——

A
H(T,.#*) — H)(T,.#4*/C;) —— H'(I,C})

ldiv ldiv

P(Xr) «—— Div?"(H,)l ——— Jac(X)(C))

in which the last column gives the obstructions to lift elements in the middle
column. (Here, P(Xr) means the principal divisors on Xr.)
Now, for T = SL,(Z[p~!]), we have an analogous diagram

HYT, &% /C)) ——— A

I !

HY(T,.4*) —— HY(I,.4*/C}) —>— HA(I,C})

i |

P« HY(T, Div® (HRM)) —— Jac(Xo(p))>

(where the last vertical arrow is conjectural).

5.5.3 Real quadratic singular moduli

In the category of groups modulo torsion, we have an exact sequence
0 — HY(T,.#*) — HY([,.#*/C;) — H*(I,C})

and the middle group (which contains the (]T)TGHEM) is huge but the last one is
not that big because every element is annihilated by Hecke operators in T»(I'o(p)).
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In particular, if p € {2,3,5,7,13} (or, equivalently, Xo(p) has genus 0), then
par(l“ C,) is finite and, up to torsion, every J; lifts to HYT,.2).

Definition 141. The real quadratic singular moduli associated with T) and T, is the

value Jp (11, o) = Ju (2] € C}.

Consider two RM points 71 and 1, in H}, with discriminants D and D, such
that p J[ D1D; and (D1, D;) = 1. The real quadratic singular moduli [, (71, 72) from
definition 141 should “behave like” the singular moduli /o (71, 72) = j(T1) — j(T2)
when 7 and 1, are CM points of H (see theorem 65). More precisely:

Conjecture 142. The value ],(T1, 2) is defined in the compositum HqH of the Hilbert
class fields Hy and Hy of Q(11) and Q(12), respectively.

Conjecture 143. Let q be a prime ideal of Oy, 1, lying over g € Z. If q | ], (11, T2), then

(1) ( )%17&( )and
() g dzvzdes a posztzve integer of the form

DD, — m?

iy (for some m € Z).

5.6 Algebraicity statements

Unlike the situation for Stark-Heegner points, the algebraicity of RM values of the

forms Jpr[T] or | [T2] is somewhat tractable.

5.6.1 Gross-Zagier revisited

Theorem 144 (Gross—-Zagier). Let 7y and 1, be two CM points of discriminants D
and Dy, respectively, such that (D1, D;) = 1. We have a factorization

N, 1,70 (/(T1) = j(2)) quq

where the product runs over the primes q dividing a positive integer of the form

DD, — n?
4

(%) 14 (%)

withn € Z

and such that
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Gross and Zagier gave two proofs of this theorem: the “algebraic proof” that
we saw in section 3.10 and an “analytic proof” which adapts better to the RM
setting. We now explain the latter.

Let D = D;D, > 0 and set F = Q(v/D) (real quadratic field). Consider
L = Q(v/D1,v/D3), which is a biquadratic extension of Q containing F. The
quadratic extension L/F is unramified and so is contained in the narrow Hilbert
class field of F. We obtain a character

¥ =1vp,p,: CI"(F) = Gal(L/F) = {+1},

known as the genus character attached to D; and Ds.

Fix an embedding F < IR. Consider the Hilbert modular Eisenstein series

Bz = Y p@N@f Y :

k(9! ~! Nk’
acCl (F) (mmyeaty oy (M2 +m)E(m'z +1')

where m’ and n’ are the conjugates of m and n, respectively, and z,z’ € . There is
an action of SL,(0F) on b x h with respect to which Ey , is “almost invariant”:

az+b a7z +b
B (

cz + d 7 + d/> - (CZ - d)k(C/Z/ + d/)kEkzlP (Z’ Z,)'

We will also use the non-holomorphic but real-analytic versions

Ek,s,tp(zlzl) = Z ’P(a) N(a)k )
acClt (F)
Y 1 Im(z)° Im(z’)?

(mz + n)k(m'z' 4+ n' )k |mz + n|%|m'z' + n'|?>

(mn)ea?/OF

for s in some right half-plane of C. One can extend the definition to other values

of s by analytic continuation.

Fact 145. The function Ey s, vanishes at s = 0.

Set Gs(¢) = E15,y(z,2z) € Mp(SL2(Z))?" (i.e., this diagonal restriction trans-
forms like a modular form of weight 2 but is only real-analytic). By fact 145,
Go() = 0. Then we are interested in

i) = | 4:G:()|| e matsta@)™

s=0
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Consider the holomorphic projection
TThol + M> (SLZ (Z) )an — M> (SLZ (Z) ) = 0.
From the definition of E1 5y (z,z), one gets a g—expansion

Thot(Go(¥)) = ) anq".

n>0

The main calculation in Gross—Zagier’s article shows that
a1 =10g|Np;, 1,/ (j(11) — j(12)) | = }_mqlog(q),
q

where the sum runs over the primes appearing in theorem 144. Then theorem 144
follows from the fact that a; = 0.

5.6.2 A p-adic analogue

Next we want to adapt the proof explained in section 5.6.1 to the RM setting using
p-adic analytic methods. Let F = Q(1/D) be a real quadratic field and suppose
that the prime p is inert in F. Let 1 be an odd character of the class group of F.

The g—expansion of the Hilbert modular Eisenstein series from section 5.6.1 is

Erp=LE, g1 —K) +4 Y 05 1(v0)e?m =7,

-1
Ve,

where 971 is the inverse different of F, 9! consists of the totally positive elements
of o~ and

Ok—1,p(0) = |Z P(H)N(I)* .
I|(a)

These functions are formed from algebraic quantities. To obtain a p—adically

interpolable function, we consider the p—stabilization

E]E’plz = Ey(z, Z') — Eiy(pz, pz') = Ly(F, 9,1 —k) +4 Z (T,Eﬁ)l(vb)ezm(””/z/),

vebll

where
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Now the functions vary analytically in k. We can set

Ge(9) = E{/)(2,2) € My (To(p))

and this yields a p-adic family of modular forms. In particular, G1(¢) = 0 in
M (To(p)) and we can work with

Gi(y) = | 3:6:(0)|| e M (s1a(2))

s=1

In this case, we have to use the ordinary projection
Tora = lim Up's My~ *(SL(2)) — Ma(To(p)).
n o0
Theorem 146 (Darmon-Pozzi-Vonk). Consider the g—expansion

Tord (G1(¥)) = ), ang" € Ma(To(p)).

n>0

There is a rigid analytic 6—cocycle ]y, called the winding cocycle, such that

o= ) (0 log(Jwltlw(T]),

disc(t)=D

where the sum runs over the RM points T € I'\'H, of discriminant D.

5.6.3 The winding cocycle

The geodesic path (0, o) from 0 to ico on § (or its projection) is called the winding
element of Hy (Xo(p), cusps, Z). By Poincaré duality, we view the winding element
in HY(Ty(p), Z); the winding cocycle Jiy will be its image in H! (T, o7 /Cy).

Let T = SL,(Z[p~']). We can decompose

I(0,00)=%X=|]%,
i>0

Zi:{<%,§>:ud—bc:ipi}

(writing all fractions in lowest terms). Choose base points 17, € H, and 17 € H.

where
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We define Jyy: T’ — dX/C; by

for all ¥ € I'and z € Hp. One checks that the products in the last expression
converge absolutely. Unlike the cocycles Jpr or g, the winding cocycle [y is not a
Hecke eigenclass (but it is simpler geometrically!).

Theorem 147. We have the g—expansion

nord(G{ (lp)) = L;(F/ ¢/0) +4 Z logp (Tn ]W[Al/)])qn/

n>1

where we evaluate Ty, Jy at the divisor on T\ Hp

Ap= ), (@ ((1)+())

disc(t)=D
(the last sum runs over the RM points T € T'\'H, of discriminant D).

Theorem 147, which is proofed with a direct computation, is a more general
version of theorem 146. To imitate the last part of section 5.6.1, we need another

description of [y .

Lemma 148. We can express

2 _
Jw = F]DR + Z Lag(f, )]
f eigen.

where the sum runs over the (normalized) cuspidal eigenforms f of weight 2 and level
To(p) and Lag(f,1) is a quotient of L(f, 1) by a real period.

Idea of the proof. One can show that

2 _
(0,00) = p— 1(PDR+fd%m Lalg(fll)([)f-

The L—values appear as path integrals. O
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Corollary 149. We have a linear combination

Tena(GL(9)) = - log, (Jor[A) EY + X Lug(f,1)log, (7 [A4)) £

o f eigen.

Comparing the constant coefficients of the g—expansions, we see that

L,(F,,0) =log,(/or[Ay])  (Kronecker limit formula).

5.6.4 CM theory of Shimura-Taniyama

Let F be a totally real field with [F : Q] = d > 1. Consider the discrete action

d (d) . d .
of SLp(0F) on h* = h x -+~ x h. We can interpret SL,(0F)\h" as the C—points

of a Hilbert modular surface X, which is a moduli space of abelian varieties A
endowed with an embedding 0r < End(A). There are a number of special points
on X corresponding to abelian varieties A with an embedding 0x — End(A) for
a CM extension K/F.

Fact 150. Given a Hilbert modular function ¢ and a special point x of X (corresponding
to a CM field K), the value ¢(x) lies in a class field of a reflex field of K.

One can also study this kind of values via rigid cocycles. Let p be a prime ideal
of Or and let T = SLy(OF[p~!]). The action of I on the p-adic “upper half-plane”
H, is not discrete, but we can define special points to be the T € H,, such that

(1) F(7) is a totally real quadratic extension of F and

(2) Stabr(t) = Z% up to torsion.
Then one can attach to each special point T a cocycle J; € HY(T,.#*/ C,) and
one can study the lifting obstructions. It turns out that H**1(T, C,’) gives (conjec-
turally) a p—adic uniformization of an abelian variety. Eventually, there should be
some analogue of the Gross—Zagier theory in this setting.
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A Student presentations

The notes that I took of the student presentations are quite worse than the rest
for a number of reasons, including my inability to take decent notes of talks
based on slides. The following pages do not do justice to the quality of the actual
presentations. The interested reader should watch the recordings instead.

A.1 Proof of theorem 22 (Jhan-Cyuan Syu)

Theorem 151 (Riemann-Roch). Let C be a smooth projective algebraic curve over a
field K. Fix an algebraic closure K of K. For every D € Div(C),

(D) —¢(K—D)=deg(D)—g+1,

where
(1) ¢(D) is the dimension of the K-vector space

£(D) = {f € K(C)" : div(f) > -D},

(2) K is a canonical divisor of C and
(3) g is the genus of C.

We are going to apply theorem 151 to an elliptic curve E /K to prove theorem 22.

Step 1. Construction of x,y € K(E).

Applying Riemann—-Roch’s theorem with the divisors

e D=0:4(0)—¢(K) =deg(0) and so {(K) = 1;

e D=K:{(K)—£(0) =deg(K) and so deg(K) = 0;

* D = n|[O] for some n € Z>1: {(n[0O]) — (K —n[O]) = deg(n[O]) and so

¢(n[O]) = nbecause deg(K — n[O]) < 0.

We have seen that £(1[0]) has dimension n over K. Next we claim that we can
take a K-basis of £(n][O]) formed of elements in K(E) (i.e., of rational functions
over K, not just over K).

To descend from K to K, we consider the Galois action of Gk on L(n[0]).
Take v € L(n[O]). By continuity of the Galois action, Stabg, (v) is an open
subgroup of Gk. Therefore, the action of Gg on v factors through Gal(L/K) for
some finite Galois extension L/K. Write Gal(L/K) = {0y,...,0 } and take a
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K-basis vq, ..., vy, of L. Define

[og (%
w1 011 Ul2 . U‘{m 71
wy 91 02 . Om 02
Uy Uy Uy v
- (% 7,
Wi [ o e oo

It is clear that Gal(L/K) acts trivially on each w;, which means that w; € K(E).
Moreover, the matrix above is invertible and so v can be expressed as an L-linear
combination of the w;. Applying this argument to each element of a K-basis of
L(n[O]), we obtain generators of £L(n[O]) that are already defined over K.

Now take x,y € K(E) such that

L2[0])=K-1®K-x and L(3[0])=K-1®K-x®K-y.

Step 2. Properties of x and y.
Since x € L([O]) and y ¢ L£(2]|O]), we deduce from the definition of £( - ) that

ordp(x) = -2 and ordp(y) = -3

and there are no other poles.
In £(6[0]) we have the seven elements 1, x, v, x?, xy, x> and y?> which must

satisfy a non-trivial relation, say
aj + axx + azy + a4x2 + asxy + a6x3 + (Z7y2 =0 withag,ay; #0.
The change of coordinates
(x,y) — (—agarx, azay)
allows us to rewrite the equation as
Y2 + Ajxy + Azy = X3+ Axx® + Agx + As.

Since 2 € K*, after the change of coordinates

(1y) = (x5 — A — A3))
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we obtain an equation of the form
y2 = 4x3 4+ Byx? + B4x + Bg.

Finally, since 6 € K*, we can apply the change of coordinates

() = (5 1)

to obtain an equation of the form
y? = x° + cyx + ce.
The canonical equation y? = x> + g4x + g is obtained by rescaling
(x,y) — (A2x,A7%y)  for suitable A € K*

so that

A.2 The ring of weak modular forms (Marti Roset)

Let R be a base ring with 6 € R*. We want to identify WMF(R) = R[g4, g6, A~ 1].
To that aim, we are going to use theorem 22 (or rather, its generalization for rings
in which 6 is invertible):

Theorem 22 (classification of framed elliptic curves). Let K be a field in which 6 is
invertible and let (E, w) be a framed elliptic curve over K. There exists a unique pair of
functions x,y € O(E\ { O }) satisfying the following conditions:

(1) ordp(x) = —2and ordp(y) = —3;

(2) x and y satisfy an equation of the form

y> =2+ gux + g

for some g4, g6 € K with the property that A = 4¢3 + 27¢2 € K*, and

dx
3 = —,
B) w y

From the unicity statement, we see that g4 and g¢ define weak modular forms
over R and the weak modular form A = 4¢3 + 27¢Z has to be invertible. Our goal

is to prove the following result:

Proposition 152. The space WMF(R) is the R-algebra Ro[g4, g6, A1)
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The strategy to prove proposition 152 will be to identify f € WMF(R) with
its value at a universal framed elliptic curve over R[gy, g6, A~ !]. (Here, universal
means that every framed elliptic curve over an R-algebra can be obtained as a
base change of it.)

Consider the functor Ell} : R-Alg — Set that sends an R-algebra S to the set
Ell} (S) of framed elliptic curves over S. A morphism of R-algebras S — S’ is sent
to the map Ell}; (S) — Ell} (S') given by base change of framed elliptic curves by

S—S.
Lemma 153. The functor Ellf; is represented by R[g4, g6, A~ ']
stractly as R[X, Y, 1/ (4X? 4 27Y3)]).

(we view this ring ab-

Proof. Let S be an R-algebra. By theorem 22, we can define a map

Ell (R) — Homg, a1z (Ro[g4, 86, A1, R)
(E,C(J)/R — (l/] = IP(E,OJ): Ro[g4,g6, A_l] — R)

characterized by ¢(g4) = g4(E, w) and ¢(g6) = g6(E, w).
* Surjectivity. Given ¢, we can recover the framed elliptic curve by means of

the equation
y? =%+ 9(84)x + $(86)-

e Injectivity. The isomorphism class of (E,w) is completely determined by

g4(E, w) = ¢(g4) and g6(E, w) = ¢(ge)- O

Using lemma 153, we can redefine weak modular forms as follows. A weak
modular form f over R is a rule assigning a value f(S,¢) € S to every pair
consisting of an R-algebra S and a morphism ¢: R[g4, g6, A~!] — S of R-algebras
in a way that is compatible with base change: given ¢: S — &/,

f(S o) =o(f(S,9)).

Proof of proposition 152. Let f € WMF(R). Consider the universal morphism of
R-algebras id: R[gs, g6, A7) — R[g4,86,A7]. Then f(R[gs,86,A7],id) is an
element P = P(g4,96, A7) € R[g4, g6, A~ !]. We claim that we can identify f with
P. Indeed, for every pair (S, ¢: R[g4,g6, A"!] — S) as above,

f(S,9) = f(S,poid) = p(f(S,id)) = ¢(P(g4, g6, A1)
= P((84), P(86), Y(A) ") = P(4(S,¥), 86(S, ), AT'(S, ).
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Remark. A weak modular form is a natural transformation from ElI}} to the forget-
ful functor R-Alg — Set and this proof is an application of Yoneda’s lemma.

Alternatively, one can give an analytic proof of proposition 152.

Proposition 154. Let f be a non-zero holomorphic modular form over C of weight k.

Then ) ) ‘
ordoo(f)+§ordi(f)—|—§0rdezm/3(f)+ ) ordx(f):ﬁ.

xeSLy(Z)\H*

Idea of the proof. This formula can be proved applying the residue theorem to
the logarithmic derivative of f on a certain contour close to the boundary of a
fundamental domain. O

Proposition 155. The space of holomorphic modular forms over C is C g4, g¢)-

Sketch of the proof. Let f be a modular form of weight k. We argue by induction on
k that f € C[g4, g6]- By the valence formula, the cases k < 2 are trivial. For k > 4,
we can choose a,b € Z>( such that 4a + 6b = k. We can choose A € C such that
f — Agigl is a cusp form of weight k and then we apply the induction hypothesis
toh = (f —Agisge)/A. O

Remark. Proposition 155 can be refined using the g—expansion principle to obtain a
presentation for MF(R) for any subring R of C with 6 € R*. Then by base change

one may pass to any general ring in which 6 is invertible.

A.3 The class number one problem (Dhruva Kelkar)
Let K = Q(1/n) for some square-free n € Z \ {0,1 }. Write

n ifn=1 mod4
Dx =
dn ifn=2o0r3 mod4

for the discriminant of K. The maximal order in K is its ring of integers, which

admits a basis of the form 1, wg with

Dk + v/ Dg
Wi = ————

Every other order & is of the form Z + fwgZ for some § € Z > called the conductor
of 0.
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Proposition 156. The class numbers h(0') of € and h(Ox) of Ox are related by

RN ﬁx1n< (5)3)

where
()
P
denotes the Legendre symbol.

Our goal is to obtain all orders of class number 1. Write D for the discriminant
of the order & and h(D) = h(0) for its class number.
The theory of binary quadratic forms yields the following results:

Proposition 157. Let n € Z 1. The class number h(—4n) is 1 if and only if
ne{1,2,34,7}

Proposition 158. Let n € Z>1. If n has at least two odd prime factors, the class number

h(—n) is even.

Using these two results, our problem is reduced to the study of h(—p) for p
prime. More precisely, we have to determine when h(—p) = 1.
Next, we can deal with the case p = 7mod 8: taking

z@:z+£i¥iz and O0=Z+./-pZ,
one checks with proposition 156 that h(—p) = h(—4p) and proposition 157 gives
us the complete list of possibilities.

Finally, the most interesting case is p = 3 mod 8. The theory of complex
multiplication implies that the ring class field of conductor & is generated by j(a)
for any invertible fractional ideal a of &'. One can define a cubic root y,(z) of j(z)
and Weber’s functions f(z), f1(z) and f»(z) and prove several algebraic relations
between them. The problem is thus reduced to certain diophantine equations

using integral values of modular functions.

A.4 Endomorphisms of elliptic curves over finite fields (Cédric
Dion)

Let K be a field and let E; and E, be two elliptic curves over K. An isogeny
y: E; — E; corresponds to a morphism of fields ¢*: K(E;) <— K(E;) via which
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we can see K(E7) as a finite extension of ¢*(K(E;)).

Definition 159. The isogeny : E; — E; is called separable (resp. inseparable) if it
induces a separable (resp. inseparable) extension K(E1)/¢*(K(Ey)) of fields. We
define the degree (resp. separable degree, inseparable degree) of ¢ to be the degree
(resp. separable degree, inseparable degree) of K(E1)/¢*(K(Ey)).

Proposition 160. Given an isogeny {: E; — Ej, the kernel of 1 has exactly deg, ()
K-rational points.

From now on, suppose that K has characteristic p > 0. Let g = p/ for some
f € Z>,. For every elliptic curve E/K, we can define the (relative) g-th power
Frobenius morphism
¢q: E — EW.

Proposition 161. In the situation above, the isogeny ¢, is purely inseparable of degree q.

Corollary 162. In the situation above, either E[p](K) = 0 or E[p|(K) = Z/pZ.

Proof. We can count the number of p—torsion points of E as follows:

E[p)(K)| = [Ker([p])(K)| = deg;[p] = deg,(¢; © ¢p) = deg, ¢}
The last degree divides p, so it is either 1 or p. O

Finally, we want to prove theorem 46. In fact, we prove the following version
of the theorem:

Theorem 163. Let E/K be an elliptic curve. The following assertions are equivalent:
(1) E[p)(K) =0;
(2) [p]: E — Eis purely inseparable and j(E) € F , and

(3) Endy(E) is an order in a quaternion algebra.

Proof. The proof of corollary 162 shows that E[p](K) = 0 if and only if ¢}, (and
so [p]) is purely inseparable. In that case, ¢;: E () — E has to factor through
Pp: EP — E(pz), which is only possible if EW) ~E, Therefore,

and we conclude that j(E) € F ..
Next, let us prove that (2) implies (3). Suppose, for the sake of contradiction,
that Endg(E) is either Z or an order in a quadratic imaginary field. Choose a prime
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¢ # p such that, for every E’ isogenous to E, / is a prime in Endg(E’). We can take
a compatible sequence of cyclic subgroups C, of E of order Z/¢"Z, which induce
isogenous curves E,, = E/C,. Since there are only finitely many such curves (up
to isomorphism), there exist m,n € Z>1 such that E;, ., = E;;. Thus, we obtain an
endomorphism E,;, — E;+, = E;, whose kernel is cyclic of order ¢". In particular,
it has degree £" and, as ¢ is prime in Endg(E,), it must differ from [¢"/2] by a unit.
But [¢"/?] is not cyclic and we get the desired contradiction.

For the converse, assume that [p| is not purely inseparable. Then from the
identification T, (E)(K) = Z, we obtain an injection

Endg(E) < Endz,(T,(E)(K)) = Z),

which is impossible if End(E) is an order in a quaternion algebra (as it would
not be abelian). O

Theorem 164. Let E /K be an ordinary elliptic curve. Then E[p](K) = Z/pZ. Also, if
j(E) € Fp, then Endg(E) is an order in a quadratic imaginary field.

Proof. The first proof is clear from the proof of corollary 162. For the second part,
assume that j(E) is algebraic over IF, and consider E'/IF;, for g = p/, isomorphic
to E over K. We consider the g-th power Frobenius ¢, € Endg(E’). and show
that it cannot be multiplication by an integer. Indeed, if it were, we would have
¢q = [£p//?]. But then we would have E[p"/2|(K) = 0, which is not the case. [

A.5 Pell’s equation (Antoine Giard)

Let K = Q(1/(D)) for a fundamental discriminant D < —4. We write {x(s) for
the Dedekind zeta function of K and, more generally, (x(s, A) for the partial zeta

functions associated with subsets A of ideals of 0. Define the character

xp(p) = <%>

(using the Kronecker symbol).
Let d be a square-free positive integer. We want to study the solutions to Pell’s
equation
x? — dy? = 1.

By Dirichlet’s unit theorem, there is a fundamental unit e, for Q(v/d).
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Recall that Riemann'’s zeta function {(s) satisfies that

lim (2(s) ~ =) =

s—1

(where 7 is Euler’s constant). There is an analogue of this formula for K:

Theorem 165 (Kronecker’s limit formula). Let A € Cl(0x). Then

7T

. 7T
im (s, 4) - e 1)) = 7= (21— 10g(~D) ~ 2log(s(ra),

where

2 2

8(z) = ﬁlm(Z) n(2)]

and T4 is the CM point corresponding to A~1.

Next, we want to study the L—function Lg(s, x) for certain characters x. De-
compose D = D1 D, and define the genus character

(%) ifptD,

1 2( ) = )
o (NI?;))7A0 ifp | D,

(in the second case, we choose the i € 1,2 that makes the Kronecker symbol # 0).
Theorem 166 (Kronecker). We have a decomposition
Lk (s, xp,p,) = L(s, xD,)L(s, XD,)-
Assume that xp,p, 7 1. Using Kronecker’s limit formula, we can express

=27
—-D

LK(llXDlDz) = Z XD1D2 gK(l A)
AeCl(D

Z XDlDZ log(g( ))
AeCl(D

Suppose that D; > 0 and D, < 0. The class number formula gives

2h(Dq)1
H(D1) log(ep,) and L(1,xp,) = ———&
v Dy wp,v —D>

and so, combining everything,

L(l,XDl) =

2h(D1)h(Dy)

o log(ep,) = — ), XD1D2 ) log(g(7a))-

2 AeCl(D
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Theorem 167. We have

szll(Dl)h(D2)/wD2: H (g(TA))_XDlDZ(A)'
AeCl(D)

Remark. In this way, we have described a solution to Pell’s equation in terms of

modular forms.

Theorem 168 (Chowla-Selberg). We have

hD

I gTA (47_[\/__[)) HF( i )“’D?ZD(i),

AeCl(D i=1

A.6 The work of Granville-Stark (Christian Tafula)

Let D be a (negative) fundamental discriminant and let C1(D) and k(D) denote
the class group and the class number, respectively, of the corresponding quadratic
imaginary field K = Q(v/D).

Let T € 5. Recall that 7 is called a CM point if

AT+ BT+ C=0

for some pairwise coprime A,B,C € Z with A > 0. Thus, T corresponds to a
binary quadratic form
Ax? + Bxy + Cy?.

In particular, the set of Heegner points Ap, consisting of CM points in a funda-
mental domain for SL,(Z)\$ with discriminant D, is in bijection with the set of
reduced primitive binary quadratic forms of discriminant D. In particular,

vD

— if D=0 mod 4

™ =
P 14D

5 ifD=1 mod 4

corresponds to the principal form given by

(1,0,—%) fD=0 mod 4

1-D

(A,B,C) =
(1,1,T) ifD=1 mod 4

(note that this definition of 7p is different from the usual).
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Recall that H = Hp = Q(+/D, j(1p)) is the Hilbert class field of K and that the
values
{j(t):TteAp}

are the Galois conjugates of j(1p).

We saw in examples 5 and 6 that we can find study the solutions of the form
(j(tp), j(1p) — 1728) = (13, Dy?) to the equation x> — Dy? = 1728 to give lower
bounds for /(D) using that the ABC conjecture predicts that there are few such

solutions.

Conjecture 169. Let a,b,c € Z. Suppose that a + b = c and that the numbers a, b and
c are pairwise coprime. For every € > 0, there exists a constant Ce > 0 such that

1+e¢
max{Ja, o} 1} < - (TT #) -

p‘ubc

Heilbronn proved that h(D) — oo as D — —o9, so there are two natural kinds
of problems: listing values of (D) for small values of |D| (e.g., the class number
one problem) and estimating the asymptotic growth of /1(D). The main (classical)
result in this direction is Siegel’s estimate

MD) . IDI
VDI
(unconditional but ineffective).

Granville and Stark proved that, assuming a certain uniform formulation of the
ABC conjecture, there are no Siegel zeros for {k(s). To do so, they studied solutions
to the equation x° — y? = 1728 of the form (j(tp),j(tp) — 1728) = (x3,y?). If x
and y were integers, the ABC conjecture with a = x>, b = —y? and ¢ = 1728 would
imply that

5
log (max{ x|3, |y|? 1) < 6(1 + €)log (max{ 1x |3, |y|? }) + Te
for some T, € O,(1) or, equivalently,
log (max{ x |3, |y)? }) < (6+¢€)TL.

To formalize this, one has to use the ABC conjecture for number fields: given a
number field K and ¢ > 0, there exists a constant C(K, ¢) > 0 such that, for every
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triplea,b,c € Kwitha+b+c =0,
ht([a:b:c]) < (1+¢€)(Nk([a:b:c])+log(rdk)) + C(K,¢),

where ht denotes the (naive) height in IP?(K), Nk denotes the log-conductor and
rdg is the root-discriminant of K. Then, writing H p = Hp(x,y), we obtain that

ht(j(tp)) < 6((1 +¢)log(rd ) + C(Hp,¢)).

A “factorization” argument using modular functions shows that rd iy < 6D,
and the uniform form of the ABC conjecture allows us to use a constant C(¢)
independent of the field.

Lemma 170 (Granville-Stark). The uniform ABC conjecture implies that

ht(j(tp)) < (3+0(1))log(|D|)
as D — —oo.

Theorem 171 (Granville-Stark). The uniform ABC conjecture implies that

h(D) > (§+o(1))ﬂ y L

log(IDI) &,

as D — —oo, where the index of summation T € Ap corresponds to a reduced binary
quadratic form (A, B,C).

Consider the Dedekind zeta function

Tk(s) = Z (@) = ;:11 +co+O(s—1) fors— 1.

agﬁK

Conjecture 172. There exists 6 > 0 such that

Ck(B) #0  whenever 1 — log(ﬁ <B<1

Using theorem 171 and the class number formula, one checks (assuming the
uniform ABC conjecture) that

() <~ (G5+00) T 5 +alD)+o(),

TEAD
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Then one can use Kronecker’s limit formula to control the term ¢o(D):

2 1 T D] h(D)

w012 ¥ Ly (YD) o(HD))
6 T€AD A |D| TEAD 24 | |

After some algebraic manipulation and using Duke’s theorem on the equidistribu-

tion of Ap, one can prove that conjecture 172 is equivalent to the estimate

h(D) > VID| ) !

log(ID|) & A

A.7 Factorization of singular moduli (Arihant Jain)

In the previous lecture, we saw some results about the primes that appear in the

factorization of

[T ((m)-j(w)
diSC(T1)=D1
disc(m)=D,

for two (distinct) fundamental discriminants D; and D,. Now we are going to
study something about their multiplicities. More precisely, we are going to work
with

_4_
J(DyD2)= [ (i(m)—j(r))™,
disc(ty)=D,
diSC(Tz):Dz
where w; is the number of units in the ring of integers of Q(+/D;) (in particular, if
D; < —4, then w; = 2).

Given a prime number ¢ such that

<D15D2> i

we define D
(71> if £ 1Dy,
D,

(%) itefDa.

More generally, if n € Z~1 has a prime factorization

n:HE?i

1

e(l) =
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with each ¢; satisfying the condition from before, we define
e(n) = Te()".
i
Theorem 173 (Gross-Zagier). Let D = D1D,. Then

J(Dy,D2)* =+ T] I n*™.

|x|<\/5n| szz

A.8 Evaluation of p-adic theta functions (Isabella Negrini)

For every n € Z>1, choose representatives P, for P!(Q,) modulo p". For example,

we can take
Po={lall:acZ,/p"Z,} U{[1,b]:b e pZ,/p"Z,}.

Define

Q, =PY(C,) \ ( U B(x,n)),

xeP,

where B(x,n) denotes the closed ball of radius p" centred at x, and

0, =P\ (U B (xm),

xePy,

where B~ (x, n) denotes the open ball of radius p” centred at x. By definition,

n>1 n>1

We will describe these subsets of #, by means of the Bruhat-Tits tree 7.
Observe that, given a vertex vy, the vertices at distance n from v are in bijection
with PY(Z,/p"Z,). We take v to be the standard vertex corresponding to [Zf,]

and set
10
01 = 0 l7 0p.

The edge ¢ joining vy and v; is called the standard edge and satisfies that

* ok
StabPGLZ(QP)(eO) = {’y € PGLy(Zp) : v = (0 *> mod p }

Definition 174. The ends of T are the equivalence classes of infinite paths on 7
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without backtracking under the equivalence relation defined as follows: two
infinite paths are equivalent if they only differ by finite segments. Let Ends(7")
denote the set of ends.

We endow Ends(7") with the topology which has as a basis the subsets
U(e) = { Ends of T starting with e }

for all oriented edges e of 7. One can define a PGL,(Q,)-equivariant homeo-
morphism Ends(7) = P}(Q,).

Let r: H, — T denote the reduction map. Observe that A* = r~1(vg) and
Wo = r~1(eg) and that Q);; is the preimage of the subtrees of 7 made of points
at distance at most n — 1 from vy. More generally, we can obtain affinoids as

preimages of vertices and annuli as preimages of edges.

Theorem 175 (Mumford).
(1) Let I be a discrete subgroup of SLo(Qp). If T\'Hp is compact, then it is an algebraic
curve over Qy.
(2) Conversely, if X is an algebraic curve over Qy, with totally degenerate reduction,
then there exists a discrete subgroup T of SL»(Qp) such that X is isomorphic to
M\ Hp.
Let B = Q @ Qi © Qj ® Qk be Hamilton’s quaternions and consider the order
0 1ditjtk
R=2[ijh L]

We have an isomorphism ¢,: B ®q Qp — M2(Q,) and define

=1, (R[%LX) C SLy(Q,).

Definition 176. Leta, b,z € ’Hp. The theta function 6(a, b; z) is defined by

0(a,b;z) = H

Definition 177. For every n € Z>(, we define

S UGEREE
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and

¢n(a,b;z) = H z—’ya.

Proposition 178. The product 6(a,b;z) converges for all a,b,z € H,. It defines a
meromorphic function of z with zeros at { ya : v € I' } and poles at { yb: v € T }.

One way to compute 6(a, b; z) could be to approximate it with
n
[T¢i(a,b;z) forn>>o0.
i=0

However, this is not efficient (the order of I';, grows exponentially). To do it better,

one can express the quaternions of norm p” in terms of those of norm p.

Proposition 179. A primitive quaternion of norm p" factors uniquely (up to units) as a

product of quaternions of norm p.

One can also separate the quaternions according to where they send the stand-
ard affinoid. In the end, 8 can be given by a collection of power series with different

centres.

A.9 Quaternion algebras over Q (Siva Sankar Nair)

Definition 180. Let F be a field of characteristic # 2. A quaternion algebra over F is
a central F-algebra B satisfying one of the following equivalent conditions:
(1) Bissimple and has dimension 4 over K;
(2) there are a quadratic separable F-algebra K with an embedding K — B and
elements B € Band b € F* such that B = K® KB, ? = b and Ba = ap for

alla € K;
(3) there are elements i,j € B that generate B as an F-algebra and satisfy that
i? =a,j* = band ij = —ji for some a,b € F*,and

(4) B issimple, strictly larger than F and finite-dimensional over F and there is
an F-linear anti-involution such that Tr(a) = a+a € Fand N(a) =a-w € F
forall « € B.

We write

B=(Kb)/F = (”%b)

Example 181. Leta,b € F*. If one of a or b is a square in F, then

(%) = M)
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via
. (0 1) . (Vb 0
i and j— .
a 0 0 —Vvb

Given a quaternion algebra B/F, there is a symmetric bilinear form
(+-,-):BxB—F

given by («, B) = Tr(aB). One checks that («x, &) = 2N(«). Let & be an order in B.
We define

disc(0) = ‘det((ei,ej>)i]. ,

where ¢q, ey, e3, ¢4 is a Z-basis of 0.

Example 182. Take

B = (”g) witha,b € Z.

For 0 = Z © Zi ® Zj ® Zk, we have disc(0) = (4ab)?

One can compute maximal orders in B/Q with the following algorithm:
(1) Take any order &" of B and find all primes p such that &, is not maximal in
B X0 Qp.
(2) For such a prime p, depending on the Legendre symbol

()

(and on the parity of p), we adjoin elements satisfying certain congruence

conditions modulo p to make an order that is maximal at p.

A.10 Coleman integration (Ting-Han Huang)

We want to define line integrals for a rigid analytic function f on the p-adic upper
half-plane .

Given an affinoid X, we write A(X) for the corresponding affinoid algebra and
Q(X) for the module of rigid analytic differentials on X. There is the canonical
map d: A(X) — Q(X).

Definition 183. Let X be an affinoid and let X denote its reduction to characteristic
p. An endomorphism ¢: X — X is called a Frobenius endomorphism if its reduction
¢ is the Frobenius endomorphism of X.
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Theorem 184 (Coleman). Let K be a complete subfield of C, and let X be a connected
affinoid over K with good reduction X. Let w be a closed 1~form on X and let ¢ be the
Frobenius endomorphism. If there exists P(T) € C,[T] whose roots are not roots of unity
and such that

P(¢p")w € dA(X),

then there exists a locally analytic function fo, on X(Cp), unique up to additive constant,
such that

(1) dfw = wand

2) P(¢")fw € A(X).

Remark. The Coleman primitive f, is independent of the choice of P and ¢.

Take X = Gm(0c,) = {z € Cp : |z[, = 1 }. We can fix a branch of the p-adic
logarithm log: C; — C,, characterized by

d 1
Elog(z) =

Given w € Q(X), we can integrate w locally and thus obtain a locally analytic
function F on X such that dF = w. Two such primitives differ by a locally constant

function, but we would like integration to be defined up to a (global) constant.

Lemma 185. Let X be an affinoid with a Frobenius endomorphism ¢. If f is a locally
constant function on X such that ¢*f = af for some a € C,, that is not a root of unity,
then f = 0.

For our simple choice of X, we can take ¢ to be the map z — z”. Then

and we obtain a Coleman primitive F(z) such that

This is the usual p—adic logarithm.

A.11 Calculation of singular moduli on Shimura curves (Sofia

Giampietro)

Let S be an odd set of places of Q containing co. Let B, be the quaternion algebra
ramified at the placesin S\ { p }. Let Rs , be the maximal Z[p~!]-order in B, and
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consider I'; = (Rg p)l embedded inside SL,(Qp). We have a Shimura curve Xg
such that Xs(Cp) = I'p\H,.

For a quadratic order & of discriminant D, the elements of CM(€’) C X5(Cy)
are in bijection with optimal embeddings of &[p~!] into R ,,.

Fix two quadratic discriminants D; and D,. Take conjugate pairs (1;, 7/) of CM

points of discriminants D; and define
D; = (1) — (17) € Div'(H,).

We want to compute [D; ;Dz]rp in some particular cases. Recall that, if D is
principal, then this quantity is defined in the compositum Hp, Hp,, where Hp.
denotes the ring class field corresponding to the order &; of discriminant D;.

We can express

(0 —70)(q —15) _ Op,(11)
[D1; Dar, 7Ie—r[p (. —v5)(t —vw)  Op,(1T])

Assume that Xg has genus 0, so that cp, is trivial. This happens only for the sets

of places S = {2,3,00}, {2,5,00 } or { 2,11, 00 }. Write J,(71, ) = [D1; Da]r,.
The 6—functions can be computed separating the elements of I', according to

their p-adic valuation and using a recursive algorithm in terms of factorizations

in B, that works under the assumption that B, has class number 1.

A.12 Heegner points (Reginald Lybbert)

Let K be a quadratic imaginary field. Recall that, if CM¢(0kx) = { 7, ..., T, }, then
H =K(j(r1),...,j(1,)) is the Hilbert class field of K.
Let E be an elliptic curve over Q. The modularity theorem provides a modular

parametrization
¢e: Xo(N) — E,

where N is the conductor of E. Analytically, this map can be defined as follows:

¢e(T) = (p(zc), ¢/ (21))

where, if fr is the modular form of level I'y(N) corresponding to E, then

T .
Zr = 27'[1'/ fE(Z) dz = Z an(fE)qn, where g = 27T
ico

n>1 i
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For a CM point T € h, we consider the order

*

ﬁ’g\]): {’)’EMQ(Z):’)/E (O :) mod Nand'yT:T}U{O}.

Theorem 186. Let T € h N K and let H be the ray class field attached to ﬁgN). Then
¢e(T) € E(H).

In particular, one can use this result to compute some rational points of E over
(hopefully) “small” fields. In fact, we can even obtain points in E(K) as follows:

e for each class [a] € Gal(H/K), we can find some 7, such that ﬁg\])
e thus, ¢r(1,) € E(H), and

¢ summing over all such elements, we obtain

= q

Px= Y. ¢e(t) € E(K).

acCl(K)

Theorem 187 (Gross—Zagier). Let Px be the Heegner point defined above. Then

_ 32”2||fE||2 hE(PK)
| 0% [>v/| Dk deg(¢E)

where hg denotes the Néron—Tate height.

L'(1,E)

A.13 The Chowla-Selberg formula (Subham Roy)

Let & be an order of discriminant D in a quadratic imaginary field K. Write 3p for
the set of CM points of discriminant D in h. For each T € 3p, there exists a period
()¢ (depending only on 7) such that, for every modular form f of weight k and
level SL,(Z) defined over Q, f(7) € QX - Q. In fact, we can deduce the following

more general result:

Proposition 188. Let K be a quadratic imaginary field. There exists a period Qg € C*
with the property that, for every T € h N K and every modular form f of weight k € Z
and level SL,(Z.) defined over Q,

f(r) e -Q
We apply this result to F(z) = Im(z)|7(z)|* and to all the CM points T € 3p,

where D = disc(K).
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Theorem 189 (Chowla-Selberg). In the situation above,

[T (amy/iem)” = 1 ()"

TESLz(Z)\SD

where w = |OF | and xp is the quadratic character associated with K.

Using this formula, one checks that the period () can be chosen to be

|D|—-1 w/4h(D)

1 xp(m)

Op = ( 1—[ F( m ) D ) |
\/27'(|D| m=1 |D|
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