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1 Overview

The topic of the course is complex multiplication, a beautiful theory developed
in the 19–th century with many arithmetic applications. This theory tells us
something about the values of certain modular functions at certain points.

Definition 1. A modular function is a holomorphic function f : H→ C satisfying
that

f
( az + b

cz + d

)
= f (z) for all

(
a b
c d

)
∈ Γ and z ∈ C,

where
• H is the Poincaré upper half-plane { z ∈ C : Im(z) > 0 }, and
• Γ is a congruence subgroup of SL2(Z).

Remark. We will only use the following congruence subgroups:

Γ0(N) =

{(
a b
c d

)
≡
(∗ ∗

0 ∗

)
mod N

}
,

Γ1(N) =

{(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
,

Γ(N) =

{(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

Also, sometimes we consider modular functions having values in P1(C) (i.e., with
poles) or even in E(C) for some elliptic curve E.

Example 2. The following are examples of modular functions:
(1) The j–invariant j : SL2(Z)\H→ C is an analytic isomorphism and generates

the ring of modular functions on SL2(Z)\H.
(2) The λ–function λ : Γ(2)\H→ C \ { 0, 1 } is an analytic isomorphism related

to j by

j = 256
(λ2 − λ + 1)3

λ2(λ− 1)2 .

It also satisfies the equations

λ = 16
η(z/2)8 η(2z)16

η(z)24 and 1− λ =
η(z/2)16 η(2z)8

η(z)24 ,

where

η(z) = q1/24 ∏
n≥1

(1− qn) if q = e2πiz (Dedekind eta function).
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(The q–expansion of η(z) together with the previous formulae for λ and
1− λ show that, indeed, λ does not take the values 0 or 1.)

(3) The Siegel units: we have a modular function UN : Γ0(N)\H→ C× given by

UN =
∆(Nz)
∆(z)

, where ∆(z) = η(z)24.

(4) Modular parametrizations: every elliptic curve E/Q of conductor N admits
a non-constant analytic map ΦE : Γ0(N)\H→ E(C) (modularity theorem).

1.1 The main theorem

Definition 3. A CM point of H is a point τ ∈ H which satisfies a quadratic equation
over Q, so that τ = a + b

√
d for some a, b, d ∈ Q with d < 0 and b > 0.

Theorem 4. Let τ ∈ H ∩Q(
√

d) (for some d < 0) and let f be a modular function. If
the q–expansion of f has coefficients in Q, then f (τ) is algebraic and is defined over an
abelian extension of Q(

√
d).

This theorem suggests that we might be able to generate almost all abelian
extensions of a quadratic imaginary fields (i.e., explicit class fields) from the values
of modular functions.

Example 5. The CM values of j(z) are called singular moduli. Consider a quadratic
imaginary field K with D = disc(K), D < 0, and class number h(K) = 1. Then the
CM point

τD =
D +
√

D
2

satisfies that j(τD) ∈ Z.
Table 1 shows all these singular moduli. One can observe several patterns: all

the numbers in the second column are perfect cubes and have many small prime
factors but not all (no 7 or 13); in contrast the numbers in the third column are
almost perfect squares (except for a factor of D) and includes the prime 7 but no 5.
This kind of patterns were explained by the work of Gross and Zagier.

Writing
(j(τD), j(τD)− 1728) = (x3, Dy2),

we obtain an integral solution to the equation

x3 − Dy2 = 1728.
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D j(τD) j(τD)− 1728

−3 0 −2633

−4 2633 0

−7 −3353 −367

−8 2653 2772

−11 −215 −267211

−19 −21533 −263619

−43 −2183353 −26387243

−67 −2153353113 −26367231267

−163 −2183353233293 −2636721121921272163

Table 1: Singular moduli for quadratic imaginary fields with class number 1.

These kind of numbers seem to contradict the ABC conjecture. Of course this is
not really the case because we only have a finite number of quadratic imaginary
fields with class number 1.

Example 6. In the spirit of the last observation in the previous example, Granville
and Stark proved that a strong version of the ABC conjecture implies that h(D)

grows asymptotically like √
|D|

log(|D|)

as D → −∞. In particular, the Dirichlet L–function L(χD, s) has no Siegel zeros.

1.2 More applications

Let D be a negative discriminant as before. We have the following associated data:
(1) a quadratic order OD = Z[(D +

√
D)/2];

(2) the class group Cl(D) = Pic(OD), and
(3) a ring class field HD such that, if K = Q(

√
D),

Gal(HD/K) = Cl(D)

by class field theory. Furthermore, if we write D = D0c2, where D0 is a
fundamental discriminant (square-free) and c is the conductor of the order,
then HD is unramified outside c.

Proposition 7. If f is a modular function for some group Γ with rational q–expansion,
then f (τD) is defined over an abelian extension L of HD satisfying that
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(1) L is unramified outside the level N of Γ and
(2) [L : HD] ≤ [SL2(Z) : Γ].

Proposition 8. In the situation of proposition 7, if f (H) is contained in V(C) for an
algebraic variety V (such as A1, A1 \ { 1 } or an elliptic curve E), then

f (τD) ∈ V(OL[N−1]).

Example 9.
(1) j(τD) ∈ OL.
(2) λ(τD) is a solution to

(x2 − x + 1)3 − 2−8 j(τD)x2(x− 1)2 = 0

and so λ(τD) ∈ OL[1/2]×. Exercise: 1 − λ(τD) ∈ OL[1/2]×. The pair
(λ(τD), 1− λ(τD)) is then a solution to the 2–unit equation in L.

(3) UN(τD) ∈ OL[1/N]× (and often even UN(τD) ∈ O×L ). These units are called
elliptic units. There is an interesting analogy summarized in table 2.

Q K (imaginary quadratic)

Circular units 1− ζN Elliptic units UN(τD)

Class number formula:
L′(χ, 1)↔ log(1− ζN)

for an even Dirichlet character χ

Kronecker limit formula:
L′(ψ, 1)↔ log(UN(τD))

for a finite-order Hecke character ψ

Work of Thaine, Rubin
(Iwasawa main conjecture)

Work of Coates–Wiles, Rubin
(Iwasawa main conjecture)

Table 2: Analogy between the theory over Q and over K.

Theorem 10 (Coates–Wiles, Rubin). Let A/Q be an elliptic curve with CM. If the
Hasse–Weil L–function of A satisfies that L(A, 1) 6= 0, then A(Q) < ∞ (Coates–Wiles)
and X(A/Q) < ∞ (Rubin).

Remarkably, CM theory has applications towards the proof of the BSD con-
jecture for general elliptic curves (not just those with CM). Consider an elliptic
curve E/Q and a modular parametrization ΦE : Γ0(N)/H→ E(C). Choosing an
appropriate D, we get ΦE(τD) ∈ E(HD). Define

PD = ∑
disc(τ)=D

ΦE(τ) ∈ E(K).
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Theorem 11 (Gross–Zagier). In the situation above and if D is perfect square modulo
N, then

L′(E, 1) ∼ htNT(PD).

In particular, PD has infinite order precisely when L′(E, 1) 6= 0.

Theorem 12 (Kolyvagin). If PD has infinite order, then E(K) is generated by PD and
X(E/K) < ∞.

Corollary 13. If ords=1(L(E, s)) ≤ 1, then

rank(E(Q)) = ords=1(L(E, s)) and X(E/Q) < ∞.

These are essentially the best known results towards a proof of the BSD conjec-
ture, and they would not be available without the theory of complex multiplication.

1.3 Topics of this course

1.3.1 Basic theory and elementary applications

We are going to introduce the geometric ideas that justify the apparently miraculous
fact that values of certain analytic functions turn out to be algebraic or integral.
More precisely:

• The analytic space SL2(Z)\H as the points Y(C) of an algebraic curve Y that
is a moduli space of elliptic curves over Q. Models of Y over Q and Z.

• Correspondence between the CM points τ ∈ H and elliptic curves “with
extra endomorphisms” (i.e., with CM).

• Given a CM point τ ∈ H and K = Q(τ), we study the value j(τ) ∈ Kab.
• Factorization of Gross–Zagier for differences of singular moduli.
• Heegner and Stark’s classification of negative discriminants D < 0 with class

number h(D) = 1.
• The work of Granville–Stark on the ABC conjecture and Siegel zeros.

1.3.2 Generalizations

The most natural and fruitful ideas to generalize CM theory come from the work
of Shimura–Taniyama. The theory of elliptic curves with CM is a particular case
of the theory of abelian varieties with CM (already considered by Hilbert and
developed by Blumenthal and other mathematicians until the culmination of
Shimura and Taniyama). However, we will not cover this topic but only focus on
the question of why explicit class field theory is accessible for CM fields.
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Consider a CM field K, that is a totally imaginary quadratic extension of a
totally real field F. The group of units

O×K/F = { u ∈ O×K : NK/F(u) = 1 }

is finite and we can study it by means of class field theory. In general, class field
theory provides a description of the Galois group Gal(Kab/K) in terms of an idèle
class group and it turns out that one can get a good understanding of explicit class
field theory if this description does not involve a group of units.

In contrast, the simplest non-accessible case is that of a real quadratic field
K. In that case, there is a fundamental unit (Dirichlet’s theorem) that appears as
a solution to Pell’s equation. This unit appears as an obstruction to the explicit
description of all abelian extensions of K. A general approach that one can follow
to remedy this is to generalize the analytic statements without the geometric
proofs. In our setting, the naive statement that we would like to have is that, given
a modular function f and a point τ ∈ H∩ K, the value f (τ) lies in Kab. However,
this statement cannot be true because H∩ K = ∅.

One possibility is to consider a geodesic on H going from τ to its conjugate
τ′. The subgroup of SL2(Z) which leaves this geodesic invariant is isomorphic
to Z up to torsion and so admits a generator corresponding in some sense to the
fundamental unit of OK. There is work of Kaneko, Zagier and Duke–Imamoḡlu–
Tóth in this direction.

Another possibility is to replace H with a non-archimedean analogue: given
a prime number p, the p–adic upper half-plane is Hp = P1(Cp) \ P1(Qp). The
reason to consider this space is that K ∩Hp 6= ∅ if p is either inert or ramified in K.
There is a theory of p–adic uniformization of certain curves which allows one to
have a variant of the theory of complex multiplication. Thus, the second theme of
the course will be p–adic variants of CM theory.

This part will be less complete and self-contained and we will treat the follow-
ing topics:

• Shimura curves, which are moduli spaces of “fake elliptic curves”. These are
analogues of modular curves and are attached to quaternion algebras.

• Jacquet–Langlands theory relating modular forms and some kind of dif-
ferentials on Shimura curves: if E/Q is an elliptic curve satisfying certain
conditions, there is a modular parametrization X → E from a Shimura curve
X.

• Cerednik–Drinfeld theory: given a Shimura curve X, for certain p one can
identify X(Cp) ∼= Γ\Hp for some arithmetic subgroup Γ of SL2(Qp).
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One can then develop a variant of CM theory by studying the points in a Shimura
variety that correspond to fake elliptic curves with extra endomorphisms. Then
these points are defined over abelian extensions.

We will also talk about certain computational aspects:
• Algorithmic aspects (work of Greenberg and of Negrini).
• Gross–Zagier factorizations (work of Giampietro).
Unfortunately, one gets no immediate insights into the theory of real multiplic-

ation just from this theory. The problem is that the special points on Γ\Hp arise
from tori K× ⊂ B×, where B is a definite quaternion algebra (so the quadratic
fields are automatically imaginary). Instead, we would like to obtain Γ from an
indefinite quaternion algebra.

1.3.3 RM theory

We may consider Γ = SL2(Z[p−1]) acting on Hp, but this action is not discrete.
That is, writing A for the ring of (rigid) analytic functions on Hp and M for the
ring of meromorphic functions on Hp, we obtain that H0(Γ, A ) = H0(Γ, M ) = Cp.
To obtain an interesting theory, one has to look at higher cohomology groups. The
next objects that one might consider are

H1(Γ, A ) or H1(Γ, A ×),

H1(Γ, M ) or H1(Γ, M×).

Theorem 14 (Darmon–Vonk).
(1) H1(Γ, A ) = H1(Γ, M ) = 0.
(2) The group H1(Γ, M×) is not finitely generated.
(3) Consider a rigid meromorphic cocycle J : Γ → M×, which represents a class in

H1(Γ, M×). If

J
((

1 1
0 1

))
= 1,

then for every γ ∈ Γ the function J(γ) has its zeros and poles in the set HRM
p of RM

points (i.e., points of Hp that satisfy a quadratic equation with rational coefficients
and generate a real quadratic field).

The basic idea is that there should be an RM theory in which rigid meromorphic
cocycles play the same role as modular functions in CM theory.

If J : Γ→M× is a rigid meromorphic cocycle and τ ∈ Hp ∩ K for a quadratic
field K with disc(K) > 0, then StabΓ(τ) ∼= Z up to torsion and we can choose a
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generator γτ of this free part. It turns out that the eigenvalues of γτ are essentially
powers of the fundamental unit of K.

Definition 15. The value of J at τ is

J[τ] = J(γτ)(τ) ∈ Cp ∪ {∞ }.

(This value is well-defined because there is a canonical choice of γτ.)

Conjecture 16. The rigid meromorphic cocycle J has a field of definition HJ such that
[HJ : Q] < ∞ and

J[τ] ∈ HJ · Hτ

for all τ ∈ HRM
p , where Hτ is an abelian extension of Q(τ).

These RM values of rigid meromorphic cocycles seem to behave like CM
values of modular functions. For example, there are conjectural Gross–Zagier
factorizations. We might also comment about some modular generating series of
RM values from the work of Darmon–Pozzi–Vonk.

Theorem 17 (modular parametrizations). For every elliptic curve E of conductor p,
there exists a non-trivial JE ∈ H1(SL2(Z[p−1]), A ×/qZ

E ), where qE is the Tate period of
E. In particular,

JE[τ] ∈ C×p /qZ
E = E(Cp).

Conjecture 18. In the situation of theorem 17, JE[τ] ∈ E(Kab), where K = Q(τ).
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2 Modular forms

Our goal is to define modular forms as some sort of “functions” on spaces para-
metrizing elliptic curves.

2.1 Framed elliptic curves

Definition 19. An elliptic curve over a field K is a smooth proper algebraic curve E
of genus 1 over K equipped with a rational point O ∈ E(K) (the origin or identity
element for the group law).

Theorem 20 (Riemann–Roch). The space Ω1
E/K of regular differentials on E over K

has dimension 1.

Definition 21. A framed elliptic curve is a pair (E, ω) where E is an elliptic curve
over a field K and ω is a K–basis of Ω1

E/K.

Theorem 22 (classification of framed elliptic curves). Let K be a field in which 6 is
invertible and let (E, ω) be a framed elliptic curve over K. There exists a unique pair of
functions x, y ∈ OE(E \ {O }) satisfying the following conditions:

(1) ordO(x) = −2 and ordO(y) = −3;
(2) x and y satisfy an equation of the form

y2 = x3 + g4x + g6

for some g4, g6 ∈ K with the property that ∆ = 4g3
4 + 27g2

6 ∈ K×, and

(3) ω =
dx
y

.

Remark. One can get an analogous result working with framed elliptic curves over
a ring R (that might not be a field) such that 6 ∈ R×.

Definition 23. We say that two framed elliptic curves (E, ω) and (E′, ω′) over a
field K are isomorphic if there exists an isomorphism of elliptic curves ϕ : E→ E′

over K with the property that ϕ∗(ω′) = ω.

Remark. In particular, AutK(E, ω) = { 1 }, in contrast to what happens when
we only consider (not framed) elliptic curves, in which case we have at least 2
automorphisms. This fact will be important when we consider moduli spaces.
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2.2 Modular forms

Definition 24. A weakly holomorphic modular form (or weak modular form) over a
field K is a rule

(E, ω)/R 7→ f (E, ω),

assigning to each framed elliptic curve (E, ω) over a K–algebra R a scalar value
f (E, ω) ∈ R, with the following properties:

(1) f (E, ω) depends only on the isomorphism class of the framed elliptic curve
(E, ω)/R, and

(2) it is compatible with base change in the sense that, given a morphism
ϕ : R1 → R2 of K–algebras and a framed elliptic curve (E, ω)/R1,

f
(

ϕ∗(E, ω)
)
= f

(
(E, ω)⊗R1,ϕ R2

)
= ϕ

(
f (E, ω)

)
.

We say that f has weight k ∈ Z if it satisfies that

f (E, λω) = λ−k f (E, ω)

for all framed elliptic curves (E, ω) over K–algebras and all λ ∈ R×.

Example 25.
(1) The rule g4 that assigns to each (E, ω) the coefficient g4 appearing in the

canonical equation (as in theorem 22) is a (weak) modular form over Z[1/6]
of weight 4. Similarly, the rule g6 that assigns to each (E, ω) the coefficient g6

appearing in the canonical equation (as in theorem 22) is a (weak) modular
form over Z[1/6] of weight 6. Indeed, to pass from (E, ω) to (E, λω), one
must apply the change of variables

(x, y) 7→ (λ−2x, λ−3y)

in the canonical equations arising from theorem 22.
(2) Any homogeneous polynomial in g4 and g6 of degree k (where g4 has degree

4 and g6 has degree 6) is a (weak) modular form of weight k.
(3) ∆ = 4g3

4 + 27g2
6 is a (weak) modular form of weight 12. By definition, for

every framed elliptic curve (E, ω) over a ring R in which 6 is invertible,
∆(E, ω) ∈ R×.

(4) If F(X, Y) is a homogeneous polynomial of degree of the form k + 12m for
some k, m ∈ Z≥0, then

F(g4, g6)

∆m
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is a weak modular form of weight k.
(5) j = g3

4/∆ is a weak modular form of weight 0; that is, a weak modular
function.

Fact 26. The space WMF(R) of weak modular forms over a ring R in which 6 is invertible
is a graded ring isomorphic to R[g4, g6, ∆−1] (where g4, g6 and ∆ have degrees 4, 6 and
12, respectively).

Definition 27. For every ring R with 6 ∈ R×, we define

Ell+(R) = { Isomorphism classes of framed elliptic curves (E, ω)/R }.

Remark. Theorem 22 shows that there is a natural bijection between Ell+(R) and
HomZ[1/6]–Alg

(
Z[1/6][g4, g6, ∆−1], R

)
. In fact, Ell+ is a functor representable by

Spec
(
Z[1/6][g4, g6, ∆−1]

)
.

2.2.1 Analytic theory

Next we work over R = C. In this situation, one can check that Ell+(C) cor-
responds to the space L of lattices in C. Indeed, to each framed elliptic curve
(E, ω)/C we can assign the period lattice{ ∫

γ
ω : γ ∈ H1(E(C), Z)

}
and to each lattice Λ we assign (the isomorphism class of) the framed elliptic curve

(C/Λ, 2πi dz).

Using this interpretation of Ell+(C), we can give a more concrete definition of
weak modular forms over C.

Definition 28. A weak modular form over C of weight k is a function f : L → C

with the property that

f (λΛ) = λ−k f (Λ) for all λ ∈ C× and all Λ ∈ L.

In order to understand these weak modular forms, one needs to study the
space L of lattices.

Lemma 29. C× acts on L by multiplication and there is a canonical bijection

L/C× ∼= SL2(Z)\H.

14



Idea of the proof. Given Λ ∈ L, we can choose an R–basis (ω1, ω2) of Λ with the
property that ω1/ω2 ∈ H. One checks that different bases differ by a matrix in
SL2(Z).

Now we can redefine weak modular forms analytically. If f is a weak modular
form over C (of some weight k), we define

f (τ) = f (Zτ ⊕Z) = f
(
C/(Zτ ⊕Z), 2πi dz

)
,

which is an analytic function on H. Furthermore,

f
( aτ + b

cτ + d

)
= f

(
Z

aτ + b
cτ + d

⊕Z
)
= f

(
(cτ + d)−1(Z(aτ + d)⊕Z(cτ + d)

))
= (cτ + d)k f

(
Z(aτ + b)⊕Z(cτ + d)

)
= (cτ + d)k f (τ).

In this way, we recover the usual analytic definition of weakly holomorphic
modular forms.

2.2.2 The Tate curve

The map e2πi · induces an isomorphism

(
C/(Z⊕Zτ), 2πi dz

) ∼= (C×/qZ,
dt
t

)
,

where q = e2πiτ and t = e2πiz. One should think of τ as a variable on H and of q as
a variable on the (punctured) unit disc.

Proposition 30. The framed elliptic curve
(
C×/qZ, dt/t

)
is described by an affine equa-

tion
Eq : y2 = x3 + g4(q)x + g6(q)

with invariant differential

ωq =
dx
y

,

where

g4(q) ≡
1

240
+

∞

∑
n=1

σ3(n)qn mod Z[1/6]×,

g6(q) ≡
−1
504

+
∞

∑
n=1

σ5(n)qn mod Z[1/6]×,

σk(n) = ∑
d|n

dk.
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Remark. We may make a change of variables to avoid the factors 2 and 3 in the
denominators and obtain an equation

Eq : y2 + xy = x3 + a4(q)x + a6(q)

with coefficients in Z[[q]]. The discriminant of Eq is given by

∆(q) = q
∞

∏
n=1

(1− qn)24,

which makes sense as a formal series in Z((q))×.

Definition 31. The framed elliptic curve (Eq, ωq)/Z((q)) given by the equations
in proposition 30 is called the Tate curve.

Remark. By abuse of notation, given a ring R, we write (Eq, ωq) (or (Eq, ωq)/R((q)))
also for the base change of (Eq, ωq)/Z((q)) to R((q)).

Definition 32. The q–expansion of a weak modular form f over a ring R is

f
(
(Eq, ωq)/R((q))

)
∈ R((q)).

Definition 33. A (holomorphic) modular form is a weakly modular form f over a
ring R whose q–expansion f (Eq, ωq) lies in R[[q]] (not just in R((q))). We write
MF(R) for the space of modular forms over R.

Remark. Suppose that 6 ∈ R×. The identification WMF(R) = R[g4, g6, ∆−1] re-
stricts to MF(R) = R[g4, g6].
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3 Elliptic curves with complex multiplication

3.1 Endomorphisms of elliptic curves

Let E be an elliptic curve over a field k. Let Endk(E) denote the ring of endomorph-
isms of E/k (i.e., morphisms E→ E of algebraic curves over k mapping O to O).
In Endk(E) there is a sum induced by the (commutative) group law of E and a
multiplication given by composition.

The ring Endk(E) is equipped with a canonical anti-involution that sends an
isogeny φ to its dual φ∗. The fact that this operation is an anti-involution means
that (φ∗)∗ = φ and (φ ◦ ψ)∗ = ψ∗ ◦ φ∗. Recall that φ ◦ φ∗ = φ∗ ◦ φ = [deg(φ)].

Fix an algebraic closure k of k. One can prove that Endk(E) is a free Z–module
of rank ≤ 4. Indeed, Endk(E) is Z–torsion-free because

nφ = 0 =⇒ n2 deg(φ) = deg(nφ) = 0 =⇒ deg(φ) = 0 =⇒ φ = 0.

Moreover, Endk(E) is free of rank ≤ 4 over Z because, given a prime ` 6= char(k),
Endk(E)⊗Z Z` acts faithfully on T`(E)(k) ∼= Z2

` .

Proposition 34. In the situation above, there are only the following possibilities:
(1) Endk(E) = Z,
(2) Endk(E) is an order in a quadratic imaginary field or
(3) char(k) = p > 0 and Endk(E) is an order in the quaternion algebra ramified at p

and at ∞.

The proof of this result can be found in Silverman’s books on elliptic curves.

3.1.1 The theory over C

Lemma 35. Let E be an elliptic curve over C. Then EndC(E) is either Z or a quadratic
imaginary order.

Proof. Consider an isogeny φ : E → E and regard it as an analytic function
φ : C/Λ→ C/Λ by means of the complex uniformization of E. Then

φ(z + ω)− φ(z) ∈ Λ for all z ∈ C and ω ∈ Λ.

In particular, if we fix ω ∈ Λ and view this as a function of z ∈ C,

φ′(z + ω)− φ′(z) = 0.

17



Therefore, φ′ takes all its values on a fundamental parallelogram, which is compact
in C, and so must be bounded. Liouville’s theorem implies that φ′(z) is constant
and so, using that φ(Λ) ⊂ Λ, there exists α ∈ C such that φ is of the form

φ(z) = α · z for all z ∈ C/Λ.

In conclusion, every endomorphism of E acts as a scalar on Ω1
E/C

.
In fact, we may identify

EndC(E) = { α ∈ C : αΛ ⊆ Λ }.

Hence, EndC(E) is a discrete subring of C (because it preserves a lattice) and so
must be either Z or a quadratic imaginary order.

Remark. The ring EndC(E) acts faithfully both on H1(E(C), Z) and on Ω1
E/C

(that
can be regarded inside H1

dR(E/C)). These actions provide embeddings of EndC(E)
into M2(Z) and into C, respectively.

Definition 36. We say that an elliptic curve E/C has complex multiplication or CM
if EndC(E) is an order in a quadratic imaginary field.

Remark. Quadratic orders are uniquely determined by their discriminant. Every
discriminant can be decomposed as D = D0c2, where D0 is a fundamental dis-
criminant: the discriminant of a maximal order (the ring of integers in a quadratic
imaginary field). A fundamental discriminant D0 must be

• of the form 2tm for m odd and square-free and 0 ≤ t ≤ 3, and
• D0 ≡ 0 or 1 mod 4.

3.2 Complex multiplication by O

Let O be an order in a quadratic imaginary field K. (Sometimes we will assume
that O is the ring of integers OK to simplify the exposition). We write D for the
discriminant of O and consider the class group Cl(D) = Cl(O), which is the
group of invertible fractional ideal classes of O (the precise definitions become
somewhat more complicated if O is not a maximal order). Let k be a field with a
fixed inclusion O ↪→ k.

Definition 37. We define CMk(O) to be the set of k–isomorphism classes of elliptic
curves E/k equipped with an isomorphism O ∼= Endk(E) with the property that,
for every α ∈ O (that we identify with an element in Endk(E)), the induced
morphism α∗ : Ω1

E/k → Ω1
E/k is given by α∗(ω) = αω.
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Remark. Given an elliptic curve E/k with CM by O , there could be two ways to
define O ∼= Endk(E) (as we can always compose with [−1]). The last condition
pins down one of the two isomorphisms.

Proposition 38. The set CMC(O) is finite and has the same number of elements as
Cl(O).

Proof. We use the correspondence between elliptic curves E/C and lattices Λ in
C up to homothety. If E has CM by O , then Λ is a projective module over O and
there are h = |Cl(O)| homothety classes of such modules.

Remark. We can use the complex uniformization of elliptic curves to describe
CMC(O) as the set of τ ∈ SL2(Z)\H that satisfy a quadratic equation

aτ2 + bτ + c = 0

with a, b, c coprime integers such that D = b2 − 4ac (i.e., they are zeros of a prim-
itive binary quadratic form of the given discriminant D). We fix representatives
τ1, . . . , τh of CMC(O).

Proposition 39. If E/C has CM by O , then j(E) is algebraic and generates a field of
degree ≤ h = |Cl(O)| over Q.

Proof. The group Aut(C/Q) acts on CMC(O). Indeed, given σ ∈ Aut(C/Q) and
φ ∈ EndQ(E), we have φσ ∈ EndQ(Eσ). Thus, φ 7→ φσ gives an identification
EndQ(E) ∼= EndQ(Eσ).

Therefore, Aut(C/Q) permutes the j–invariants j(τ1), . . . , j(τh) of the elliptic
curves in CMC(O). In particular, j(E) is the zero of a polynomial of degree ≤ h.

Let L be the field generated by j(τ1), . . . , j(τh) over the quadratic imaginary
field K = Frac(O). We fix an embedding L ↪→ C. By proposition 39, we obtain
that CML(O) ∼= CMC(O). Our next goal is to relate Cl(O) and CML(O) (which
are finite sets of the same size) algebraically (without relying on the complex
uniformization of elliptic curves).

3.3 The action of Cl(O) on CML(O)

We continue with the notation from section 3.2. Let us assume that O is a maximal
ideal for simplicity.
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Definition 40. Let a be a fractional ideal of O . We define

a ∗ E = HomO(a, E).

Fix an elliptic curve E/L with CM by O . Since E/L is an algebraic group and
EndL(E) ∼= O , we may identify E with the functor

HomL–Alg( · , E) : L–Alg→ O–Mod.

Given [a] ∈ Cl(O), we interpret HomO(a, E) again as a functor L–Alg→ O–Mod
and try to see next that it is represented by another elliptic curve in CML(O).

We may assume, up to multiplication by a scalar in O , that a is an ideal of O

(not just an integral ideal). In that case, there is a short exact sequence

0 a O O/a 0

of O–modules to which we can apply HomO( · , E) to obtain another short exact
sequence

0 HomO(O/a, E) HomO(O , E) HomO(a, E) 0.

We can interpret the last exact sequence as the definition of the algebraic group
HomO(a, E):

HomO(O/a, E) E

f f (1)
and

HomO(O , E) E

f f (1)

allow us to identify

HomO(O/a, E) = E[a] and HomO(O , E) = E

and so a ∗ E = HomO(a, E) must be the (isomorphism class of the) elliptic curve
E/E[a]. That is, we obtain a short exact sequence

0 E[a] E a ∗ E 0

and so we have an isogeny ϕa : E→ a ∗ E with Ker(ϕa) = E[a]. In particular, if a
is a principal ideal generated by α ∈ O , then ϕa = α : E→ E (and a ∗ E = E). All
in all, we defined an action of Cl(O) on CML(O).
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Working over C, the elliptic curve E/C corresponds to a lattice Λ giving rise to
a short exact sequence

0 Λ C E(C) 0.

After applying HomO(a, · ), we obtain a short exact sequence

0 HomO(a, Λ) HomO(a, C) HomO(a, E(C)) 0

0 a−1Λ C (a ∗ E)(C) 0

and so a ∗ E corresponds to C/(a−1Λ). In particular, the action of Cl(O) on
CMC(O) is simply transitive.

Corollary 41. The set CML(O) is a principal Cl(O)–set with an action of Gal(L/K).

Proposition 42. The natural actions of Gal(L/K) and of Cl(O) on CML(O) commute.

Proof. Take a ∈ Cl(O) and σ ∈ Gal(L/K). We want to prove that (with the nota-
tion from before) HomO(a, E)σ = HomO(a, Eσ). We use the short exact sequences
characterizing these algebraic groups. Namely, a ∗ E is defined by the sequence

0 E[a] E a ∗ E 0.

After applying σ to it, we obtain another short exact sequence

0 E[a]σ Eσ (a ∗ E)σ 0.

But E[a]σ = Eσ[a] because σ acts trivially on K. Therefore, the last short exact
sequence is that which characterizes a ∗ (Eσ) and we conclude that

(a ∗ E)σ = a ∗ (Eσ).

Lemma 43. Let G be a group and let X be a principal G–set (with a left action of G). Let
x0 ∈ X. If X is also equipped with a commuting right action of another group Γ, there is a
homomorphism r : Γ→ G defined as follows: for every σ ∈ Γ, r(σ) is the unique element
of G such that

xσ
0 = r(σ) ∗ x0.

Proof. The existence and uniqueness of r(σ) with the property that xσ
0 = r(σ) ∗ x0

follow from the fact that X is principal as a G–set.
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To see that r is a group homomorphism, take σ, τ ∈ Γ and compute

xστ
0 = (xσ

0 )
τ =

(
r(σ) ∗ x0

)τ
= r(σ) ∗ xτ

0 = r(σ) ∗ (r(τ) ∗ x0) =
(
r(σ)r(τ)

)
∗ x0.

Therefore, r(στ) = r(σ)r(τ).

Remark. The homomorphism r : Γ → G depends on the choice of x0 ∈ X, but
replacing x0 with h ∗ x0 conjugates r by h.

Corollary 44. Let E ∈ CML(O). There is a homomorphism r : Gal(L/K) → Cl(O)

(independent of E) characterized by

Eσ = r(σ) ∗ E.

Recall that L = K(j(τ1), . . . , j(τh)) and so r is injective. In particular, L is an
abelian extension of K of degree ≤ h. But observe that we have yet to prove that r
is surjective.

3.3.1 The effect of r on Frobenius elements

Let S be the set of prime ideals p of O = OK satisfying one of the following
properties:

(1) p is ramified in L/K,
(2) some of the elements j(τ1), . . . , j(τh) fails to be integral at p or
(3) the natural map { j(τ1), . . . , j(τh) } → OL/P is not injective for some prime

ideal P of OL lying over p or, equivalently,

p
∣∣ NL/K

(
∏
k<l

(
j(τk)− j(τl)

))
.

Proposition 45. Let p be a prime ideal of OK such that p 6∈ S and let σp ∈ Gal(L/K) be
the Frobenius element at p. Then r(σp) = p.

Proof. Let E ∈ CML(OK). Recall that we have an isogeny ϕp : E→ p ∗ E, defined
over OL, with Ker(ϕp) = E[p]. We consider its reduction modulo P (for a prime P

of OL lying over p), ϕp : E→ p ∗ E.
• Case 1: pOK = pp with p 6= p. Then ϕp is an isogeny of degree p and we

claim that ϕp is (purely) inseparable. Indeed, we can choose an ideal a such
that ap = αOK for some α ∈ OK and p

∣∣- N(a). Then the composition

E p ∗ E a ∗ p ∗ E ∼= E
ϕp ϕa
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is inseparable (as it induces multiplication by α on differentials) and this is
only possible if the first arrow is inseparable. On the other hand, there is a
unique inseparable isogeny of degree p (up to isomorphisms) which is the
p–th power Frobenius. Therefore, j(p ∗ E) = j(E(p)

). By the last condition
on the set S, we conclude that p ∗ E = Eσp .

• Case 2: pOK = p2. We can apply the same argument as above.
• Case 3: pOK is a prime ideal. In that case, ϕp is the multiplication-by-p

morphism. On the other hand, E must have supersingular reduction at P
and so, on E, the endomorphism [p] differs from the p2–th power Frobenius
morphism by an isomorphism.

3.4 Elliptic curves over finite fields

Let E be an elliptic curve over a finite field k with q = p f elements. We have a
(relative) Frobenius morphism

φp : E→ E(p)

given on coordinates by φp(x, y) = (xp, yp). One can check that φ is a purely
inseparable isogeny of degree p and so admits a dual isogeny

φ∗p : E(p) → E.

Write E[p] for the kernel of the multiplication-by-p morphism [p] : E → E, re-
garded as a finite flat group scheme over k. Since [p] = φ∗p ◦ φp and φp is purely
inseparable, Ker(φ) is a connected group scheme and so E[p] can have at most p
points (over an algebraic closure k):

either E[p](k) = 0 or E[p](k) ∼= Z/pZ.

Observe that E(p f ) = E and so φ
f
p ∈ Endk(E). Often (more precisely, when E

is ordinary) this endomorphism φ
f
p is not in Z (i.e., is not multiplication by an

integer).

Theorem 46. Let E be an elliptic curve over k as above. The following conditions are
equivalent:

(1) E[p](k) = 0 and [p] : E→ E is purely inseparable;
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(2) Endk(E) is an order in a quaternion algebra B such that

B⊗Q Q`
∼= M2(Q`) for all primes ` 6= p

and
B⊗Q Qp and B⊗Q R are division algebras.

If these conditions hold, j(E) ∈ Fp2 .

Definition 47. We say that an elliptic curve E/k is supersingular if it satisfies the
equivalent conditions of theorem 46; otherwise, we say that E/k is ordinary.

Theorem 48. If E/k is an ordinary elliptic curve, then
(1) E[p](k) ∼= Z/pZ and φ∗p : E(p) → E is separable, and
(2) the ring Endk(E) is a quadratic imaginary order.

3.4.1 Reduction of elliptic curves with CM

Let O be an order in a quadratic imaginary field K and let L = K(j(τ1), . . . , j(τh))

for a set of representatives τ1, . . . , τh of the classes in CMC(O). Write k for the
residue field of L.

Proposition 49. Let E be an elliptic curve over L and let P be a prime ideal of OL at
which E has good reduction. Write E for the reduction of E modulo P. The canonical
morphism

EndL(E)→ Endk(E)

is injective.

Proof. If φ ∈ EndL(E) lies in the kernel of the reduction, then φ induces the 0
morphism on E[`n](k) for every prime ` 6= p and every n ≥ 1. But reduction
modulo P induces an isomorphism E[`n](L) ∼= E[`n](k), so φ|E[`n](L) = 0. As the
kernel of a non-trivial isogeny is finite, this is only possible if φ = 0.

Theorem 50. Let E ∈ CML(OK) and let P be a prime ideal of OL at which E has good
reduction. Let p (resp. p) denote the prime of OK (resp. Z) below P.

(1) If p splits in K, then E has ordinary reduction at P.
(2) If p is inert or ramified in K, then the E has supersingular reduction at P.

Proof. First suppose that p splits in K and write pOK = pp. The isogeny

ϕp : E→ p ∗ E
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with kernel E[p] introduced in section 3.3 is a separable morphism modulo P.
Indeed, we can choose an ideal a ⊂ OK such that ap = αOK with p

∣∣- α. Then the
composition

α : E p ∗ E ap ∗ E ∼= E
ϕp ϕa

induces a map on differentials given by α∗(ω) = αω, which is 6= 0 mod P. Thus,
the reduction of ϕp must be separable (of degree p) and E[p](k) ∼= Z/pZ. In
particular, the reduction E has k–rational points of order p, which means that E is
ordinary.

Conversely, suppose that E is ordinary. For every n ∈ Z≥1, consider the
restriction

Endk(E)→ End
(
E[pn](k)

)
.

We know that E[pn](k) ∼= Z/pnZ and taking the projective limit over n we obtain
an injective morphism

Endk(E) ↪→ End
(
Tp(E)(k)

) ∼= End
(
Zp
) ∼= Zp

(the injectivity follows because a non-trivial isogeny cannot have infinitely many
points in the kernel). Therefore, we obtain

OK
∼= EndL(E) ↪→ Endk(E) ↪→ Zp

and this is only possible if p splits in K.

3.5 Class field theory

Let K be a number field with ring of integers OK. Let c be an ideal of OK. We define
I(c) to be the set of fractional ideals I of OK such that (I, c) = 1 and P(c) to be the
subset of principal fractional ideals (α) of OK such that α ≡ 1 mod c.

Main theorem of class field theory. There is an abelian extension Hc of K equipped
with an isomorphism

rec = recc : I(c)/P(c)→ Gal(Hc/K)

satisfying the following properties:
(1) the extension Hc/K is unramified away from c, and
(2) rec(p) = σp for all prime ideals p ⊂ OK such that p

∣∣- c (where σp denotes the
Frobenius at p).
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The abelian extension Hc, called the ray class field of K of conductor c, is uniquely
determined by these properties.

Remark. When c = 1, the field H = H1 is the Hilbert class field of K: the maximal
unramified abelian extension of K, which satisfies that Gal(H/K) ∼= Cl(K).

Theorem 51. If K is a quadratic imaginary field, the extension L = K(j(E1), . . . , j(Eh))

generated by the j–invariants of the elliptic curves { E1, . . . , Eh } = CMC(OK) is the
Hilbert class field of K.

Proof. Recall that we constructed

r : Gal(L/K)→ Cl(OK)

characterized by r(σp) = p for all prime ideals p of OK outside a finite set S.
Therefore, r must be the inverse of rec.

3.6 Galois action on torsion points

Let OK be the ring of integers of a quadratic imaginary field K and consider
CMC(OK) = { E1, . . . , Eh }. We saw that the values j(E1), . . . , j(Eh) are defined
over the Hilbert class field H of K. Thus, we can fix E ∈ CMH(OK). Our next goal
is to study the action of Gal(H/H) on the torsion points of E.

Let c be an ideal of OK. Then E[c](H) is a free (OK/c)–module of rank 1 with
an action of Gal(H/H). We write

ρE,c : Gal(H/H)→ AutOK/c(E[c](H))

for the corresponding representation.

Corollary 52. In the situation above, the representation ρE,c has abelian image.

Proof. We have
AutOK/c(E[c](H)) ∼= (OK/c)×,

which is clearly abelian.

Proposition 53. The field Lc cut out by ρE,c is the ray class field Hc of conductor c.

Proof. We have a short exact sequence

1 Gal(Hc/H) Gal(Hc/K) Gal(H/K) 1

1 P(1)/P(c) I(c)/P(c) I(1)/P(1) 1

∼= ∼= ∼=
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and so, by looking at generators,

Gal(Hc/H) ∼= P(1)/P(c) ∼= (OK/c)×/O×K .

Define CMLc(OK, c) to be the set of isomorphism classes of pairs (E, P), where
E is an elliptic curve defined over Lc with CM by OK and P is a generator of
E[c](Lc). This set is endowed with an action of I(c)/P(c) given by

a ∗ (E, P) = (a ∗ E, ϕa(P)),

where ϕa : E → a ∗ E is the canonical isogeny associated with a as described in
section 3.3. The actions of I(c)/P(c) and of Gal(H/H) on CMLc(OK, c) commute.
Therefore, by lemma 43, we obtain an isomorphism

r : Gal(Lc/K)→ I(c)/P(c).

On principal ideals, we have

r−1(αOK)(E, P) = (E, ϕα(P)) = (E, αP).

By a density argument, we see that r must be the inverse of the reciprocity map
recc. In conclusion, Lc = Hc by the main theorem of class field theory.

Corollary 54. The values j(τ1), . . . , j(τh) together with the coordinates of all the torsion
points of E1, . . . , Eh generate the maximal abelian extension of K.

3.7 Integrality

Let K be a finite extension of Qp and let E be an elliptic curve over K. Let OK be the
ring of integers of K and let p denote its maximal ideal. By hypothesis, j(E) ∈ K.

Suppose that ordp(j(E)) < 0. Recall that the q–expansion of j is of the form

j(q) =
1
q

(
1 + 744q + 196884q2 + · · ·

)
∈ Z((q))×

and so we can express

q =
1
j

(
1 + 744q + · · ·

)
=

1
j

(
1 + 744

1
j
(
1 + 744q + · · ·

)
+ · · ·

)
=

1
j
+ a2

1
j2
+ a3

1
j3
+ · · · ∈ Z[[j−1]]
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Write jE = j(E) and

qE =
1
jE

+ a2
1
j2E

+ a3
1
j3E

+ · · · ∈ p,

which is the Tate period of E/K. The ring homomorphism

ϕqE : Z((q)) −→ K

q 7−→ qE

induces an isomorphism Eq ⊗Z((q)),ϕqE
K ∼= E (i.e., allows us to view E in terms

of the Tate curve Eq). In particular, E(K) ∼= K×/qZ
E . If E has split multiplicative

reduction, such isomorphism is even defined over K.

Theorem 55. In the situation above, consider a prime number `. If j(E) 6∈ OK, the
representation

Gal(K/K) ↪→ AutZ`
(T`(E)) ∼= GL2(Z`)

is not abelian.

Proof. We may assume, up to replacing K with a quadratic extension, that the
isomorphism E(K) ∼= K×/qZ

E is compatible with the action of Gal(K/K). Then

E[`n](K) =
(
K×/qZ

E
)
[`n] = { ζa

`n qb/`n

E : a, b ∈ Z/`nZ }.

Therefore, the field generated by the `n–torsion points of E is K(ζ`n , q1/`n

E ), which
is not abelian over K if n� 0 (e.g., using Kummer theory).

Corollary 56. Let K be a quadratic imaginary field and let H be its Hilbert class field. If
E is an elliptic curve with CM by OK, then j(E) ∈ OH.

Proof. Suppose that there exists a prime ideal p of OH at which j(E) is not integral.
We can take the base change of E from H to Hp and apply the previous theorem to
conclude that the image of the decomposition group at p under the representation
Gal(H/H)→ T`(E)(H) is not abelian, thus contradicting corollary 52.

3.8 The class number 1 problem (revisited)

Theorem 57. Let D ∈ Z<0 be a fundamental discriminant and let K = Q(
√

D). If the
class number of K is h = 1, then

j
(

D +
√

D
2

)
∈ Z
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and, in fact, this value is a perfect cube.

Proof. Let E be the elliptic curve over C corresponding to the point

τ =
D +
√

D
2

∈ H.

One checks that q = e2πiτ ∈ R and so j(q) ∈ R. Therefore, j(E) ∈ OK ∩R = Z.
The fact that this value is a perfect cube can be proved using the theory of modular
curves of higher levels.

Definition 58. Let E be an elliptic curve over a field L and let N ∈ Z≥1. A full
level N structure on E is a basis (P1, P2) of E[N](L) as a (Z/NZ)–module.

Remark. Using the Weil pairing 〈 · , · 〉 of E, the level structure (P1, P2) provides a
primitive N–th root of unity 〈P1, P2〉 in L.

Fix a primitive N–th root of unity ζN ∈ Q. Consider the functor

Γ(N) : Q(ζN)–Alg→ Set

that sends a Q(ζN)–algebra L to the set of L–isomorphism classes (E, P1, P2), where
E/L is an elliptic curve with full level N structure (P1, P2) such that 〈P1, P2〉 = ζN .

Proposition 59. If N > 2, the functor Γ(N) from the previous paragraph is represented
by a smooth affine curve Y(N) over Q(ζN) that is geometrically connected.

We will prove that we can express Spec(Q[j1/3]) as a quotient of Y(3) and that
will allow us to conclude the proof of theorem 57.

3.9 Modular curves

Let N ∈ Z≥1 and fix a primitive N–th root ζN of 1. The modular curve Y(N)

(of full level N) is an affine curve over Q(ζN) whose L–rational points, for an
extension L/Q(ζN), correspond to the L–isomorphism classes of triples (E, P1, P2),
where E is an elliptic curve over L and P1, P2 form a basis of E[N](L) and satisfy
that 〈P1, P2〉 = ζN.

Proposition 60. If N ≥ 3, the map

(E, P1, P2) 7→ E

defines a Galois covering Y(N)→ Y(1) with Galois group PSL2(Z/NZ).

29



Proof. An automorphism of Y(N) over Y(1) must be of the form

(E, P1, P2) 7→ (E, aP1 + bP2, cP1 + dP2)

for some (
a b
c d

)
∈ SL2(Z/NZ)

because
〈aP1 + bP2, cP1 + dP2〉 = 〈P1, P2〉ad−bc = ζN.

In fact, since (E, P1, P2) ∼= (E,−P1,−P2) via the automorphism [−1], we obtain an
isomorphism Aut(Y(N)/Y(1))→ SL2(Z/NZ)/{±1 } = PSL2(Z/NZ).

From now on, assume for simplicity that N is prime. We will see that the base
change Y(N)Q → Y(1)Q has the same Galois group.

The maximal subgroups of PSL2(Z/NZ) are:
• the exceptional subgroups A4, S4 and A5,
• the Borel subgroup of upper triangular matrices and
• the normalizer H of a Cartan subgroup C, which satisfies that [H : C] = 2

and can be
– either the normalizer

H =

{(∗ 0
0 ∗

)}
∪
{(

0 ∗
∗ 0

)}
of the split Cartan subgroup

C =

{(∗ 0
0 ∗

)}
,

– or the normalizer H of the non-split Cartan subgroup C = F×N2 inside
GL2(Z/NZ).

Now we have to produce elliptic curves E/Q with automorphisms of E[N](Q)

not contained in any of the proper subgroups of PSL2(Z/NZ).
Let E be a Tate elliptic curve defined over a number field L, with j(E) 6∈ OLP

for some prime P of OL. If N
∣∣- − ordP(j(E)) = ordP(qE), then the image of the

representation
ρE,N : Gal(L/L)→ SL2(Z/NZ)
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given by E[N](L) contains an element of order N, namely{
ζN 7→ ζN,

q1/N
E 7→ ζNq1/N

E .

Therefore, (at least for N > 5) Gal(Y(N)/Y(1)) cannot be contained in an excep-
tional group or in the normalizer of a Cartan subgroup because the orders of those
groups are not divisible by N.

To rule out the Borel, let E be an elliptic curve with CM by OK with N inert in
K. We may assume that E is defined over the Hilbert class field H of K. By class
field theory, ρE,N(Gal(H/H)) is contained in a non-split Cartan subgroup F×N2 (as
E[N](H) is a vector space over OK/NOK = FN2) and cannot be contained in the
Borel subgroup.

Alternatively, we can work over C. The points of Y(N)C correspond to the
quotient Γ(N)\H via

τ 7→
(

C/(Z⊕Zτ),
1
N

,
τ

N

)
and then the covering is given by the natural projection Γ(N)\H→→ Γ(1)\H.

Given a subgroup H of PSL2(Z/NZ), we have the quotient YH(N) = Y(N)/H
attached to H. The element j(E) of Y(1) lifts to an L–rational point on YH(N) if and
only if the representation ρE,N : Gal(L/L)→ SL2(Z/NZ) has image contained in
a conjugate of H.

For example, for N = 3, the group PSL2(Z/3Z) can be identified with A4

(viewing the elements of the group as permutations on P1(F3)). Consider its
2–Sylow subgroup H ∼= Z/2Z×Z/2Z, so that YH(3) is a cyclic Galois cover of
Y(1) with Galois group Z/3Z.

Proposition 61. In the situation from the previous paragraph,

YH(3) = Spec
(
Q(ζ3)(j1/3)

)
.

Proof. By Kummer theory, the function field F of YH(3) has to be of the form
Q(ζ3)(j)(?1/3) for some element ? ∈ Q(ζ3)(j). But this extension is ramified
precisely at j = ∞ and j = 0. That is, the polynomial X3 − ? has zeros or poles
only at j = 0 and j = ∞. Thus, at least over C we see that FC = C(j)(j1/3). A
descent argument implies that F = Q(ζ3)(j1/3).

Corollary 62. Let E/L be an elliptic curve. The value j(E) is a cube in L if and only if
ρE,3(Gal(L/L)) contains no element of order 3.
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Proof of theorem 57 (continuation). If E/C has CM by a maximal order OK with class
number h(OK) = 1 and discriminant D, then D must be prime.

• If 3
∣∣ D, then D = −3 and j(E) = 0.

• If 3
∣∣- D, then 3 is either split or inert in K and ρE,3(GQ) is contained in the

normalizer of a Cartan subgroup, either split or inert. That is,

ρE,3(GQ) ⊆

{±1 }n
(
(Z/3Z)× × (Z/3Z)×

)
if 3 splits,

{±1 }n F×9 if 3 is inert.

The orders of these groups are not divisible by 3.
Hence j(E) is a cube by corollary 62.

Remark. The condition that D is a fundamental discriminant is important. For
example, for D = −12, we have the order

O = OD = Z[
√
−3] ( Z

[1 +
√
−3

2

]
and j(

√
−3) = 243353 fails to be a cube.

Definition 63. We define Y+
ns(N) to be the modular curve YH(N) for the normal-

izer H of a non-split Cartan subgroup of SL2(Z/NZ).

Theorem 64. Let D be a fundamental discriminant of class number 1. If D > 4N, then

j
(

D +
√
−D

2

)
lifts to a rational point on Y+

ns(N)/Q.

Therefore, one can study the class number 1 problem by classifying the integral
points on X+

ns(N). This has been done
• for N = 24 by Heegner and Stark;
• for N = 7 and 9 by Kenku;
• for N = 5 by I. Chen (after a suggestion of Siegel);
• for N = 16, 20 and 21 by Baran;
• for N = 13 by Balakrishnan, Dogra, Müller, Tuitman and Vonk.
More generally, for an elliptic curve E with CM by an order O = OD, the

j–invariant j(E) lifts to Y0(`) = YBorel(`) if ` splits as a product λλ with λ 6= λ in
K = Q(

√
D): we obtain a point (E, E[λ]) ∈ Y0(`)(H), where H is the Hilbert class

field of K. Such points are called Heegner points on Y0(`) and they can be used to
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obtain rational points on elliptic curves. Moreover, on Y0(`) there are interesting
units such as

UN(z) =
∆(z)
∆(`z)

whose values at Heegner points give units in OH[1/`]×.

3.10 Factorizations of singular moduli

Let D1 and D2 be two distinct (negative) fundamental discriminants. Define

J(D1, D2) = ∏
disc(τ1)=D1
disc(τ2)=D2

(
j(τ1)− j(τ2)

)
,

where the product is over the points τ1, τ2 ∈ SL2(Z)\H such that disc(τ1) = D1

and disc(τ2) = D2. This quantity is in fact in Z because of its Galois invariance.

Theorem 65 (Gross–Zagier). Let ` be a prime number. If `
∣∣ J(D1, D2), then

(1)
(D1

`

)
6= 1 6=

(D2

`

)
and

(2) ` divides a positive integer of the form

D1D2 − x2

4
with x ∈ Z.

Remark. The prime numbers appearing in the second column of table 1 are all ≡ 0
or 2 mod 3. We can justify that fact using the first part of the theorem as follows:
we can express

j(τD) = j(τD)− j
(3 +

√
3

2

)
and this difference can only be divisible by the primes that are either inert or
ramified in Q(

√
3). One can also check that the bound on the prime numbers in

terms of the discriminant given by the second part of the theorem is satisfied.

Proof. For i = 1 or 2, let ODi be the (maximal) order of discriminant Di and let Hi

be the corresponding Hilbert class field. Since `
∣∣ J(D1, D2), we can pick a prime

ideal λ of OH1H2 lying over ` and such that λ
∣∣ (j(τ1)− j(τ2)) for some τ1 and τ2

appearing in the definition of J(D1, D2). Let E1/OH1 and E2/OH2 be the elliptic
curves associated with τ1 and τ2, respectively. Observe that both E1 and E2 have
good reduction at λ and let Ei denote the reduction of Ei modulo λ.

(1) Suppose, for the sake of contradiction, that(D1

`

)
= 1.
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By theorem 50, E1 has ordinary reduction at λ and so

EndF`
(E1) ∼= EndQ(E1) ∼= OD1 .

But, as j(τ1) ≡ j(τ2) mod λ, we deduce that E1
∼= E2. Therefore, we obtain

an inclusion
OD2
∼= EndQ(E2) ↪→ EndF`

(E2) ∼= OD1 ,

which is impossible because D1 6= D2 and both are fundamental discrimin-
ants.
In conclusion, both E1 and E2 must have supersingular reduction at every
prime dividing J(D1, D2).

(2) We argue again using how endomorphisms of CM elliptic curves behave
under reductions. By the arguments in the previous part, there exist an order
R in a quaternion algebra ramified at ` and ∞ (isomorphic to EndF`

(Ei) for
i = 1 and 2) and inclusions

OD1 ↪→ R←↩ OD2

(cf. proposition 49). Now we can find conditions that such an order R must
satisfy in order to contain both OD1 and OD2 . The theorem will follow from
the next proposition.

Proposition 66. Let R be an order in a quaternion algebra ramified exactly at ` and ∞.
If R contains both OD1 and OD2 , then ` divides

D1D2 − x2

4
> 0 for some x ∈ Z.

Proof. Let B be the quaternion algebra ramified exactly at ` and at ∞. That is,

B⊗Q Qp ∼= M2(Qp) for every prime p 6= `,

B⊗Q R ∼= H and B⊗Q Q` is a division algebra over Q`. We may assume that R is
its maximal order. Consider the pairing

〈x, y〉 = Tr(xy),

which satisfies that
(1) 〈 · , · 〉 is bilinear and positive definite and
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(2) if e1, e2, e3, e4 is a Z–basis of R, then

det(R) = det
(
〈ei, ej〉

)
= `2.

Let ϕi : ODi ↪→ R denote the given inclusions and write δ1 = ϕ1(
√

D1) and
δ2 = ϕ2(

√
D2). Consider the lattice Λ = Z⊕Zδ1 ⊕Zδ2 ⊕Zδ1δ2 inside R. We

have det(Λ) = [R : Λ]2 det(R). The pairing 〈 · , · 〉 on Λ is determined by the
pairing matrix

M =


〈1, 1〉 〈1, δ1〉 〈1, δ2〉 〈1, δ1δ2〉
〈δ1, 1〉 〈δ1, δ1〉 〈δ1, δ2〉 〈δ1, δ1δ2〉
〈δ2, 1〉 〈δ2, δ1〉 〈δ2, δ2〉 〈δ2, δ1δ2〉
〈δ1δ2, 1〉 〈δ1δ2, δ1〉 〈δ1δ2, δ2〉 〈δ1δ2, δ1δ2〉



=


2 0 0 x
0 −2D1 −x 0
0 −x −2D2 0
x 0 0 2D1D2

,

where we defined x = Tr(δ1δ2). Hence,

det(Λ) = det(M) = (4D1D2 − x2)2.

On the other hand, to obtain the determinant of Λ̃ = ϕ1(OD1)ϕ2(OD2) we observe
that Λ̃ is generated in the same way as Λ but replacing Di with (1 + Di)/2. In
particular, [Λ : Λ̃] = 16 and so

det(Λ̃) =

(
D1D2 − x2

4

)2

All in all,

`2 = det(R)
∣∣ det(Λ̃) =

(
D1D2 − x2

4

)2

.

The fact that D1D2 − x2 is positive follows from Cauchy–Schwartz’s inequality:

〈δ1, δ2〉2 ≤ 〈δ1, δ1〉〈δ2, δ2〉.
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4 Complex multiplication on Shimura curves

The course will now shift to more analytic aspects of the theory. Next, we are
going to study p–adic variants of singular moduli based on CM points on Shimura
curves.

4.1 Quaternion algebras

Definition 67. A quaternion algebra over a field k is a central simple algebra of
dimension 4 over k.

Example 68. The algebra of matrices M2(k) is a quaternion algebra. In fact, for
every quaternion algebra B over k, B⊗k k ∼= M2(k) (as algebras over the algebraic
closure k).

Example 69. Over Q, we have Hamilton’s quaternions H = Q(i, j, k), where
i2 = j2 = k2 = −1 and ij = k = −ji, jk = i = −kj and ki = j = −ik.

Let B be a quaternion algebra over k and take α ∈ B \ k. Then K = k(α) is a
quadratic algebra over k. If K is a quadratic field extension of k, we can regard
B as a right K–module with a left action of B itself and in this way we obtain an
embedding of B in M2(K). Moreover, we can pick j ∈ B such that B = K ⊕ Kj
(eigenspace decomposition for the B–action) with δ = j2 ∈ k and jα = αj. We
sometimes write B = (K, δ), as this quaternion algebra is determined by K and the
image of δ in k×/ NK/k(K×).

4.1.1 Classification over Q

To classify quaternion algebras over Q, we first look at the local situation.
(1) Over R, there are only two (isomorphism classes of) quaternion algebras:

M2(R) and H = (C,−1).
(2) Similarly, for a prime number `, there are two (isomorphism classes of)

quaternion algebras over Q`: M2(Q`) and a division algebra D over Q`.

Definition 70. We say that a quaternion algebra B over Q is split at a place v if
B⊗Q Qv ∼= M2(Qv); otherwise, we say that B is ramified at v.

Theorem 71. Let B be a quaternion algebra over Q and let Ram(B) be the set of places
of Q at which B becomes a division algebra (after base change). The set Ram(B) is finite
with even cardinality and determines B up to isomorphism. Conversely, for every finite set
S of places of Q with even cardinality, there exists a quaternion algebra BS over Q such
that Ram(BS) = S.
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Example 72. Let S = {∞, p }. Then we can construct BS = EndFp
(E)⊗Z Q for a

supersingular elliptic curve E over the finite field Fp2 .

Remark. The Brauer group of a field k classifies the central simple algebras over k
and the 2–torsion corresponds to (isomorphism classes of) quaternion algebras.
Theorem 71 can be reinterpreted as the short exact sequence

0 Br(Q)2
⊕

v
Br(Qv)2 Z/2Z 0.Σ

Definition 73. A quaternion algebra B over Q is called definite if ∞ ∈ Ram(B);
otherwise, B is called indefinite.

Definition 74. An order in a quaternion algebra B over Q is a subring R of B which
is a free Z–module of rank 4.

Example 75.
(1) The ring M2(Z) (or a conjugate of it) is an order in M2(Q). Similarly, given

N ∈ Z≥1,

M0(N) =

{(
a b
c d

)
: a, b, d ∈ Z and c ∈ NZ

}
is an order in M2(Q).

(2) In the hamiltonian quaternion algebra B = Q(i, j, k), we have orders such as
Z[i, j, k] and Z[i, j, k, (1 + i + j + k)/2] (maximal).

More generally, we are going to use Z[N−1]–orders for N ∈ Z≥1 (i.e., subrings
that are free Z[N−1]–modules of rank 4).

Lemma 76. Let R be an order in a quaternion algebra B over Q. If B is definite, then R×

is finite.

Proof. The group R× is a discrete subgroup of (B ⊗Q R)×1 , which is a compact
group. Therefore, R× must be finite.

Remark. If B is indefinite, we can just say that R× is a discrete subgroup of GL2(R),
but not finite in general.
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4.2 Shimura curves

Let S be a finite set of places of Q. Suppose that S has an odd number of elements
and that ∞ ∈ S. There is no quaternion algebra ramified exactly at S. However,
we can pick v ∈ S and get a quaternion algebra BS\{v}. Let RS,v be a maximal
Z
[ 1

v
]
–order in BS\{v} if v is finite or a maximal Z–order in BS\{∞} if v = ∞. Define

ΓS,v =
(

R×S,v
)

1 = { α ∈ R×S,v : αα = 1 }.

We can fix an isomorphism ιv : BS\{v} ⊗Q Qv → M2(Qv) that allows us to regard
ΓS,v ⊆ SL2(Qv). In particular, ΓS,∞ ⊆ SL2(R) acts discretely on the upper half-
plane H by Möbius transformations. Analogously, for every p ∈ S \ {∞ }, ΓS,p

acts discretely on Hp = P1(Cp) \P1(Qp) and it turns out that ΓS,p\Hp is a rigid
analytic curve.

Theorem 77 (Cerednik–Drinfeld). Let S be a finite set of places of Q of odd cardinality
and containing ∞. There is a curve XS over Q satisfying that

(1) XS(C) ∼= ΓS,∞\H and
(2) XS(Cp) ∼= ΓS,p\Hp for every p ∈ S \ {∞ }.

Remark. If S = {∞ }, then ΓS,∞ = SL2(Z) and so we obtain a generalization of
the modular curve (of level 1).

4.3 Uniformization of Shimura curves

Keep the notation from section 4.2. We want to make some comments on the idea
of the proof of theorem 77.

Observe that there is an equivalence between elliptic curves E over Q and
abelian surfaces A endowed with a morphism ι : M2(Z)→ End(A) given by

E 7→ E× E and A 7→
(

1 0
0 0

)
A.

We can use this equivalence to generalize the moduli interpretation of modular
curves as follows: given a field L, we define XS(L) to be the set of isomorphism
classes of abelian surfaces A/L endowed with a morphism ι : RS,∞ → End(A).

We would like to understand XS over Qp when p ∈ S \ {∞ }.

Fact 78. If A is an abelian surface over Fp with quaternionic multiplication by RS,∞,
then A is isomorphic to a product E× E, where E is a supersingular elliptic curve over
Fp. Moreover, Q⊗Z EndRS,∞(A) is contained in the centralizer of BS\{∞} in M2(Bp∞).
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4.4 The p–adic upper half-plane

Consider the p–adic upper half-planeHp = Hp = P1(Cp) \P1(Qp). More gener-
ally, we may view it as a functor that sends a complete field extension L of Qp to
Hp(L) = P1(L) \P1(Qp). (Most of the time, it will suffice to work with L = Q̂ur

p ,
the completion of the maximal unramified extension of Qp.) It turns out thatHp is
represented by a rigid analytic space endowed with an action of SL2(Qp). Let us
try to understand its affinoids.

4.4.1 Some basic subspaces

Observe that we can write points as follows:

P1(Cp) = P1(OCp) = { z = [z1, z2] : z1, z2 ∈ OCp and (z1, z2) = 1 }.

Thus, we can consider the reduction modulo p

red : P1(Cp)→ P1(Fp).

The region
A∗ = red−1(P1(Fp) \P1(Fp)

)
is called the standard affinoid of Hp. We get an induced action of SL2(Zp) on A∗ and
we find other affinoids as the translates of A∗ by elements of SL2(Qp). However,
that will not be enough to see all affinoids.

We will need to use the following annuli. For t ∈ { 0, 1, . . . , p− 1 }, set

Wt = { z ∈ Cp : p−1 < |z− t|p < 1 }.

Similarly, define
W∞ = { z ∈ Cp : 1 < |z|p < p }.

Then we obtain a wide open subspaceW∗ = A∗ ∪W0 ∪ · · · ∪Wp−1 ∪W∞.

4.4.2 The action of PGL2(Qp) on A∗ andW∗

This action has the following properties:
(1) StabPGL2(Qp)(A

∗) = PGL2(Zp);
(2) PGL2(Zp) permutes the annuli (Wt)t∈P1(Fp)

by acting in the obvious way
on the subindices, and
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(3) we obtain a covering
Hp =

⋃
γ∈GL2(Qp)

γW∗.

4.4.3 The Bruhat–Tits tree

Definition 79. The Bruhat–Tits tree T of PGL2(Qp) is the graph whose vertices
are in bijection with similarity classes of Zp–lattices in Q2

p and whose edges join
(vertices corresponding to) lattices Λ1 and Λ2 such that

pΛ2 ( Λ1 ( Λ2.

Write T0 for the set of vertices of T and T1 for the set of (unoriented) edges of T .

Let us describe T locally. Consider the standard vertex v∗ = [Z2
p]. The edges

containing v∗ can be labelled as e0, . . . , ep−1, e∞ and one can define an action of the
group PGL2(Qp) acts on T with the following properties:

(1) StabPGL2(Qp)(v
∗) = PGL2(Zp);

(2) PGL2(Zp) permutes (et)t∈P1(Fp)
by acting on the subindices in the obvious

way, and
(3) T0 = { γv∗ : γ ∈ PGL2(Qp) } and T1 = { γet : γ ∈ PGL2(Qp), t ∈ P1(Fp) }.

Proposition 80. There is a unique map

r : Hp → T ,

called the reduction map, with the following properties: for every z ∈ Hp,
(1) r(z) = v∗ if and only if z ∈ A∗;
(2) r(z) = ej if and only if z ∈ Wj (here, j ∈ P1(Fp)), and
(3) r(γz) = γr(z) for all γ ∈ PGL2(Qp).

Definition 81. A subgraph Σ of T is called closed if, for every edge (v1, v2) in Σ,
the vertices v1 and v2 are also in Σ.

Definition 82. An affinoid subset of Hp is a subset of the form r−1(Σ) for some
finite closed subgraph Σ of T .

Remark. These affinoids are actually the ones that one gets on the upper half-plane
over Q̂ur

p (there are more if one adds ramification).
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4.4.4 Rigid analytic and meromorphic functions

Definition 83. A function f : Hp → Cp is rigid analytic if, for every affinoid A of
Hp, the restriction f |A is a uniform limit of rational functions with poles only in
P1(Cp) \ A.

Definition 84. The distance between two points x = [x1, x2] and y = [y1, y2] of
P1(Cp) is

d(x, y) =
∣∣∣∣det

(
x1 x2
y1 y2

)∣∣∣∣
p
.

Remark. The action of GL2(Zp) preserves distances.

For z ∈ Hp, we have

d(z, P1(Qp)) = min{ d(z, t) : t ∈ P1(Qp) } > 0.

We define for each N ∈ Z≥1 the affinoid

H≤N
p = { z ∈ Hp : d(z, P1(Qp)) ≥ p−N }.

This corresponds to the part of T that is at distance ≤ N (edges) from v∗. It is easy
to see that

Hp =
⋃

N≥1

H≤N
p .

Each H≤N
p is obtained by removing (p + 1)pN−1 residue discs of radius p−N

centred at the points of P1(Z/pNZ
)
.

Since the affinoidsH≤N
p for N ∈ Z≥1 form an admissible covering ofHp, we

can rephrase the definition of rigid analytic functions on Hp using only these
affinoids (cf. definition 83).

Definition 85. A rigid meromorphic function on Hp is a quotient of rigid analytic
functions onHp.

Our main goal now is to produce Γ–invariant rigid analytic (or meromorphic)
functions, where Γ = ΓS,p = (R×S,p)1 as in section 4.2. To simplify the notation, we
also write R = RS,p and B = BS\{p} (recall that R is the maximal Z[p−1]–order in
B). Keep that notation for the following sections.
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4.4.5 The action of Γ onHp

Let v be a vertex of T . The “vertex stabilizer”

Rv = { x ∈ R : xv = v } ∪ { 0 }

is a maximal Z–order in R, as it is formed of those elements that preserve a lattice.
But recall that BS\{p} is a definite quaternion algebra (i.e., BS\{p} ⊗Q R ∼= H). A
consequence of this will be:

Lemma 86. Let v ∈ T0. The stabilizer StabΓ(v) is a finite set.

Proof. It is easy to see that StabΓ(v) = (R×v )1. But Rv is a maximal Z–order in the
quaternion algebra B and so lemma 76 implies the result.

Lemma 87. Let A1 and A2 be two affinoids inHp. The set

{ γ ∈ Γ : γA1 ∩A2 6= ∅ }

is finite.

Proof. Let G1 and G2 be the two finite subgraphs of T corresponding to A1 and A2

(i.e., r(Ai) = Gi for i = 1 or 2). We can express

{ γ ∈ Γ : γA1 ∩A2 6= ∅ } = { γ ∈ Γ : γG1 ∩ G2 6= ∅ }
=

⋃
v1∈G1∩T0
v2∈G2∩T0

{ γ ∈ Γ : γv1 = v2 }.

But each of the latter sets (for v1 and v2) is finite. The result follows from this
because G1 × G2 is also finite.

4.4.6 The Weil symbol

Given D ∈ Div0(P1(Cp)), we can take a rational function fD satisfying that
div( fD) = D; this fD is unique up to multiplication by constants.

Definition 88. The Weil symbol attached to two divisors D1,D2 ∈ Div0(P1(Cp))

with disjoint supports is
[D1;D2] = fD1(D2),

where functions on P1(Cp) are extended to Div0(P1(Cp)) by multiplicativity.

Proposition 89. The Weil symbol satisfies the following properties:
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(1) It is bilinear: for every D1,D2,D3 ∈ Div0(P1(Cp)),

[D1 +D2;D3] = [D1;D3] · [D2;D3]

and
[D1;D2 +D3] = [D1;D2] · [D1;D3].

(2) It is symmetric: for every D1,D2 ∈ Div0(P1(Cp)),

[D1;D2] = [D2;D1] (Weil reciprocity).

(3) It is SL2(Qp)–equivariant: for every D1,D2 ∈ Div0(P1(Cp)) and γ ∈ SL2(Qp),

[γD1; γD2] = [D1;D2].

(4) For (distinct) points x1, x2, y1, y2 ∈ P1(Cp),

[(x1)− (x2); (y1)− (y2)] =
(x1 − y1)(x2 − y2)

(x1 − y2)(x2 − y1)
(cross-ratio).

Lemma 90. LetD1,D2 ∈ Div0(P1(Cp)) and let N ∈ Z≥1. If there is t ∈ P1(Qp) such
that d(x, t) ≤ p−2N for all x ∈ Supp(D1) and d(y, t) ≥ p−N for all y ∈ Supp(D2),
then ∣∣[D1;D2]− 1

∣∣
p ≤ p−N.

Proof. Since SL2(Zp) acts transitively on P1(Qp) and preserves distances, we may
assume that t = 0. Moreover, by bilinearity, we may assume that D1 = (x1)− (x2)

and D2 = (y1)− (y2). In this simplified situation,

[D1;D2] =
(x1 − y1)(x2 − y2)

(x1 − y2)(x2 − y1)
≡ 1 mod pN

by the conditions on the valuations of the xi and the yi.

Corollary 91. Let D1,D2 ∈ Div0(Hp). The infinite product

[D1;D2]Γ = ∏
γ∈Γ

[D1; γD2]

converges absolutely.

Proof. Choose N ∈ Z≥1 large enough so that Supp(D1) and Supp(D2) are both in
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H≤N
p . By lemma 87,

γH≤N
p ∩H≤2N

p = ∅ for all but finitely many γ ∈ Γ.

For such γ, the connected space γH≤N
p must be contained in one of the residue

discs of radius p−2N excluded in H≤2N
p , which implies that there is tγ ∈ P1(Qp)

(a “centre” of such disc) with the property that

d(γz, tγ) ≤ p−2N and d(z, tγ) ≥ p−N

for all z ∈ H≤N
p . In particular,

d(z, tγ) ≥ p−N for all z ∈ Supp(D1)

and
d(z, tγ) ≤ p−2N for all z ∈ Supp(γD2).

Therefore, we can apply lemma 90 to D1 and γD2 using tγ and deduce that

[D1; γD2] ≡ 1 mod pNOCp .

Since these congruences hold for all but finitely many γ ∈ Γ, the product be-
comes finite modulo pN. All in all, [D1;D2]Γ converges absolutely in the p–adic
topology.

Definition 92. Consider D1,D2 ∈ Div0(Hp) that have supports with disjoint Γ–
orbits. The Γ–Weil symbol attached to D1 and D2 is the value [D1;D2]Γ defined in
corollary 91.

4.4.7 The p–adic period pairing

Given γ1, γ2 ∈ Γ, we define

〈γ1, γ2〉 = [(γ1z1)− (z1); (γ2z2)− (z2)]Γ,

where the “base points” z1, z2 ∈ Hp are chosen arbitrarily.

Proposition 93. Let γ1, γ2 ∈ Γ. The value 〈γ1, γ2〉 is independent of the choice of z1

and z2.
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Proof. Take two points z, z′ ∈ Hp and let D ∈ Div0(Hp) and γ ∈ Γ. By the
bilinearity and the Γ–invariance of the Γ–Weil symbol,

[(γz)− (z);D]Γ
[(γz′)− (z′);D]Γ

=
[(γz)− (γz′);D]Γ
[(z)− (z′);D]Γ

=
[(z)− (z′);D]Γ
[(z)− (z′);D]Γ

= 1.

Applying this result twice concludes the proof.

Proposition 94. The period pairing 〈 · , · 〉 takes values in Q×p .

Proof. We can embed B ⊗Q Qp into M2(Qp) and so Γ into SL2(Qp). For every
γ1, γ2 ∈ Γ and every σ ∈ Aut(Cp/Qp),

〈γ1, γ2〉σ = [γ1(zσ
1 )− (zσ

1 ); γ2(zσ
2 )− (zσ

2 )]Γ = 〈γ1, γ2〉

by proposition 93.

Proposition 95. The period pairing 〈 · , · 〉 is a homomorphism in each variable.

Proof. Take γ1, γ2, γ3 ∈ Γ. Let z, z′ ∈ Hp. We can compute

〈γ1γ2, γ3〉 = [(γ1γ2z)− (z); (γ3z′)− (z′)]Γ

= [(γ1γ2z)− (γ2z); (γ3z′)− (z′)]Γ · [(γ2z)− (z); (γ3z′)− (z′)]Γ

= 〈γ1, γ3〉 · 〈γ2, γ3〉

and similarly for the second variable.

All in all, 〈 · , · 〉 induces a symmetric bilinear pairing

〈 · , · 〉 : Γab × Γab −→ Q×p .

Theorem 96. The function

− vp(〈 · , · 〉) : Γab × Γab −→ Z

modulo torsion is positive definite in the sense that, for every γ ∈ Γ,

vp(〈γ, γ〉) ≤ 0

with equality if and only if γ is in the torsion subgroup of Γab.
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Corollary 97. The period pairing 〈 · , · 〉 induces a map j : Γ→ Hom(Γ, Q×p ) such that
the kernel of

vp(j( · )) : Γab −→ Hom(Γ, Z)

is precisely the torsion subgroup of Γab.

We will see that the quotient Hom(Γ, Q×p )/j(Γ) can be identified with JS(Qp),
where JS = Jac(Γ\Hp).

4.4.8 p–adic θ–functions

Next we would like to produce rigid meromorphic functions on Γ\Hp having
prescribed zeros and poles given by ∆ ∈ Div0(Γ\Hp). To do that, take a lift
D ∈ Div0(Hp) of ∆.

Definition 98. The p–adic θ–function associated with D is the function

θD(z) = [(z)− (η);D]Γ,

where η ∈ Hp is an arbitrary base point.

Proposition 99. Let D ∈ Div0(Hp).
(1) The function θD is a rigid meromorphic function onHp.
(2) The function θD is Γ–invariant up to multiplication by scalars, in the sense that

there exists cD : Γ→ C×p with the property that

θD(γz) = cD(γ) · θD(z) for all γ ∈ Γ and z ∈ Hp.

Proof. Using the properties of the Γ–Weil symbol, we can compute

θD(γz) = [(γz)− (η);D]Γ = [(z)− (γ−1η);D]Γ
= [(z)− (η);D]Γ · [(η)− (γ−1η);D]Γ = θD(z) · [(γη)− (η);D]Γ

and so we can define cD(γ) = [(γη)− (η);D]Γ. Moreover, this expression does
not depend on the choice of η ∈ Hp.

Definition 100. Let D ∈ Div0(Hp). The function cD : Γ→ C×p defined by propos-
ition 99 is called the factor of automorphy associated with θD.

Theorem 101. Let D ∈ Div0(Hp) and let ∆ ∈ Div0(Γ\Hp) be its image. If the factor
of automorphy cD belongs to j(Γ), where j is the map from corollary 97 induced by the
period pairing, then there exists a rigid meromorphic function F∆ : Γ\Hp → P1(Cp) such
that div(F∆) = ∆.
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Proof. Since cD ∈ j(Γ), there exists α ∈ Γ such that

cD(γ) = 〈γ, α〉 = [(γη)− (η); (αη′)− (η′)]Γ.

After replacing D with D −
(
(αη′)− (η′)

)
(which gives another lift of ∆), we may

assume that cD(γ) = 1 for all γ ∈ Γ. But in that case the function θD is Γ–invariant
and so descends to a function on Γ\Hp that we call F∆. By the definition of

F∆(z) = [(z)− (η);D]Γ

as an infinite product, one checks that div(F∆) = ∆.

In general, for D ∈ Div0(Hp) lifting ∆ ∈ Div0(Γ\Hp), the image of cD in
Hom(Γ, C×p )/j(Γ) encodes the image of the divisor ∆ in the jacobian JS(Cp) (where
JS = Jac(Γ\Hp)).

4.4.9 Cohomological formulation

Let M× denote the multiplicative group of non-zero rigid meromorphic functions
onHp. Observe that M× is a Γ–module with the action given by

(γ f )(z) = f (γ−1z).

Given D ∈ Div0(Hp), we defined θD ∈ H0(Γ, M×/C×p ). Taking cohomology of
the short exact sequence

0 C×p M× M×/C×p 0,

we obtain an exact sequence

0 C×p H0(Γ, M×) H0(Γ, M×/C×p ) H1(Γ, C×p ) = Hom(Γ, C×p )

The automorphy factor cD represents the obstruction to lifting θD to an element in
H0(Γ, M×).

4.5 CM points on XS

Let S and XS be as in theorem 77. For every field L/Q, the points in XS(L)
correspond to isomorphism classes of abelian surfaces A over L endowed with a
morphism ι : R∞ ↪→ End(A), where R∞ is the maximal order in BS\{∞}.
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Definition 102. A quaternionic abelian surface A is called special if

EndR∞(A) 6= Z.

Theorem 103. Let A be an abelian surface defined over a field L of characteristic 0
endowed with an embedding ι : R∞ ↪→ End(A). If E = EndR∞(A) 6= Z, then E is an
order in a quadratic imaginary field K in which all places ` ∈ S are non-split (i.e., the
discriminant D of K satisfies that(D

`

)
6= 1 if ` is finite

and D < 0 for the condition at ∞).

Sketch of the proof. To shorten notation, write M0 = End(A) and M = M0 ⊗Z Q.
The algebra M contains BS\{∞} ⊗Q K, where K = EndR∞(A) ⊗Z Q and so we
deduce that dimQ(M) ≥ 4 dimQ(K). Since M acts faithfully on H1(A(C), Q) and
M0 preserves a lattice H1(A(C), Z), we have

rankZ(M0) = dimQ(M) = dimR(M⊗Q R).

But M⊗Q R can be embedded in M2(C) via its action on Ω1(A/C). Therefore,
dimR(M⊗Q R) ≤ 8 and dimQ(K) ≤ 2, which implies that K is a quadratic field.
Finally, from

M2(K⊗Q R) ∼= BS\{∞} ⊗Q K⊗Q R ↪→ M⊗Q R ↪→ M2(C)

we deduce that K⊗Q R ∼= C, which means that K is quadratic imaginary. All the
inequalities above are in fact equalities.

The quadratic imaginary field K splits BS\{∞} because

K = EndR∞(A)⊗Z Q ⊆ EndR∞

(
H1(A(C), Z)

)
⊗Z Q

and the latter is the normalizer of R∞ in End
(
H1(A(C), Z)

)
⊗Z Q ∼= M4(Q),

which is just BS\{∞}. That is to say, K ⊆ BS\{∞}. Therefore, the subalgebra K⊗Q Qp

of the division algebra BS\{∞} ⊗Q Qp is a field for every place p ∈ S \ {∞ }.

Let O be the order of discriminant D < 0 in a quadratic imaginary field
K. We define CM(O) to be the set of CM points of discriminant D in XS(Kab).
(Combining the actions of K and BS\{∞}, one can prove that the CM points on XS
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are isogenous to products of two CM elliptic curves and so must be defined over
an abelian extension of K.)

4.5.1 Description over C

Let Γ = (R×S,∞)1. We want to view CM(O) inside XS(C) = Γ\h. The points in
CM(O) are in bijection with classes of embeddings ψ : O ↪→ RS,∞; let τψ be the
unique fixed point of h under the action of ψ(K×). Then

CM(O) = { τψ ∈ Γ\h : ψ : O ↪→ RS,∞ }.

4.5.2 Description over Cp

Let Γ = (R×S,p)1. We want to view CM(O) inside XS(Cp) = Γ\Hp. The elements
of CM(O) are indexed by embeddings ψ : O ↪→ RS,p and now the action of ψ(K×)
onHp has two fixed points τψ and τψ.

By theorem 101, a divisor ∆ ∈ Div0(CM(O)) ⊂ Div0(Γ\Hp) is principal if it
admits a lift D ∈ Div0(Hp) such that

cD(γ) = [(γη)− (η);D]Γ = 1 for all γ ∈ Γ.

Proposition 104. Let D1,D2 ∈ Div0(Hp) and suppose that these two divisors are
supported on CM(O1) and CM(O2), where O1 and O2 are two orders of discriminants
D1 and D2 giving rise to ring class fields HD1 and HD2 , respectively. If D1 is principal
(i.e., cD1 = 1), then [D1;D2]Γ ∈ HD1 HD2 .

4.5.3 Concluding remarks

In conclusion, given a finite set S of places of Q of odd cardinality and containing
∞, we have a Shimura curve XS containing a supply of CM points leading to
extensions of singular moduli and their differences and of Heegner points on
elliptic curves. Moreover, for S = {∞ }, we recover the theory over the j–line
X(1).

Associated with a finite set S of places of Q, we have the following objects:
• If S has even cardinality and ∞ ∈ S, then we get a definite quaternion algebra

(ramified exactly at the places in S).
• If S has even cardinality and ∞ 6∈ S, then we get an indefinite quaternion

algebra (ramified exactly at the places in S).
• If S has odd cardinality and ∞ ∈ S, then we get a Shimura curve XS.

49



• If S has odd cardinality and ∞ 6∈ S, it is not clear what kind of object we
should consider. However, it should contain some “real multiplication”
points because we do not add a restriction to the sign of the discriminant of
quadratic fields.
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5 RM theory

The key example of this theory will be the case of S = { p }. Then we only need to
study the action of ΓS,p

∼= SL2(Z[p−1]) on the p–adic upper half-plane Hp. This
has been studied by Darmon and Vonk. (A more general quaternionic setting
has recently been studied by Guitart, Masdeu and Xarles.) From now on, write
Γ = SL2(Z[p−1]). One of the main results of this theory is the following:

Theorem 105. Let A × (resp. M×) be the multiplicative group of non-zero rigid analytic
(resp. rigid meromorphic) functions onHp.

(1) The vector space H1(Γ, A ×/C×p )⊗Z Q is finite-dimensional and the Hecke action
on it factors through the algebra T2(Γ0(p)) ⊂ End

(
M2(Γ0(p))

)
.

(2) The vector space H1(Γ, M×) ⊗Z Q is infinite-dimensional and has no finite-
dimensional Hecke-stable subspaces.

We keep this notation in the following subsections.

5.1 p–adic integration on Γ\Hp

We revert to the setting where Γ acts discretely onHp. Let T denote the Bruhat–
Tits tree of Hp (cf. section 4.4.3). We assume that Γ\T is a finite graph and that,
for every edge e and every vertex v, StabΓ(e) = StabΓ(v) = 1.

5.1.1 Rigid differentials on Γ\Hp

Modifying the constructions from section 4.4.8, we can define a map

Θ : Γ −→ H0(Γ, A ×/C×p )

γ 7−→ Θγ

given by
Θγ(z) = [(z)− (η); (γξ)− (ξ)]Γ,

where η and ξ are arbitrary base points onHp. Consider the logarithmic derivative
dlog : A ×/C×p → Ω1(Hp) given by

f 7→ d f
f

.
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We obtain by composition a morphism (of groups) j : Γab → Ω1(Γ\Hp) defined by

j(γ) = dlog
(
Θγ(z)

)
=

dΘγ(z)
Θγ(z)

.

On the other hand, we can use the period pairing 〈 · , · 〉 : Γab × Γab → Q×p and
theorem 96 to identify Γab ⊗Z Q with its dual. We will want to define∫

γ
ω = 〈γ, j−1(ω)〉 ∈ Cp,

which will make sense later once we prove that the map j induces an isomorphism
Γab ⊗Z Cp ∼= Ω1(Γ\Hp) of Cp–vector spaces.

5.1.2 The residue map

Let v be a vertex of the Bruhat–Tits tree T . For every oriented edge e in T , we write
s(e) and t(e) for the source and the target vertices, respectively, of e. Consider

Av = r−1(v) = P1(Cp) \
( ⋃

s(e)=v

De

)
,

where r : Hp → T is the reduction map and De denotes the residue disc corres-
ponding to the edge e. Given ω ∈ Ω1(Hp), we write ωv = ω|Av . If α is a rational
differential on P1(Cp) that is regular on Av, then we can define

Rese(α) = ResDe(α) = ∑
x∈De

Resx(α).

Now, writing

ωv = lim
j→∞

αj for rational differentials αj as above

(the limit being with respect to the supremum norm of Av), we want to define

Rese(ω) = lim
j→∞

Rese(αj).

One checks that this limit is well-defined. (To prove that it does not depend on the
choice of the αj, one can use that, for t1, t2 ∈ B(t, p−N),∣∣∣∣ 1

z− t1
− 1

z− t2

∣∣∣∣
p
≤ pn−N for all z ∈ H≤n

p .)
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Let ~T1 denote the set of oriented edges of T . Given ω ∈ Ω1(Hp), we define the
residue of ω to be the map cω : ~T1 → Cp given by cω(e) = Rese(ω).

Proposition 106. The function cω : ~T1 → Cp satisfies the following properties:
(1) for every e ∈ ~T1 with inverse edge e, cω(e) = −cω(e), and
(2) for every v ∈ T0,

∑
s(e)=v

cω(e) = 0.

Proof. It follows by the residue theorem (for rational differentials on P1(Cp)). For
example, for the second part, we get that

∑
s(e)=v

ResDe(αj) = ∑
x∈P1(Cp)

Resx(αj) = 0

because αj is regular outside the residue discs De appearing in the first sum.

Definition 107. A function c : ~T1 → Cp is called a harmonic cocycle if it satisfies
conditions (1) and (2) of proposition 106. We write Char(T ) for the space of
harmonic cocycles on T .

Lemma 108. Let ω ∈ Ω1(Γ\Hp). The harmonic cocycle cω has the property that

cω(γe) = cω(e) for all γ ∈ Γ and all e ∈ ~T1.

That is, cω ∈ Char(T )Γ.

Corollary 109. The image of cω is contained in a bounded subset of Cp.

Theorem 110. The residue map

Res : Ω1(Γ\Hp) −→ Char(T )Γ

ω 7−→ cω

is surjective.

Proof. We produce an explicit (left) inverse. To do so, we first pass from harmonic
cocycles to boundary measures. Observe that {De ∩ P1(Qp) : e ∈ ~T1 } is a
collection of compact open balls in P1(Qp) which is a basis of the topology of
P1(Qp). Given c ∈ Char(T )Γ, we define a measure µ by requiring that

µ(De ∩P1(Qp)) = c(e).
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(The fact that such µ is a measure and not just a distribution follows from corol-
lary 109.)

Our objective is to construct ω ∈ Ω1(Γ\Hp) such that cω = c; we will do it by
means of the p–adic Poisson transform:

ω(z) =
(∫

P1(Qp)

dµ(t)
z− t

)
dz.

We claim that Rese(ω) = c(e).
Given z ∈ Hp,

t 7→ 1
z− t

defines a continuous Cp–valued function on P1(Qp). But, dividing P1(Qp) into
residue discs of radius p−N for N ∈ Z≥0, the differential ω can be expressed as a
limit of Riemann sums

ωN = ∑
j∈P1(Z/pNZ)

dz
z− j

· µ(Dej) = ∑
j∈P1(Z/pNZ)

c(ej)

z− j
dz,

where ej is the edge of T corresponding to the ball B(j, p−N). These ωN are rational
differentials which converge to ω uniformly on affinoids. One can check (exercise)
that

Rese(ωN) −−−→
N→∞

c(e)

for every e ∈ ~T1.

With the same notation as in the proof of theorem 110, one checks that ω is
Γ–invariant if c is. Indeed,

1
γ(z)− γ(t)

=
(cz + d)2

z− t
+ u(z)(cz + d)2 if γ =

(
a b
c d

)
and so

d(γ(z))
γ(z)− γ(t)

=
dz

z− t
+ u(z) dz.

Since u(z) dz does not depend on t, after integrating we deduce that(∫
P1(Qp)

dµ(t)
γ(z)− t

)
dγ(z) =

(∫
P1(Qp)

dµ(t)
γ(z)− γ(t)

)
dγ(z) =

(∫
P1(Qp)

dµ(t)
z− t

)
dz,

which is to say that γ∗(ω) = ω.
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Theorem 111 (Drinfeld–Manin). The residue map

Res : Ω1(Γ\Hp) −→ Char(T )Γ

is an isomorphism.

Sketch of the proof. By theorem 110, it suffices to compare dimensions. Using the
rigid GAGA principle, we can express

dim
(
Ω1(Γ\Hp)

)
= g(Γ\Hp),

where g is the genus. Thus, by the surjectivity of Res, dim
(
Char(T )Γ) ≤ g(Γ\Hp).

We will need some basic facts about the action of SL2(Qp) on T .
• Given v ∈ T0 and γ ∈ SL2(Qp), the distance d(v, γ(v)) is an even integer.
• Given two Zp–lattices Λ1 and Λ2 with generalized index [Λ1 : Λ2] ∈ pZ, we

have [Λ1 : Λ2] = [Λ1 : γΛ2] for all γ ∈ SL2(Qp).
• Let v∗ be the standard vertex corresponding to [Z2

p]. We say that a vertex
v ∈ T0 is even (resp. odd) if d(v, v∗) is even (resp. odd). We can decompose
T0 = T +

0 t T
−

0 , where T +
0 consists of the even vertices and T −0 consists of

the odd vertices.
Consequently, the quotient Γ\T is a bipartite graph.

There is an exact sequence

0 Char(T )Γ Map(Γ\T1, Cp) Map(Γ\T0, Cp) W 0i j

(where W is just the cokernel of j) defined as follows:
• i(c)(e) = c(~e), where~e is the oriented version of e going from an even to an

odd vertex, and
• j( f )(v) = ∑

v∈e
f (e) where the sum runs over the edges e containing v.

Now we can check that dim(W) ≥ 1 because

∑
v even

j( f )(v) = ∑
v odd

j( f )(v)

(i.e., there is a non-trivial relation on Im(j)). But, writing V = |Γ\T0| and E =

|Γ\T1|, we conclude that

dim Char(T ) = E−V + dim(W) ≥ E−V + 1 = g(Γ\T ),

and one can prove that g(Γ\Hp) = g(Γ\T ).
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We have seen two approaches to constructing elements of Ω1(Γ\Hp):
(1) We have a morphism j : Γab → Ω1(Γ\Hp) defined by

j(γ) = dlog
(
Θγ(z)

)
.

(2) We have a map Char(Γ\T )Γ → Ω1(Γ\Hp) given by the p–adic Poisson
transform of measures (i.e., the inverse of Res above).

Remark. Since the last approach gives a very explicit description of differentials in
Ω1(Γ\Hp), we can find line integrals explicitly too:

∫ τ2

τ1

ω(z) =
∫ τ2

τ1

(∫
P1(Qp)

dµ(t)
z− t

)
dz =

∫
P1(Qp)

(∫ τ2

τ1

dz
z− t

)
dµ(t)

=
∫

P1(Qp)
log
(τ2 − t

τ1 − t

)
dµ(t).

5.2 Rigid analytic and meromorphic cocycles

Consider Γ = SL2(Z[p−1]). Let A × (resp. M×) denote the multiplicative group
of analytic (resp. meromorphic) functions onHp.

Definition 112.
(1) A rigid analytic cocycle is a class in H1(Γ, A ×).
(2) A rigid analytic θ–cocycle is a class in H1(Γ, A ×/C×p ).
(3) A rigid meromorphic cocycle is a class in H1(Γ, M×).

Definition 113. An RM point is a point τ ∈ Hp such that Q(τ) is a real quadratic
field. Then StabΓ(τ) ∼= γZ

τ modulo torsion (where γτ denotes a generator). Given
a rigid meromorphic cocycle J, we define the RM value

J[τ] = J(γτ)(τ).

These RM values J[τ] are conjectured to be defined over class fields of Q(τ).
There should be the following analogy:

RM values CM values

Analytic cocycles Gross–Stark points Elliptic units
θ–cocycles Stark–Heegner points Heegner points

Meromorphic cocycles “Singular moduli” Singular moduli
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Example 114. The tautological cocycle Jtriv : Γ→ A × is defined by

Jtriv

((
a b
c d

))
(z) = cz + d for z ∈ Hp.

Given an RM point τ ∈ Hp, we can compute the corresponding RM value using
a generator of StabΓ(τ). That is a matrix for which (τ, 1) is an eigenvector or,
equivalently, satisfying that(

a b
c d

)(
τ

1

)
= (cτ + d)

( aτ+b
cτ+d

1

)
= (cτ + d)

(
τ

1

)
,

so cτ + d is an eigenvalue or, equivalently, a fundamental unit of the real quadratic
order Oτ associated with τ. This tautological cocycle is an example of an Eisenstein
cocycle: for every prime ` 6= p, the Hecke operator T` acts by

T`(Jtriv) = J`+1
triv .

5.2.1 The cohomology of Γ

Theorem 115. Let Γ = SL2(Z[p−1]).
(1) H1(Γ, Q) = 0.
(2) H2(Γ, Q) = H1(Γ0(p), Q).

We follow a proof of Ihara and Serre using the Bruhat–Tits tree T of Hp. Let
T +

0 (resp. T −0 ) denote the set of even (resp. odd) vertices of T and let ~T +
1 (resp.

~T −1 ) denote the set of oriented edges of T having even (resp. odd) source vertex.

Lemma 116. The group Γ acts transitively on each of the sets T +
0 , T −0 , ~T +

1 , ~T −1 and T1.

Proof. Let Λ1 and Λ2 be two Zp–lattices in Q2
p. There exists γ ∈ GL2(Qp)/Q×p

such that γΛ1 = Λ2. To pass to Γ, we use that [PGL2(Qp) : PSL2(Qp)] = 4
(assuming p > 2) and there is a homomorphism PGL2(Qp)/ PSL2(Qp)→ Z/2Z

given by
γ 7→ vp(det(γ)).

We have seen that PGL2(Qp) acts transitively on T0 and one checks that the
matrices γ that interchange the sets T +

0 and T −0 are precisely the ones satisfying
that vp(det(γ)) ≡ 1 mod 2. Thus, PSL2(Qp) acts on T0 with the two orbits T +

0

and T −0 and then we can use that Γ is dense in SL2(Qp) to deduce the same result
for Γ. The statement for edges can be proved similarly.
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By lemma 116, the quotient graph Γ\T has two vertices joined by an edge.
We use as representatives the standard vertex v∗ and the standard edge e∗ going
from v∗ to another vertex v∗,′ (corresponding to the lattice pZp ⊕Zp). We have
StabΓ(v∗) = SL2(Z) and

StabΓ(v∗,′) = SL2(Z)′ =

{(
a b
c d

)
: a, d ∈ Z, b ∈ 1

p
Z, c ∈ pZ

}
.

Therefore, StabΓ(e∗) = StabΓ(v∗) ∩ StabΓ(v∗,′) = Γ0(p).
For every Γ–module M, there is a short exact sequence

0 M Map(T0, M) Map(T1, M) 0i d

given by i(m)(v) = m and d( f )(e) = f (v+)− f (v−), where v+ and v− are the
even and odd vertices of e, respectively. The corresponding long exact sequence of
cohomology is

0 −→ MΓ −→ Map(T0, M)Γ −→ Map(T1, M)Γ δ−−→ H1(Γ, M) –

→ H1(Γ, Map(T0, M)) −→ H1(Γ, Map(T1, M))
δ−−→ H2(Γ, M) –

→ H2(Γ, Map(T0, M)) −→ · · ·

By lemma 116, we can express

Map(T0, M) = IndΓ
SL2(Z)(M)⊕ IndΓ

SL2(Z)′(M)

and
Map(T1, M) = IndΓ

Γ0(p)(M).

Using Shapiro’s lemma, we can rewrite the long exact sequence as

0 −→ MΓ −→ MSL2(Z) ⊕MSL2(Z)′ −→ MΓ0(p) δ−−→ H1(Γ, M) –

→ H1(SL2(Z), M)⊕H1(SL2(Z)′, M) −→ H1(Γ0(p), M)
δ−−→ H2(Γ, M) –

→ H2(SL2(Z), M)⊕H2(SL2(Z)′, M) −→ · · ·

• If M = Q, from the surjectivity of QSL2(Z) ⊕QSL2(Z)′ → QΓ0(p) and the fact
that Hi(SL2(Z), Q) = 0 = Hi(SL2(Z)′, Q) for i = 1 or 2, we deduce that
H1(Γ, Q) = 0 and δ : H1(Γ0(p), Q)→ H2(Γ, Q) is an isomorphism.

• If M = Z, we obtain an injective morphism δ : H1(Γ0(p), Z) → H2(Γ, Z)

with finite cokernel.
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5.3 The Dedekind–Rademacher cocycle

We consider certain Eisenstein series of weight 2 and level Γ0(p), which can be
constructed as follows. From the modular discriminant

∆(q) = q
∞

∏
n=1

(1− qn)24 (of weight 12 and level SL2(Z)),

we construct a modular unit
Up =

∆(qp)

∆(q)

on Y0(p). Then we define an Eisenstein series E(p)
2 (that we identify with a differ-

ential form on Y0(p)) by

E(p)
2 (z) dz = dlog(Up) =

(
(p− 1) + 24

∞

∑
n=1

σ(p)(n)qn
)

dq
q

,

where
σ(p)(n) = ∑

p |- d|n
d.

Conceptually, we view Up as a morphism Y0(p)→ Gm and then E(p)
2 (z) dz is the

pull-back of dz
z . Define ϕDR : Γ0(p)→ Z by

ϕDR(γ) =
1

2πi

∫ γ(z0)

z0

E(p)
2 (z) dz

for some base point z0 ∈ Hp. One checks that ϕDR ∈ H1(Γ0(p), Z). Now take
αDR = δ(ϕDR) ∈ H2(Γ, Z). We view pαDR ∈ H2(Γ, pZ) inside H2(Γ, C×p ).

Theorem 117. The natural image of pαDR in H2(Γ, A ×) is trivial.

Corollary 118. There exists a 1–cochain JDR ∈ C1(Γ, A ×) characterized by

γ1 JDR(γ2) · JDR(γ1γ2)
−1 · JDR(γ1) = pαDR(γ1,γ2)

for all γ1, γ2 ∈ Γ.

Definition 119. The Dedekind–Rademacher cocycle is the image of the 1–cocycle JDR

from corollary 118 in H1(Γ, A ×/pZ). (This class is not uniquely defined, but its
image in H1(Γ, A ×/pZ)⊗Z Q is).

Remark. The RM values of JDR, defined in C×p /pZ, are analogues of elliptic units.
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5.3.1 Siegel units

Let O×H denote the non-zero complex analytic functions on the upper half-plane
H = h, which is endowed with a right action of SL2(Q) given by

(h|γ)(z) = h(γz).

Consider (α, β) ∈ (Q/Z)2 with α 6= 0 or β 6= 0 and let N be the order of (α, β) in
this group.

Proposition 120. There exists gα,β ∈ O×Y(N)
⊗Z Q with

gα,β = −qw ·∏
n≥1

(
1− qn+αe2πiβ) ·∏

n≥1

(
1− qn−αe−2πiβ),

where
w =

1
12
− α

2
+

α

2N
and we choose the representatives of α and β in the interval [0, 1).

There is a right action of SL2(Z) on the set
{

gv : v ∈ (Q/Z)2 \ { 0 }
}

given by

gv|γ = gvγ (where we view v as a row vector).

One gets the following norm-compatibility relations:

∏
nα′=α

gα′,β(z) = gα,β

( z
n

)
and

∏
nβ′=β

gα,β′(z) = gα,β(nz).

5.3.2 The Siegel distribution

Let X0 = (Z2
p)
′ denote the primitive vectors in Z2

p (i.e., such that one of the two
coordinates is in Z×p ) and let X = Q2

p \ { 0 }. We can express

X =
⊔
j∈Z

pjX0.

Let LC(X0, Z) be the space of locally constant Z–valued functions on X0 and
consider a right Γ–module A.
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Definition 121. An A–valued distribution on X0 is a homomorphism (of groups)
µ : LC(X0, Z)→ A. We write D(X0, A) for the space of such distributions.

Remark. There is an action of SL2(Z) on D(X0, A) characterized by

(µ|γ)(U) =
(
µ(Uγ−1)

)∣∣γ
for all compact open subsets U of X0.

Since we want to get Γ–modules but Γ = SL2(Z[p−1]) does not preserve
primitive vectors, we next consider distributions on X. Since X (as opposed to X0)
is not compact, we need to work with locally constant functions that are compactly
supported. Apart from this, the definition of distributions on X is analogous to
definition 121.

Definition 122. A distribution µ on X is called p–invariant if µ(pU) = µ(U) for
all compact open subsets of X. We write D(X, A) for the module of p–invariant
A–valued distributions on X.

Remark. Since
X =

⊔
j∈Z

pjX0,

we identify p–invariant distributions on X with distributions on X0 via restriction.
Thus, we obtain an SL2(Z)–equivariant isomorphism D(X, A) ∼= D(X0, A). But,
on D(X, A), the action of SL2(Z) extends to an action of Γ.

Given a locally constant compactly supported function f (x, y) on X and a
distribution µ ∈ D(X, A), we have

∫
X

f (x, y) d(µ|γ) =
(∫

X
f
(
(x, y)γ

)
dµ

)∣∣∣∣γ.

Definition 123. The Siegel distribution is the unique µSie ∈ D(X, O×H) such that

µSie
(
(a, b) + pNZ2

p
)
= g12

a/pN ,b/pN ∈ O×H

for all (a, b) ∈ Z2 and all N ∈ Z≥1.

Remark. It seems that Henri thought that the exponent 12 was enough to “kill
denominators” (i.e., get rid of the ⊗Z Q) in proposition 120. However, David
Loeffler pointed out that the exponents should be unbounded (depending on N).
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See section 5.3.3 below for the necessary corrections. Then one can check from
the norm-compatibility relations that the formula above (once suitably modified)
defines an element µSie ∈ D(X, O×H).

Theorem 124. The distribution µSie is Γ–invariant.

Proof. If α = a
pN and β = b

pN , we define Uα,β = (a, b) + pNZ2
p. For T ∈ SL2(Z), it

is clear that
µSie(Uα,β|T) = µSie(Uα,β)|T.

Thus, it suffices to show the same relation for

T =

(
p 0
0 1

)
,

as Γ is contained in the group generated by SL2(Z) and T. But we can express

Uα,β|T = Upα,β = (pa + pN+1Zp)× (b + pNZp)

=
⋃

b′≡b mod pN

(pa + pN+1Zp)× (b′ + pN+1Zp) =
⋃

pβ′=β

Uα,β′ .

Therefore, using the norm-compatibility relations,

µSie(Uα,β|T) = ∏
pβ′=β

g12
α,β′(z) = g12

α,β(pz) = g12
α,β|T = µSie(Uα,β)|T.

Lemma 125.
(1) µSie(X0) ≡ 1 mod pZ.

(2) µSie(pZp ×Z×p ) =
∆(qp)

∆(q)
.

Idea of the proof.
(1) µSie(X0) is a unit on SL2(Z)\H, but those are all constants.
(2) We can compute

µSie(pZp ×Z×p ) =
p−1

∏
i=1

µSie
(
(0, 1) + pZ2

p
)
=

p−1

∏
i=1

g12
0,i/p(z) = p12 ∆(qp)

∆(q)
.
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5.3.3 A correction on Siegel units

Consider the theta function θ(τ, z) (for τ ∈ H fixed and z ∈ C variable), which is
“almost” an elliptic function in the sense that

θ(τ, z + 1) = θ(τ, z) and θ(τ, z + τ) = e−πi(τ+2z)θ(τ, z).

The only zeros of θ(τ, · ) are the points z ∈ Z⊕Zτ. Let c ∈ Z such that (6, c) = 1.
We define a variant of θ (depending on c) as follows:

cθ(τ, z) =
(θ(τ, z))c2

θ(τ, cz)
.

This function still satisfies that

cθ(τ, z + λ) = cθ(τ, z) for all λ ∈ Z⊕Zτ.

By definition, if E is the elliptic curve over C corresponding to C/(Z⊕Zτ), we
have div(cθ(τ, · )) = c2(0)− E[c]. Now we can define modified Siegel units

cgα,β(τ) = cθ(τ, α + τβ) ∈ O×Y(N)
whenever (c, N) = 1.

These units are related to the ones defined in section 5.3.1 by

cgα,β(τ) =
gc2

α,β(τ)

gcα,cβ(τ)
.

The correct characterization of µSie ∈ D(X0, O×H)
SL2(Z) is

µSie
(
(a, b) + pNZp

)
= cgα,β(τ) for α =

a
pN and β =

b
pN .

As explained in section 5.3.2, we obtain in this way µSie ∈ D(X, O×H)
Γ with the

property that

µSie(X0) ∈ pZ and µSie(pZp ×Z×p ) =

(
p

∆(qp)

∆(q)

)(c2−1)/24

From now on, we assume that p > 5 and we can take c = 5 (to forget about the
exponent in the last formula).
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5.3.4 The cocycle valued in distributions

Let A denote a Γ–module.

Lemma 126. Let µ ∈ D(X, A). For every Zp–lattice Λ ⊆ Q2
p, the subset Λprim of

primitive vectors in Λ is compact and

µ(Λprim) = µ(X0).

Proof. Choose N ∈ Z≥0 such that pNZ2
p ⊆ Λ ⊆ p−NZ2

p. For every v ∈ Λprim,
there is j ∈ [−N, N] such that pjv ∈ X0. That is, we can decompose

Λprim = pm1U1 t · · · t pmtUt

with −N ≤ mi ≤ N and

X0 = (Z2
p)prim = U1 t · · · tUt.

Therefore,
µ(Λprim) = µ(U1) + · · ·+ µ(Ut) = µ(X0).

Lemma 127. The rule A 7→ D(X, A) is an exact functor on Γ–modules.

Proof. Left as an exercise. The key issue is right exactness.

From the short exact sequence

0 Z OH O×H 1
f 7→e2πi f

of Γ–modules, we obtain by lemma 127 a short exact sequence

0 D(X, Z) D(X, OH) D(X, O×H) 1

from which, taking cohomology, we get a connecting homomorphism

δ : H0(Γ, D(X, O×H))→ H1(Γ, D(X, Z)).

We define a Dedekind–Rademacher cocycle valued on distributions

µDR = δ(µSie) ∈ H1(Γ, D(X, Z)).
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Writing

µ̃Sie =
1

2πi
log(µSie),

we can express
µDR(γ) = µ̃Sie|γ−1 − µ̃Sie.

Lemma 128.
(1) µDR(γ)(X0) = 0 for all γ ∈ Γ.
(2) µDR(γ)(pZp ×Z×p ) = ϕDR(γ) for all γ ∈ Γ0(p).

Proof. By the last formula for µDR,

µDR(γ)(X0) = (µ̃Sie|γ−1)(X0) = µ̃Sie(X0) = µ̃Sie(X0γ)|γ−1 − µ̃Sie(X0) = 0

because µ̃Sie(X0γ) = µ̃Sie(X0). Similarly, but using also that

µSie(pZp ×Z×p ) = p
∆(pz)
∆(z)

and so

µ̃Sie(pZp ×Z×p ) =
log(p)

2πi
+

1
2πi

log
(

∆(pz)
∆(z)

)
,

we check that for every γ ∈ Γ0(p), which preserves pZp ×Z×p ,

µDR(γ) =
1

2πi

∫ γ(z0)

z0

dlog
(

∆(pz)
∆(z)

)
= ϕDR(γ).

5.3.5 The multiplicative Poisson transform

Given µ ∈ D(X, Z) and a compactly supported function f on X with values in
Cp, we define ∫

X
f dµ(x, y) = lim ∑

α∈I
f (xα, yα)µ(Uα),

where the limit is taken over finer and finer coverings

X =
⊔
α∈I

Uα

and (xα, yα) ∈ Uα.
We have a multiplicative version of these integrals: given µ ∈ D(X, Z) and a

65



compactly supported function f : X→ C×p , we define

×
∫

X
f dµ = lim ∏

α∈I
f (xα, yα)

µ(Uα),

where the limit is taken over coverings as above.

Definition 129. Define the subset D0(X, Z) of µ ∈ D(X, Z) such that µ(X0) = 0
(or, equivalently, µ(Λprim) = 0 for all Zp–lattices Λ of Q2

p). The multiplicative
Poisson transform of µ ∈ D0(X, Z) is the analytic function J(µ) ∈ A × defined by

J(µ)(τ) = ×
∫

X0

(xτ + y) dµ(x, y).

Definition 129 gives rise to a SL2(Z)–equivariant function J : D0(X, Z)→ A ×.
In fact, J becomes even Γ–equivariant modulo pZ. That is, regard

J : D0(X, Z)→ A ×/pZ

and observe that, for γ ∈ Γ,

J(µ|γ)(τ) = ×
∫

X0

(xτ + y) d(µ|γ)(x, y) = ×
∫

X0γ−1
(x(γτ) + y) dµ(x, y).

Decomposing
X0γ−1 = pm1U1 t · · · t pmtUt

with X0 = U1 t · · · tUt as in lemma 126, we can write

J(µ|γ)(τ) =
t

∏
j=1
×
∫

pmj Uj

(x(γτ) + y) dµ(x, y) ≡
t

∏
j=1
×
∫

Uj

(x(γτ) + y) dµ(x, y)

= ×
∫

X0

(x(γτ) + y) dµ(x, y) = J(µ)(γτ) mod× pZ.

Therefore,
J(µ|γ)(τ) = J(µ)(γτ) =

(
J(µ)|γ

)
(τ).

5.3.6 Proof of corollary 118

Definition 130. We define

JDR = J(µDR) ∈ H1(Γ, A ×/pZ).

We have to check that the JDR from definition 130 satisfies corollary 118.
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Namely, we have morphisms

H1(Γ, A ×/pZ) H2(Γ, pZ) H1(Γ0(p), pZ)

JDR pαDR pϕDR

∼=

and, letting η : H1(Γ, A ×/pZ)→ H1(Γ0(p), pZ) denote the composition, we have
to check that η(JDR) = pϕDR . To do so, we give an explicit description of the
(inverse) morphism H2(Γ, Z)→ H1(Γ0(p), Z). Given α ∈ Z2(Γ, Z), we consider
the restrictions α|SL2(Z) = dκ and α|SL2(Z)′ = dκ′, where κ ∈ C1(SL2(Z), Z) and
κ′ ∈ C1(SL2(Z)′, Z). Since Γ0(p) = SL2(Z) ∩ SL2(Z)′, we obtain

(κ − κ′)|Γ0(p) ∈ H1(Γ0(p), Z).

Next, we want to describe η(JDR). Take two lifts IDR ∈ H1(SL2(Z), A ×) and
I′DR ∈ H1(SL2(Z)′, A ×) of JDR. We can express

η(JDR) =
IDR

I′DR

∣∣∣∣
Γ0(p)

,

so it remains to describe IDR and I′DR on Γ0(p). But

IDR(γ)(τ) = ×
∫

X0

(xτ + y) dµDR(x, y)

and

I′DR(γ)(τ) = ×
∫

X′0

(xτ + y) dµDR(x, y) (where X′0 = (pZp ×Zp)prim).

Now the key point is that SL2(Z) acts on X0 and SL2(Z)′ acts on X′0 and, using
that

X0 ∩X′0 = pZp ×Z×p , X0 \X′0 = Z×p ×Zp, X′0 \X0 = p(Z×p ×Zp),

we can express

IDR(γ)(τ)

I′DR(γ)(τ)
=

×
∫

Z×p ×Zp
(xτ + y) dµDR(x, y)

×
∫

p(Z×p ×Zp)
(xτ + y) dµDR(x, y)

= ×
∫

Z×p ×Zp
p dµDR(γ) = pϕDR(γ)
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as desired.

Conjecture 131. Let τ ∈ Hp be an RM point of fundamental discriminant D such that
p
∣∣- D. Let H denote the Hilbert class field of Q(τ). The RM value JDR[τ] belongs to(

OH[p−1]
)×.

This conjecture has not been proved yet, but we have partial results in this
direction:

Theorem 132. In the setting of conjecture 131, we have

JDR[τ] ∈
(
OH[p−1]

)× ⊗Z Q.

Remark. There are two approaches to prove this kind of results: one by Dasgupta
and Kakde using a tame refinement of the Gross–Stark conjectures and another by
Darmon, Pozzi and Vonk using modular generating series. We will see the latter.

5.4 Elliptic cocycles

The main idea now is to replace E(p)
2 with some cusp form of weight 2 and level

Γ0(p). Let E be an elliptic curve over Q of conductor p, which by modularity
corresponds to fE ∈ S2(Γ0(p)). We obtain a homomorphism ϕE : Γ0(p) → C

defined by

ϕE(γ) =
∫ γ(z0)

z0

2πi fE(z) dz

(for some base point z0 ∈ H), whose image is “essentially” the period lattice of
E. At least we can get periods Ω+

E , Ω−E ∈ R such that Ω+
E Z⊕ iΩ−E Z contains the

image of ϕE. We define two Z–valued morphisms

ϕ+
E =

1
Ω+

E
Re(ϕE) and ϕ−E =

1
Ω−E

Im(ϕE).

In this way, we obtain α+E , α−E ∈ H2(Γ, Z) (exactly as we defined αDR from ϕDR in
section 5.3, using δ : H1(Γ0(p), Z) ↪→ H2(Γ, Z)).

Theorem 133. In the situation above, there exists q ∈ pZp (depending on E) satisfying
that

(1) the cohomology class qα±E ∈ H2(Γ, qZ) becomes trivial in H2(Γ, A ×) and
(2) the Tate curve Gm/qZ is isogenous to E over Qp.
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Corollary 134. There exist 1–cochains J+E , J−E ∈ C1(Γ, A ×) such that

γ1 J±E (γ2) · J±E (γ1γ2)
−1 · J±E (γ1) = qα±E (γ1,γ2)

for all γ1, γ2 ∈ Γ.

Definition 135. The classes J+E and J−E of H1(Γ, A ×/qZ) given by corollary 134
are called the even and odd, respectively, rigid analytic θ–cocycles associated with E.

Let τ be an RM point with fundamental discriminant D such that p
∣∣- D. From

these two cocycles, we obtain the RM values J±E [τ] ∈ C×p /qZ that we can view
inside E(Cp).

Conjecture 136. Let H (resp. H+) be the Hilbert class field (resp. the narrow Hilbert
class field) of Q(τ).

(1) The value J+E [τ] belongs to E(H).
(2) The value J−E [τ] belongs to E(H+) and, in fact, to the (−1)–eigenspace of complex

conjugation.

These RM values would (conjecturally) provide a large supply of Q–rational
points of E called Stark–Heegner points.

5.4.1 Modular symbols

The homomorphisms ϕ±E from section 5.4 can be described by modular symbols,
which are functions mE : P1(Q)×P1(Q)→ Z satisfying that

mE(r, s) = −mE(s, r) and mE(r, s) + mE(s, t) = mE(r, t)

for all r, s, t ∈ P1(Q). For example, let us focus on ϕ+
E . We define

mE(r, s) =
1

Ω+
E

Re
(∫ s

r
2πi fE(z) dz

)
∈ Z

(we might have to slightly modify the period Ω+
E to obtain a Z–valued function)

and then
ϕ+

E (γ) = mE(r, γ(r)) for any r ∈ P1(Q).

Let MS(Z) denote the Z–module of Z–valued modular symbols for Γ. Another
way to express the last equation is saying that ϕ+

E (and similarly ϕ−E ) is in the
image of a “connecting homomorphism”

δ : MS(Z)Γ0(p) → H1(Γ0(p), Z).
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5.4.2 The construction of J±E

Consider again the Bruhat–Tits tree T and recall how Γ acts on its vertices and
edges from lemma 116.

Lemma 137. There exists a collection (me)e∈~T1
of modular symbols me ∈ MS(Z) such

that, for every r, s ∈ P1(Q),
(1) me∗(r, s) = mE(r, s),
(2) mγ(e)(γ(r), γ(s)) = me(r, s) for all γ ∈ Γ and
(3) me(r, s) = −me(r, s).

Proof. Since Γ acts transitively on unordered edges, these three properties de-
termine completely the collection (me)e∈~T1

so long as they do not give rise to
“contradictions”. But mE is invariant under StabΓ(e∗) = Γ0(p).

As in section 5.4.1, we continue to focus on the + versions of all cocycles. Fix
r, s ∈ P1(Q). One can check that the map e 7→ me(r, s) is a harmonic cocycle on T
and, by (the proof of) theorem 110, we obtain a measure µ(r, s) on P1(Qp) with
Poisson transform

FE(r, s)(z) =
∫

P1(Qp)

d(µ(r, s))(t)
z− t

.

Varying r and s, we obtain FE ∈ MS(A2)
Γ, where A2 is the group of rigid analytic

functions onHp with an action of Γ of weight 2 given by

(F|γ)(z) = (cz + d)−2 F
( az + b

cz + d

)
for γ =

(
a b
c d

)
∈ Γ.

Our goal is to define cocycles with values in A ×/C×p , so we just need to find
“preimages” under dlog : A ×/C×p → A2 dz. We already did that in section 5.3.5.
Thus, we define

J+E (r, s)(z) = ×
∫

P1(Qp)

d(µE(r, s))(t)
z− t

,

which gives rise to J+E ∈ MS(A ×/C×p )
Γ.

It remains to prove that J+E lifts to a class in MS(A ×/qZ)Γ. If J+E lifts to
MS(A ×/G)Γ, where G denotes any subgroup of C×p , then we should be able
to write

J+E (γ(r), γ(s))(γ(z)) ≡ J+E (r, s)(z) mod× G

for all r, s ∈ P1(Q) and all γ ∈ Γ. (Of course, the previous equation is not well
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defined because J+E ∈ MS(A ×/C×p )
Γ.) In particular, taking (r, s) = (0, ∞) and

γ =

(p 0

0 p−1

)
∈ Γ,

we would have
J+E (0, ∞)(p2z) ≡ J+E (0, ∞)(z) mod× G.

This motivates the need to study the period

Q =
JE(0, ∞)(p2z)
JE(0, ∞)(z)

∈ Q×p

(well-defined).

Lemma 138. In the situation above,
(1) vp(Q) = 1

Ω+
E

L(E, 1) and

(2) logp(Q) = L′p(E, 1) (where Lp(E, · ) is the Mazur–Swinnerton-Dyer p–adic
L–function of E).

Idea of the proof. The first claim is a direct calculation using the definition of L(E, · )
as a Mellin transform (i.e., an integral). The second claim follows from the theorem
of Greenberg–Stevens (proving a conjecture of Mazur–Tate–Teitelbaum) which
states that

Ω+
E

L′p(E, 1)
L(E, 1)

=
logp(qE)

vp(qE)
.

Greenberg and Stevens proved this formula using deformations of Galois repres-
entations along a Hida family.

5.5 Lifting obstructions

Recall that when we had a discrete action of Γ on Hp we could construct a map
AJ : Div0(HP)→ H1(Γ, C×p ) given by

AJ(D)(γ) = [D; (γz)− (z)]Γ

(see section 4.4.9). More precisely, AJ(D) is the “lifting obstruction” of a class
θD(z) ∈ H0(Γ, M×/C×p ).

We can imitate this construction for the action of Γ = SL2(Z[p−1]) on the
RM points of Hp after shifting the cohomological degree by 1. Consider an RM
point τ ∈ Hp with fundamental discriminant D such that p

∣∣- D. We will define a
meromorphic θ–cocycle Jτ ∈ H1(Γ, M×/C×p ) and AJ(τ) = δ(Jτ) ∈ H2(Γ, C×p ).
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Our next goal is to define the rigid meromorphic θ–cocycle Jτ ∈ H1(Γ, M×/C×p )

“having poles and zeros at Γτ”. By assumption, the point τ ∈ Hp satisfies an equa-
tion

aτ2 + bτ + c = 0 with a, b, c ∈ Z

and D = disc(τ) = b2 − 4ac > 0. We assume moreover that(
D
p

)
= −1.

5.5.1 Discrete divisors

Consider the p–adic upper half-plane Hp and its Bruhat–Tits tree T = (T0, T1).
Let red : Hp → T denote the reduction map from proposition 80.

Recall that a formal divisor

D = ∑
x∈Hp

mx(x)

is discrete if, for every affinoid A ⊂ Hp, the formal sum

D ∩A = ∑
x∈A

mx(x)

is a genuine divisor (i.e., a finite sum). We say that D has degree 0 if D ∩A has for
all affinoids A ⊂ Hp. In particular, when we have a group Γ acting discretely over
Hp, then

Dτ = ∑
w∈Γτ

(w)

is a discrete divisor. However, the Ihara group Γ = SL2(Z[p−1]) does not act
discretely onHp and

Dτ = ∑
w∈Γτ

(w)

is not discrete because (for example, assuming that red(τ) = v∗)

Dτ ∩ red−1(v∗) = ∑
w∈SL2(Z)τ

(w)

is not a finite sum.
We will construct a discrete divisor as follows. Fix r, s ∈ P1(Q). For every RM

point w ∈ Hp, let w′ denote its conjugate. Write (w, w′) · (r, s) for the topological
intersection number of the geodesic from w to w′ and the geodesic from r to s on
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the archimedean upper half-planeH, which is a number in { 0,±1 }. We define

Dτ = ∑
w∈Γτ

[
(w, w′) · (r, s)

]
(w).

Proposition 139. The divisor Dτ(r, s) defined above is a discrete divisor of degree 0.

Proof. Since p
∣∣- D, we can express

Γτ =
⋃

v∈T0

(
(Γτ) ∩ red−1(v)

)
.

Given v ∈ T0, set Av = red−1(v). It suffices to show that Dτ(r, s) ∩Av is a divisor
of degree 0. By definition,

Dτ(r, s) ∩Av = ∑
w∈Γτ∩Av

[
(w, w′) · (r, s)

]
(w)

and, up to replacing τ with another representative of Γτ, we may assume that
red(τ) = v. As Γv = StabΓ(v) is conjugate to SL2(Z),

Dτ(r, s) ∩Av = ∑
w∈Γvτ

[
(w, w′) · (r, s)

]
(w) = ∑

γ∈Γv/γZ
τ

[
(γτ, γτ′) · (r, s)

]
(γτ),

where γτ is a generator of StabΓv(τ). Assume that, for every point z0 (other than
the endpoints) of the geodesic (τ, τ′) inH,

γ∞
τ z0 = τ′ and γ−∞

τ z0 = τ

(i.e., τ is a repulsive fixed point and τ′ is an attractive fixed point), so that we can
decompose

(τ, τ′) = ∑
j∈Z

(γ
j
τz0, γ

j+1
τ z0).

Then

Dτ(r, s) = ∑
γ∈Γv/γZ

τ

∑
j∈Z

[
(γγ

j
τz0, γγ

j+1
τ z0) · (r, s)

]
(γτ)

= ∑
γ∈Γv

[
(γz0, γγτz0) · (r, s)

]
(γτ).

But

∑
γ∈Γv

(γz0, γγτz0) · (r, s)
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is the topological intersection number of the projections of (z0, γτz0) and (r, s)
onto Γv\H. Therefore, Dτ(r, s) ∩Av is a divisor and it has degree 0 because Γv\H
has genus 0.

Let Div0,†(Hp) be the group of discrete divisors of degree 0 on Hp. Observe
that the map

(r, s) 7→ Dτ(r, s)

defines an element Dτ ∈ MS(Div0,†(Hp))Γ. Moreover, for a fixed v ∈ T0, the map

(r, s) 7→ deg
(
Dτ(r, s) ∩Av

)
defines an element of MS(Z)Γv . We define

Jτ(r, s)(z) = [(z)− (η);Dτ(r, s)] = lim
A→Hp

[(z)− (η);Dτ(r, s) ∩A]

(for some base point η ∈ Hp), where the limit is taken over affinoids A of an
increasing admissible covering of Hp and converges absolutely. One can check
that Jτ(r, s) ∈M× and so Jτ ∈ MS(M×). Moreover, for every γ ∈ Γ,

Jτ(γr, γs)(γz) = [(γz)− (η);Dτ(γr, γs)] = [(γz)− (η); γDτ(r, s)]

= [(z)− (γ−1η);Dτ(r, s)] = Jτ(r, s)(z) · [(η)− (γ−1η);Dτ(r, s)],

whence we can view Jτ ∈ MS(M×/C×p )
Γ or Jτ ∈ H1

par(Γ, M×/C×p ).

5.5.2 Stark–Heegner points as lifting obstructions

Consider the composition

H1
par(Γ0(p), Z) H1

par(Γ0(p), C×p )

H1
par(Γ, A ×/C×p ) H2

par(Γ, C×p )

i

∼=

and define the period lattice

Λ = i
(
H1

par(Γ0(p), Z)
)
⊆ H1(Γ0(p), C×p ),

which is a discrete lattice.
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Conjecture 140. The rigid analytic torus H2(Γ, C×p )/Λ is isogenous to J0(p)2 over Qp2 ,
where J0(p) is the jacobian of X0(p).

Consider the connecting homomorphism

δ : H1(Γ, M×/C×p )→ H2(Γ, C×p ).

Then δ(Jτ) should map to a point in J0(p)(H)2 ⊗Z Q, where H is the Hilbert class
field of Q(τ).

When we had a group Γ acting discretely onHp (in section 4), we had a diagram

H0(Γ, A ×/C×p ) Λ

H0(Γ, M×) H0(Γ, M×/C×p ) H1(Γ, C×p )

P(XΓ) Div0,†(Hp)Γ Jac(X)(Cp)

δ

div

δ

div

in which the last column gives the obstructions to lift elements in the middle
column. (Here, P(XΓ) means the principal divisors on XΓ.)

Now, for Γ = SL2(Z[p−1]), we have an analogous diagram

H1(Γ, A ×/C×p ) Λ

H1(Γ, M×) H1(Γ, M×/C×p ) H2(Γ, C×p )

P H1(Γ, Div0,†(HRM
p )) Jac(X0(p))2

δ

(where the last vertical arrow is conjectural).

5.5.3 Real quadratic singular moduli

In the category of groups modulo torsion, we have an exact sequence

0 H1(Γ, M×) H1(Γ, M×/C×p ) H2(Γ, C×p )

and the middle group (which contains the (Jτ)τ∈HRM
p

) is huge but the last one is
not that big because every element is annihilated by Hecke operators in T2(Γ0(p)).
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In particular, if p ∈ { 2, 3, 5, 7, 13 } (or, equivalently, X0(p) has genus 0), then
H2

par(Γ, C×p ) is finite and, up to torsion, every Jτ lifts to H1(Γ, M×).

Definition 141. The real quadratic singular moduli associated with τ1 and τ2 is the
value Jp(τ1, τ2) = Jτ1 [τ2] ∈ C×p .

Consider two RM points τ1 and τ2 inHp with discriminants D1 and D2 such
that p

∣∣- D1D2 and (D1, D2) = 1. The real quadratic singular moduli Jp(τ1, τ2) from
definition 141 should “behave like” the singular moduli J∞(τ1, τ2) = j(τ1)− j(τ2)

when τ1 and τ2 are CM points ofH (see theorem 65). More precisely:

Conjecture 142. The value Jp(τ1, τ2) is defined in the compositum H1H2 of the Hilbert
class fields H1 and H2 of Q(τ1) and Q(τ2), respectively.

Conjecture 143. Let q be a prime ideal of OH1H2 lying over q ∈ Z. If q
∣∣ Jp(τ1, τ2), then

(1)
(D1

q

)
6= 1 6=

(D2

q

)
and

(2) q divides a positive integer of the form

D1D2 −m2

4p
(for some m ∈ Z).

5.6 Algebraicity statements

Unlike the situation for Stark–Heegner points, the algebraicity of RM values of the
forms JDR[τ] or Jτ1 [τ2] is somewhat tractable.

5.6.1 Gross–Zagier revisited

Theorem 144 (Gross–Zagier). Let τ1 and τ2 be two CM points of discriminants D1

and D2, respectively, such that (D1, D2) = 1. We have a factorization

NH1H2/Q

(
j(τ1)− j(τ2)

)
= ∏

q
qmq ,

where the product runs over the primes q dividing a positive integer of the form

D1D2 − n2

4
with n ∈ Z

and such that (D1

q

)
6= 1 6=

(D2

q

)
.
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Gross and Zagier gave two proofs of this theorem: the “algebraic proof” that
we saw in section 3.10 and an “analytic proof” which adapts better to the RM
setting. We now explain the latter.

Let D = D1D2 > 0 and set F = Q(
√

D) (real quadratic field). Consider
L = Q(

√
D1,
√

D2), which is a biquadratic extension of Q containing F. The
quadratic extension L/F is unramified and so is contained in the narrow Hilbert
class field of F. We obtain a character

ψ = ψD1,D2 : Cl+(F)→ Gal(L/F) ∼= {±1 },

known as the genus character attached to D1 and D2.
Fix an embedding F ↪→ R. Consider the Hilbert modular Eisenstein series

Ek,ψ(z, z′) = ∑
a∈Cl+(F)

ψ(a)N(a)k ∑
(m,n)∈a2/O×F

1
(mz + n)k(m′z′ + n′)k ,

where m′ and n′ are the conjugates of m and n, respectively, and z, z′ ∈ h. There is
an action of SL2(OF) on h× h with respect to which Ek,ψ is “almost invariant”:

Ek,ψ

( az + b
cz + d

,
a′z′ + b′

c′z′ + d′
)
= (cz + d)k(c′z′ + d′)kEk,ψ(z, z′).

We will also use the non-holomorphic but real-analytic versions

Ek,s,ψ(z, z′) = ∑
a∈Cl+(F)

ψ(a)N(a)k ·

· ∑
(m,n)∈a2/O×F

1
(mz + n)k(m′z′ + n′)k

Im(z)s Im(z′)s

|mz + n|2s|m′z′ + n′|2s

for s in some right half-plane of C. One can extend the definition to other values
of s by analytic continuation.

Fact 145. The function E1,s,ψ vanishes at s = 0.

Set Gs(ψ) = E1,s,ψ(z, z) ∈ M2(SL2(Z))an (i.e., this diagonal restriction trans-
forms like a modular form of weight 2 but is only real-analytic). By fact 145,
G0(ψ) = 0. Then we are interested in

G′0(ψ) =
[

d
ds

Gs(ψ)

]∣∣∣∣
s=0
∈ M2(SL2(Z))an.
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Consider the holomorphic projection

πhol : M2(SL2(Z))an → M2(SL2(Z)) = 0.

From the definition of E1,s,ψ(z, z), one gets a q–expansion

πhol(G′0(ψ)) = ∑
n≥0

anqn.

The main calculation in Gross–Zagier’s article shows that

a1 = log
∣∣NH1H2/Q

(
j(τ1)− j(τ2)

)∣∣−∑
q

mq log(q),

where the sum runs over the primes appearing in theorem 144. Then theorem 144
follows from the fact that a1 = 0.

5.6.2 A p–adic analogue

Next we want to adapt the proof explained in section 5.6.1 to the RM setting using
p–adic analytic methods. Let F = Q(

√
D) be a real quadratic field and suppose

that the prime p is inert in F. Let ψ be an odd character of the class group of F.
The q–expansion of the Hilbert modular Eisenstein series from section 5.6.1 is

Ek,ψ = L(F, ψ, 1− k) + 4 ∑
ν∈d−1

+

σk−1,ψ(νd)e2πi(νz+ν′z′),

where d−1 is the inverse different of F, d−1
+ consists of the totally positive elements

of d−1 and
σk−1,ψ(α) = ∑

I|(α)
ψ(I)N(I)k−1.

These functions are formed from algebraic quantities. To obtain a p–adically
interpolable function, we consider the p–stabilization

E(p)
k,ψ = Ek,ψ(z, z′)− Ek,ψ(pz, pz′) = Lp(F, ψ, 1− k) + 4 ∑

ν∈d−1
+

σ
(p)
k−1(νd)e

2πi(νz+ν′z′),

where
σ
(p)
k−1(α) = ∑

p|-I|(α)
ψ(I)N(I)k−1.
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Now the functions vary analytically in k. We can set

Gk(ψ) = E(p)
k,ψ(z, z) ∈ M2k(Γ0(p))

and this yields a p–adic family of modular forms. In particular, G1(ψ) = 0 in
M2(Γ0(p)) and we can work with

G′1(ψ) =
[

d
ds

Gs(ψ)

]∣∣∣∣
s=1
∈ Mp−adic

2 (SL2(Z)).

In this case, we have to use the ordinary projection

πord = lim
n→∞

Un!
p : Mp−adic

2 (SL2(Z))→ M2(Γ0(p)).

Theorem 146 (Darmon–Pozzi–Vonk). Consider the q–expansion

πord(G′1(ψ)) = ∑
n≥0

anqn ∈ M2(Γ0(p)).

There is a rigid analytic θ–cocycle JW , called the winding cocycle, such that

a1 = ∑
disc(τ)=D

ψ(τ) log
(

JW [τ]JW [τ′]
)
,

where the sum runs over the RM points τ ∈ Γ\Hp of discriminant D.

5.6.3 The winding cocycle

The geodesic path (0, ∞) from 0 to i∞ on h (or its projection) is called the winding
element of H1(X0(p), cusps, Z). By Poincaré duality, we view the winding element
in H1(Γ0(p), Z); the winding cocycle JW will be its image in H1(Γ, A ×/C×p ).

Let Γ = SL2(Z[p−1]). We can decompose

Γ(0, ∞) = Σ =
⊔
i≥0

Σi,

where

Σi =

{( a
b

,
c
d

)
: ad− bc = ±pi

}
(writing all fractions in lowest terms). Choose base points ηp ∈ Hp and η∞ ∈ H.
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We define JW : Γ→ A ×/C×p by

JW(γ)(z) = ∏
(r,s)∈Σ

[(z)− (ηp); (r)− (s)](r,s)·(η∞,γη∞)

=
∞

∏
i=0

∏
(r,s)∈Σi

[(z)− (ηp); (r)− (s)](r,s)·(η∞,γη∞)

for all γ ∈ Γ and z ∈ Hp. One checks that the products in the last expression
converge absolutely. Unlike the cocycles JDR or JE, the winding cocycle JW is not a
Hecke eigenclass (but it is simpler geometrically!).

Theorem 147. We have the q–expansion

πord(G′1(ψ)) = L′p(F, ψ, 0) + 4 ∑
n≥1

logp
(
Tn JW [∆ψ]

)
qn,

where we evaluate Tn JW at the divisor on Γ\HP

∆ψ = ∑
disc(τ)=D

ψ(τ) ·
(
(τ) + (τ′)

)
(the last sum runs over the RM points τ ∈ Γ\Hp of discriminant D).

Theorem 147, which is proofed with a direct computation, is a more general
version of theorem 146. To imitate the last part of section 5.6.1, we need another
description of JW .

Lemma 148. We can express

JW =
2

p− 1
JDR + ∑

f eigen.
Lalg( f , 1)J−f ,

where the sum runs over the (normalized) cuspidal eigenforms f of weight 2 and level
Γ0(p) and Lalg( f , 1) is a quotient of L( f , 1) by a real period.

Idea of the proof. One can show that

(0, ∞) =
2

p− 1
ϕDR + ∑

f eigen.
Lalg( f , 1)ϕ−f .

The L–values appear as path integrals.
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Corollary 149. We have a linear combination

πord(G′1(ψ)) =
−4

p− 1
logp

(
JDR[∆ψ]

)
E(p)

2 + ∑
f eigen.

Lalg( f , 1) logp
(

J−f [∆ψ]
)

f .

Comparing the constant coefficients of the q–expansions, we see that

L′p(F, ψ, 0) = logp
(

JDR[∆ψ]
)

(Kronecker limit formula).

5.6.4 CM theory of Shimura–Taniyama

Let F be a totally real field with [F : Q] = d > 1. Consider the discrete action

of SL2(OF) on hd = h×
(d)
· · · × h. We can interpret SL2(OF)\hd as the C–points

of a Hilbert modular surface X, which is a moduli space of abelian varieties A
endowed with an embedding OF ↪→ End(A). There are a number of special points
on X corresponding to abelian varieties A with an embedding OK ↪→ End(A) for
a CM extension K/F.

Fact 150. Given a Hilbert modular function φ and a special point x of X (corresponding
to a CM field K), the value φ(x) lies in a class field of a reflex field of K.

One can also study this kind of values via rigid cocycles. Let p be a prime ideal
of OF and let Γ = SL2(OF[p

−1]). The action of Γ on the p–adic “upper half-plane”
Hp is not discrete, but we can define special points to be the τ ∈ Hp such that

(1) F(τ) is a totally real quadratic extension of F and
(2) StabΓ(τ) ∼= Zd up to torsion.

Then one can attach to each special point τ a cocycle Jτ ∈ Hd(Γ, M×/C×p ) and
one can study the lifting obstructions. It turns out that Hd+1(Γ, C×p ) gives (conjec-
turally) a p–adic uniformization of an abelian variety. Eventually, there should be
some analogue of the Gross–Zagier theory in this setting.
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A Student presentations

The notes that I took of the student presentations are quite worse than the rest
for a number of reasons, including my inability to take decent notes of talks
based on slides. The following pages do not do justice to the quality of the actual
presentations. The interested reader should watch the recordings instead.

A.1 Proof of theorem 22 (Jhan-Cyuan Syu)

Theorem 151 (Riemann–Roch). Let C be a smooth projective algebraic curve over a
field K. Fix an algebraic closure K of K. For every D ∈ Div(C),

`(D)− `(K− D) = deg(D)− g + 1,

where
(1) `(D) is the dimension of the K–vector space

L(D) = { f ∈ K(C)× : div( f ) ≥ −D },

(2) K is a canonical divisor of C and
(3) g is the genus of C.

We are going to apply theorem 151 to an elliptic curve E/K to prove theorem 22.

Step 1. Construction of x, y ∈ K(E).
Applying Riemann–Roch’s theorem with the divisors
• D = 0: `(0)− `(K) = deg(0) and so `(K) = 1;
• D = K: `(K)− `(0) = deg(K) and so deg(K) = 0;
• D = n[O] for some n ∈ Z≥1: `(n[O])− `(K − n[O]) = deg(n[O]) and so

`(n[O]) = n because deg(K− n[O]) < 0.
We have seen that L(n[O]) has dimension n over K. Next we claim that we can

take a K–basis of L(n[O]) formed of elements in K(E) (i.e., of rational functions
over K, not just over K).

To descend from K to K, we consider the Galois action of GK on L(n[O]).
Take v ∈ L(n[O]). By continuity of the Galois action, StabGK(v) is an open
subgroup of GK. Therefore, the action of GK on v factors through Gal(L/K) for
some finite Galois extension L/K. Write Gal(L/K) = { σ1, . . . , σm } and take a
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K–basis v1, . . . , vm of L. Define
w1

w2

...

wm

 =


vσ1

1 vσ2
1 · · · vσm

1

vσ1
2 vσ2

2 · · · vσm
2

...
...

. . .
...

vσ1
m vσ2

m · · · vσm
m

 ·


vσ1

vσ2

...
vσm

.

It is clear that Gal(L/K) acts trivially on each wi, which means that wi ∈ K(E).
Moreover, the matrix above is invertible and so v can be expressed as an L–linear
combination of the wi. Applying this argument to each element of a K–basis of
L(n[O]), we obtain generators of L(n[O]) that are already defined over K.

Now take x, y ∈ K(E) such that

L(2[O]) = K · 1⊕ K · x and L(3[O]) = K · 1⊕ K · x⊕ K · y.

Step 2. Properties of x and y.
Since x 6∈ L([O]) and y 6∈ L(2[O]), we deduce from the definition of L( · ) that

ordO(x) = −2 and ordO(y) = −3

and there are no other poles.
In L(6[O]) we have the seven elements 1, x, y, x2, xy, x3 and y2 which must

satisfy a non-trivial relation, say

a1 + a2x + a3y + a4x2 + a5xy + a6x3 + a7y2 = 0 with a6, a7 6= 0.

The change of coordinates

(x, y) 7→ (−a6a7x, a2
6a7)

allows us to rewrite the equation as

y2 + A1xy + A3y = x3 + A2x2 + A4x + A6.

Since 2 ∈ K×, after the change of coordinates

(x, y) 7→
(

x,
1
2
(y− A1x− A3)

)
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we obtain an equation of the form

y2 = 4x3 + B2x2 + B4x + B6.

Finally, since 6 ∈ K×, we can apply the change of coordinates

(x, y) 7→
(x− 3B2

36
,

y
108

)
to obtain an equation of the form

y2 = x3 + c4x + c6.

The canonical equation y2 = x3 + g4x + g6 is obtained by rescaling

(x, y) 7→ (λ−2x, λ−3y) for suitable λ ∈ K×

so that
ω =

dx
y

.

A.2 The ring of weak modular forms (Martí Roset)

Let R be a base ring with 6 ∈ R×. We want to identify WMF(R) = R[g4, g6, ∆−1].
To that aim, we are going to use theorem 22 (or rather, its generalization for rings
in which 6 is invertible):

Theorem 22 (classification of framed elliptic curves). Let K be a field in which 6 is
invertible and let (E, ω) be a framed elliptic curve over K. There exists a unique pair of
functions x, y ∈ OE(E \ {O }) satisfying the following conditions:

(1) ordO(x) = −2 and ordO(y) = −3;
(2) x and y satisfy an equation of the form

y2 = x3 + g4x + g6

for some g4, g6 ∈ K with the property that ∆ = 4g3
4 + 27g2

6 ∈ K×, and

(3) ω =
dx
y

.

From the unicity statement, we see that g4 and g6 define weak modular forms
over R and the weak modular form ∆ = 4g3

4 + 27g2
6 has to be invertible. Our goal

is to prove the following result:

Proposition 152. The space WMF(R) is the R–algebra R0[g4, g6, ∆−1].
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The strategy to prove proposition 152 will be to identify f ∈ WMF(R) with
its value at a universal framed elliptic curve over R[g4, g6, ∆−1]. (Here, universal
means that every framed elliptic curve over an R–algebra can be obtained as a
base change of it.)

Consider the functor Ell+R : R–Alg→ Set that sends an R–algebra S to the set
Ell+R (S) of framed elliptic curves over S. A morphism of R–algebras S→ S′ is sent
to the map Ell+R (S)→ Ell+R (S

′) given by base change of framed elliptic curves by
S→ S′.

Lemma 153. The functor Ell+R is represented by R[g4, g6, ∆−1] (we view this ring ab-
stractly as R[X, Y, 1/(4X2 + 27Y3)]).

Proof. Let S be an R–algebra. By theorem 22, we can define a map

Ell+R0
(R) −→ HomR0–Alg

(
R0[g4, g6, ∆−1], R

)
(E, ω)/R 7−→

(
ψ = ψ(E,ω) : R0[g4, g6, ∆−1]→ R

)
characterized by ψ(g4) = g4(E, ω) and ψ(g6) = g6(E, ω).

• Surjectivity. Given ψ, we can recover the framed elliptic curve by means of
the equation

y2 = x3 + ψ(g4)x + ψ(g6).

• Injectivity. The isomorphism class of (E, ω) is completely determined by
g4(E, ω) = ψ(g4) and g6(E, ω) = ψ(g6).

Using lemma 153, we can redefine weak modular forms as follows. A weak
modular form f over R is a rule assigning a value f (S, ψ) ∈ S to every pair
consisting of an R–algebra S and a morphism ψ : R[g4, g6, ∆−1]→ S of R–algebras
in a way that is compatible with base change: given ϕ : S→ S′,

f (S′, ϕ ◦ ψ) = ϕ( f (S, ψ)).

Proof of proposition 152. Let f ∈ WMF(R). Consider the universal morphism of
R–algebras id : R[g4, g6, ∆−1] → R[g4, g6, ∆−1]. Then f

(
R[g4, g6, ∆−1], id

)
is an

element P = P(g4, g6, ∆−1) ∈ R[g4, g6, ∆−1]. We claim that we can identify f with
P. Indeed, for every pair (S, ψ : R[g4, g6, ∆−1]→ S) as above,

f (S, ψ) = f (S, ψ ◦ id) = ψ( f (S, id)) = ψ(P(g4, g6, ∆−1))

= P(ψ(g4), ψ(g6), ψ(∆)−1) = P(g4(S, ψ), g6(S, ψ), ∆−1(S, ψ)).
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Remark. A weak modular form is a natural transformation from Ell+R to the forget-
ful functor R–Alg→ Set and this proof is an application of Yoneda’s lemma.

Alternatively, one can give an analytic proof of proposition 152.

Proposition 154. Let f be a non-zero holomorphic modular form over C of weight k.
Then

ord∞( f ) +
1
2

ordi( f ) +
1
3

orde2πi/3( f ) + ∑
x∈SL2(Z)\H∗

ordx( f ) =
k

12
.

Idea of the proof. This formula can be proved applying the residue theorem to
the logarithmic derivative of f on a certain contour close to the boundary of a
fundamental domain.

Proposition 155. The space of holomorphic modular forms over C is C[g4, g6].

Sketch of the proof. Let f be a modular form of weight k. We argue by induction on
k that f ∈ C[g4, g6]. By the valence formula, the cases k ≤ 2 are trivial. For k ≥ 4,
we can choose a, b ∈ Z≥0 such that 4a + 6b = k. We can choose λ ∈ C such that
f − λga

4gb
6 is a cusp form of weight k and then we apply the induction hypothesis

to h =
(

f − λga
4gb

6
)
/∆.

Remark. Proposition 155 can be refined using the q–expansion principle to obtain a
presentation for MF(R) for any subring R of C with 6 ∈ R×. Then by base change
one may pass to any general ring in which 6 is invertible.

A.3 The class number one problem (Dhruva Kelkar)

Let K = Q(
√

n) for some square-free n ∈ Z \ { 0, 1 }. Write

DK =

{
n if n ≡ 1 mod 4

4n if n ≡ 2 or 3 mod 4

for the discriminant of K. The maximal order in K is its ring of integers, which
admits a basis of the form 1, wK with

wK =
DK +

√
DK

2
.

Every other order O is of the form Z+ fwKZ for some f ∈ Z≥1 called the conductor
of O .
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Proposition 156. The class numbers h(O) of O and h(OK) of OK are related by

h(O) =
h(OK)f

[O×K : O×]
∏
p|f

(
1−

(DK

p

)
· 1

p

)
,

where (DK

p

)
denotes the Legendre symbol.

Our goal is to obtain all orders of class number 1. Write D for the discriminant
of the order O and h(D) = h(O) for its class number.

The theory of binary quadratic forms yields the following results:

Proposition 157. Let n ∈ Z≥1. The class number h(−4n) is 1 if and only if

n ∈ { 1, 2, 3, 4, 7 }.

Proposition 158. Let n ∈ Z≥1. If n has at least two odd prime factors, the class number
h(−n) is even.

Using these two results, our problem is reduced to the study of h(−p) for p
prime. More precisely, we have to determine when h(−p) = 1.

Next, we can deal with the case p ≡ 7 mod 8: taking

OK = Z +
1 +
√−p
2

Z and O = Z +
√
−pZ,

one checks with proposition 156 that h(−p) = h(−4p) and proposition 157 gives
us the complete list of possibilities.

Finally, the most interesting case is p ≡ 3 mod 8. The theory of complex
multiplication implies that the ring class field of conductor O is generated by j(a)
for any invertible fractional ideal a of O . One can define a cubic root γ2(z) of j(z)
and Weber’s functions f (z), f1(z) and f2(z) and prove several algebraic relations
between them. The problem is thus reduced to certain diophantine equations
using integral values of modular functions.

A.4 Endomorphisms of elliptic curves over finite fields (Cédric

Dion)

Let K be a field and let E1 and E2 be two elliptic curves over K. An isogeny
ψ : E1 → E2 corresponds to a morphism of fields ψ∗ : K(E2) ↪→ K(E1) via which
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we can see K(E1) as a finite extension of ψ∗(K(E2)).

Definition 159. The isogeny ψ : E1 → E2 is called separable (resp. inseparable) if it
induces a separable (resp. inseparable) extension K(E1)/ψ∗(K(E2)) of fields. We
define the degree (resp. separable degree, inseparable degree) of ψ to be the degree
(resp. separable degree, inseparable degree) of K(E1)/ψ∗(K(E2)).

Proposition 160. Given an isogeny ψ : E1 → E2, the kernel of ψ has exactly degs(ψ)

K–rational points.

From now on, suppose that K has characteristic p > 0. Let q = p f for some
f ∈ Z≥1. For every elliptic curve E/K, we can define the (relative) q–th power
Frobenius morphism

φq : E→ E(q).

Proposition 161. In the situation above, the isogeny φq is purely inseparable of degree q.

Corollary 162. In the situation above, either E[p](K) = 0 or E[p](K) ∼= Z/pZ.

Proof. We can count the number of p–torsion points of E as follows:

|E[p](K)| = |Ker([p])(K)| = degs[p] = degs(φ
∗
p ◦ φp) = degs φ∗p.

The last degree divides p, so it is either 1 or p.

Finally, we want to prove theorem 46. In fact, we prove the following version
of the theorem:

Theorem 163. Let E/K be an elliptic curve. The following assertions are equivalent:
(1) E[p](K) = 0;
(2) [p] : E→ E is purely inseparable and j(E) ∈ Fp2 , and
(3) EndK(E) is an order in a quaternion algebra.

Proof. The proof of corollary 162 shows that E[p](K) = 0 if and only if φ∗p (and
so [p]) is purely inseparable. In that case, φ∗p : E(p) → E has to factor through
φp : E(p) → E(p2), which is only possible if E(p2) ∼= E. Therefore,

j(E)p2
= j(E)

and we conclude that j(E) ∈ Fp2 .
Next, let us prove that (2) implies (3). Suppose, for the sake of contradiction,

that EndK(E) is either Z or an order in a quadratic imaginary field. Choose a prime
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` 6= p such that, for every E′ isogenous to E, ` is a prime in EndK(E′). We can take
a compatible sequence of cyclic subgroups Cn of E of order Z/`nZ, which induce
isogenous curves En = E/Cn. Since there are only finitely many such curves (up
to isomorphism), there exist m, n ∈ Z≥1 such that Em+n ∼= Em. Thus, we obtain an
endomorphism Em → Em+n ∼= Em whose kernel is cyclic of order `n. In particular,
it has degree `n and, as ` is prime in EndK(Em), it must differ from [`n/2] by a unit.
But [`n/2] is not cyclic and we get the desired contradiction.

For the converse, assume that [p] is not purely inseparable. Then from the
identification Tp(E)(K) ∼= Zp we obtain an injection

EndK(E) ↪→ EndZp(Tp(E)(K)) ∼= Zp,

which is impossible if EndK(E) is an order in a quaternion algebra (as it would
not be abelian).

Theorem 164. Let E/K be an ordinary elliptic curve. Then E[p](K) ∼= Z/pZ. Also, if
j(E) ∈ Fp, then EndK(E) is an order in a quadratic imaginary field.

Proof. The first proof is clear from the proof of corollary 162. For the second part,
assume that j(E) is algebraic over Fp and consider E′/Fq, for q = p f , isomorphic
to E over K. We consider the q–th power Frobenius φq ∈ EndK(E′). and show
that it cannot be multiplication by an integer. Indeed, if it were, we would have
φq = [±p f /2]. But then we would have E[pr/2](K) = 0, which is not the case.

A.5 Pell’s equation (Antoine Giard)

Let K = Q(
√
(D)) for a fundamental discriminant D < −4. We write ζK(s) for

the Dedekind zeta function of K and, more generally, ζK(s, A) for the partial zeta
functions associated with subsets A of ideals of OK. Define the character

χD(p) =
( D

N(p)

)
(using the Kronecker symbol).

Let d be a square-free positive integer. We want to study the solutions to Pell’s
equation

x2 − dy2 = ±1.

By Dirichlet’s unit theorem, there is a fundamental unit εd for Q(
√

d).

89



Recall that Riemann’s zeta function ζ(s) satisfies that

lim
s→1

(
ζ(s)− 1

s− 1

)
= γ

(where γ is Euler’s constant). There is an analogue of this formula for K:

Theorem 165 (Kronecker’s limit formula). Let A ∈ Cl(OK). Then

lim
s→1

(
ζK(s, A)− π√

−D(s− 1)

)
=

π√
−D

(
2γ− log(−D)− 2 log(g(τA))

)
,

where

g(z) =

√
2√
−D

Im(z) · |η(z)|2

and τA is the CM point corresponding to A−1.

Next, we want to study the L–function LK(s, χ) for certain characters χ. De-
compose D = D1D2 and define the genus character

χD1D2(p) =


( D1

N(p)

)
if p

∣∣- D,( Di

N(p)

)
6= 0 if p

∣∣ D.

(in the second case, we choose the i ∈ 1, 2 that makes the Kronecker symbol 6= 0).

Theorem 166 (Kronecker). We have a decomposition

LK(s, χD1D2) = L(s, χD1)L(s, χD2).

Assume that χD1D2 6= 1. Using Kronecker’s limit formula, we can express

LK(1, χD1D2) = ∑
A∈Cl(D)

χD1D2(A)ζK(1, A) =
−2π√
−D ∑

A∈Cl(D)

χD1D2(A) log(g(τA)).

Suppose that D1 > 0 and D2 < 0. The class number formula gives

L(1, χD1) =
2h(D1) log(εD1)√

D1
and L(1, χD2) =

2πh(D2)

ωD2

√
−D2

and so, combining everything,

2h(D1)h(D2)

ωD2

log(εD1) = − ∑
A∈Cl(D)

χD1D2(A) log(g(τA)).
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Theorem 167. We have

ε
2h(D1)h(D2)/ωD2
D1

= ∏
A∈Cl(D)

(g(τA))
−χD1D2 (A).

Remark. In this way, we have described a solution to Pell’s equation in terms of
modular forms.

Theorem 168 (Chowla–Selberg). We have

∏
A∈Cl(D)

g(τA) =
( 1

4π
√
−D

)h(D)
2
−D

∏
i=1

Γ
( i
−D

)ωDχD(i)
4

.

A.6 The work of Granville–Stark (Christian Táfula)

Let D be a (negative) fundamental discriminant and let Cl(D) and h(D) denote
the class group and the class number, respectively, of the corresponding quadratic
imaginary field K = Q(

√
D).

Let τ ∈ H. Recall that τ is called a CM point if

Aτ2 + Bτ + C = 0

for some pairwise coprime A, B, C ∈ Z with A > 0. Thus, τ corresponds to a
binary quadratic form

Ax2 + Bxy + Cy2.

In particular, the set of Heegner points ΛD, consisting of CM points in a funda-
mental domain for SL2(Z)\H with discriminant D, is in bijection with the set of
reduced primitive binary quadratic forms of discriminant D. In particular,

τD =


√

D
2

if D ≡ 0 mod 4

−1 +
√

D
2

if D ≡ 1 mod 4

corresponds to the principal form given by

(A, B, C) =


(

1, 0,−D
4

)
if D ≡ 0 mod 4(

1, 1,
1− D

4

)
if D ≡ 1 mod 4

(note that this definition of τD is different from the usual).
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Recall that H = HD = Q(
√

D, j(τD)) is the Hilbert class field of K and that the
values

{ j(τ) : τ ∈ ΛD }

are the Galois conjugates of j(τD).
We saw in examples 5 and 6 that we can find study the solutions of the form

(j(τD), j(τD)− 1728) = (x3, Dy2) to the equation x3 − Dy2 = 1728 to give lower
bounds for h(D) using that the ABC conjecture predicts that there are few such
solutions.

Conjecture 169. Let a, b, c ∈ Z. Suppose that a + b = c and that the numbers a, b and
c are pairwise coprime. For every ε > 0, there exists a constant Cε > 0 such that

max{ |a|, |b|, |c| } < Cε ·
(

∏
p|abc

p
)1+ε

.

Heilbronn proved that h(D)→ ∞ as D → −∞, so there are two natural kinds
of problems: listing values of h(D) for small values of |D| (e.g., the class number
one problem) and estimating the asymptotic growth of h(D). The main (classical)
result in this direction is Siegel’s estimate

h(D)√
|D|
�ε |D|−ε

(unconditional but ineffective).
Granville and Stark proved that, assuming a certain uniform formulation of the

ABC conjecture, there are no Siegel zeros for ζK(s). To do so, they studied solutions
to the equation x3 − y2 = 1728 of the form (j(τD), j(τD)− 1728) = (x3, y2). If x
and y were integers, the ABC conjecture with a = x3, b = −y2 and c = 1728 would
imply that

log
(
max{ |x|3, |y|2 }

)
<

5
6
(1 + ε)log

(
max{ |x|3, |y|2 }

)
+ Tε

for some Tε ∈ Oε(1) or, equivalently,

log
(
max{ |x|3, |y|2 }

)
< (6 + ε′)T′ε .

To formalize this, one has to use the ABC conjecture for number fields: given a
number field K and ε > 0, there exists a constant C(K, ε) > 0 such that, for every
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triple a, b, c ∈ K with a + b + c = 0,

ht([a : b : c]) < (1 + ε)
(
NK([a : b : c]) + log(rdK)

)
+ C(K, ε),

where ht denotes the (naive) height in P2(K), NK denotes the log-conductor and
rdK is the root-discriminant of K. Then, writing H̃D = HD(x, y), we obtain that

ht(j(τD)) < 6
(
(1 + ε) log(rdH̃D

) + C(H̃D, ε)
)
.

A “factorization” argument using modular functions shows that rdH̃D
≤ 6
√

D,
and the uniform form of the ABC conjecture allows us to use a constant C(ε)
independent of the field.

Lemma 170 (Granville–Stark). The uniform ABC conjecture implies that

ht(j(τD)) ≤
(
3 + o(1)

)
log(|D|)

as D→ −∞.

Theorem 171 (Granville–Stark). The uniform ABC conjecture implies that

h(D) ≥
(

π

3
+ o(1)

) √
|D|

log(|D|) ∑
τ∈ΛD

1
A

as D → −∞, where the index of summation τ ∈ ΛD corresponds to a reduced binary
quadratic form (A, B, C).

Consider the Dedekind zeta function

ζK(s) = ∑
a⊆OK

1
N(a)s =

c−1

s− 1
+ c0 + O(s− 1) for s→ 1.

Conjecture 172. There exists δ > 0 such that

ζK(β) 6= 0 whenever 1− δ

log(|D|) ≤ β < 1.

Using theorem 171 and the class number formula, one checks (assuming the
uniform ABC conjecture) that

ζK(β) ≤ −
(

1
δ
+ o(1)

)
∑

τ∈ΛD

1
A
+ c0(D) + o(1).
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Then one can use Kronecker’s limit formula to control the term c0(D):

c0(D) =
π2

6 ∑
τ∈ΛD

1
A
− π√

|D| ∑
τ∈ΛD

log
(√
|D|

2A

)
+ O

(
h(D)√
|D|

)
.

After some algebraic manipulation and using Duke’s theorem on the equidistribu-
tion of ΛD, one can prove that conjecture 172 is equivalent to the estimate

h(D)�
√
|D|

log(|D|) ∑
τ∈ΛD

1
A

.

A.7 Factorization of singular moduli (Arihant Jain)

In the previous lecture, we saw some results about the primes that appear in the
factorization of

∏
disc(τ1)=D1
disc(τ2)=D2

(
j(τ1)− j(τ2)

)
for two (distinct) fundamental discriminants D1 and D2. Now we are going to
study something about their multiplicities. More precisely, we are going to work
with

J(D1, D2) = ∏
disc(τ1)=D1
disc(τ2)=D2

(
j(τ1)− j(τ2)

) 4
w1w2 ,

where wi is the number of units in the ring of integers of Q(
√

Di) (in particular, if
Di < −4, then wi = 2).

Given a prime number ` such that(D1D2

`

)
6= −1,

we define

ε(`) =


(D1

`

)
if `

∣∣- D1,(D2

`

)
if `

∣∣- D2.

More generally, if n ∈ Z≥1 has a prime factorization

n = ∏
i
`ai

i
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with each `i satisfying the condition from before, we define

ε(n) = ∏
i

ε(`i)
ai .

Theorem 173 (Gross–Zagier). Let D = D1D2. Then

J(D1, D2)
2 = ± ∏

|x|<
√

D
∏

n|D−x2
4

n−ε(n).

A.8 Evaluation of p–adic theta functions (Isabella Negrini)

For every n ∈ Z≥1, choose representatives Pn for P1(Qp) modulo pn. For example,
we can take

Pn = { [a, 1] : a ∈ Zp/pnZp } ∪ { [1, b] : b ∈ pZp/pnZp }.

Define

Ωn = P1(Cp) \
( ⋃

x∈Pn

B(x, n)
)

,

where B(x, n) denotes the closed ball of radius pn centred at x, and

Ω−n = P1(Cp) \
( ⋃

x∈Pn

B−(x, n)
)

,

where B−(x, n) denotes the open ball of radius pn centred at x. By definition,

Hp =
⋃

n≥1

Ωn =
⋃

n≥1

Ω−n .

We will describe these subsets of Hp by means of the Bruhat–Tits tree T .
Observe that, given a vertex v0, the vertices at distance n from v0 are in bijection
with P1(Zp/pnZp). We take v0 to be the standard vertex corresponding to [Z2

p]

and set
v1 =

(
1 0
0 p

)
v0.

The edge e0 joining v0 and v1 is called the standard edge and satisfies that

StabPGL2(Qp)(e0) =

{
γ ∈ PGL2(Zp) : γ ≡

(∗ ∗
0 ∗

)
mod p

}
.

Definition 174. The ends of T are the equivalence classes of infinite paths on T

95



without backtracking under the equivalence relation defined as follows: two
infinite paths are equivalent if they only differ by finite segments. Let Ends(T )
denote the set of ends.

We endow Ends(T ) with the topology which has as a basis the subsets

U(e) = {Ends of T starting with e }

for all oriented edges e of T . One can define a PGL2(Qp)–equivariant homeo-
morphism Ends(T ) ∼= P1(Qp).

Let r : Hp → T denote the reduction map. Observe that A∗ = r−1(v0) and
W0 = r−1(e0) and that Ω−n is the preimage of the subtrees of T made of points
at distance at most n − 1 from v0. More generally, we can obtain affinoids as
preimages of vertices and annuli as preimages of edges.

Theorem 175 (Mumford).
(1) Let Γ be a discrete subgroup of SL2(Qp). If Γ\Hp is compact, then it is an algebraic

curve over Qp.
(2) Conversely, if X is an algebraic curve over Qp with totally degenerate reduction,

then there exists a discrete subgroup Γ of SL2(Qp) such that X is isomorphic to
Γ\Hp.

Let B = Q⊕Qi⊕Qj⊕Qk be Hamilton’s quaternions and consider the order

R = Z
[
i, j, k,

1 + i + j + k
2

]
.

We have an isomorphism ιp : B⊗Q Qp → M2(Qp) and define

Γ = ιp

(
R
[ 1

p

]×
1

)
⊆ SL2(Qp).

Definition 176. Let a, b, z ∈ Hp. The theta function θ(a, b; z) is defined by

θ(a, b; z) = ∏
γ∈Γ

z− γa
z− γb

.

Definition 177. For every n ∈ Z≥0, we define

Γn =

{
ιp

( x
pn

)
: x ∈ R, N(x) = p2n

}
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and
φn(a, b; z) = ∏

γ∈Γn\Γn−1

z− γa
z− γb

.

Proposition 178. The product θ(a, b; z) converges for all a, b, z ∈ Hp. It defines a
meromorphic function of z with zeros at { γa : γ ∈ Γ } and poles at { γb : γ ∈ Γ }.

One way to compute θ(a, b; z) could be to approximate it with

n

∏
i=0

φi(a, b; z) for n� 0.

However, this is not efficient (the order of Γn grows exponentially). To do it better,
one can express the quaternions of norm pn in terms of those of norm p.

Proposition 179. A primitive quaternion of norm pn factors uniquely (up to units) as a
product of quaternions of norm p.

One can also separate the quaternions according to where they send the stand-
ard affinoid. In the end, θ can be given by a collection of power series with different
centres.

A.9 Quaternion algebras over Q (Siva Sankar Nair)

Definition 180. Let F be a field of characteristic 6= 2. A quaternion algebra over F is
a central F–algebra B satisfying one of the following equivalent conditions:

(1) B is simple and has dimension 4 over K;
(2) there are a quadratic separable F–algebra K with an embedding K ↪→ B and

elements β ∈ B and b ∈ F× such that B = K⊕ Kβ, β2 = b and βα = αβ for
all α ∈ K;

(3) there are elements i, j ∈ B that generate B as an F–algebra and satisfy that
i2 = a, j2 = b and ij = −ji for some a, b ∈ F×, and

(4) B is simple, strictly larger than F and finite-dimensional over F and there is
an F–linear anti-involution such that Tr(α) = α+ α ∈ F and N(α) = α · α ∈ F
for all α ∈ B.

We write
B = (K, b)/F =

( a, b
F

)
.

Example 181. Let a, b ∈ F×. If one of a or b is a square in F, then

( a, b
F

)
∼= M2(F)
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via

i 7→
(

0 1
a 0

)
and j 7→

(√
b 0

0 −
√

b

)
.

Given a quaternion algebra B/F, there is a symmetric bilinear form

〈 · , · 〉 : B× B→ F

given by 〈α, β〉 = Tr(αβ). One checks that 〈α, α〉 = 2 N(α). Let O be an order in B.
We define

disc(O) =
∣∣det

(
〈ei, ej〉

)
ij

∣∣,
where e1, e2, e3, e4 is a Z–basis of O .

Example 182. Take

B =
( a, b

Q

)
with a, b ∈ Z.

For O = Z⊕Zi⊕Zj⊕Zk, we have disc(O) = (4ab)2

One can compute maximal orders in B/Q with the following algorithm:
(1) Take any order O ′ of B and find all primes p such that O ′p is not maximal in

B⊗Q Qp.
(2) For such a prime p, depending on the Legendre symbol( a

p

)
(and on the parity of p), we adjoin elements satisfying certain congruence
conditions modulo p to make an order that is maximal at p.

A.10 Coleman integration (Ting-Han Huang)

We want to define line integrals for a rigid analytic function f on the p–adic upper
half-planeHp.

Given an affinoid X, we write A(X) for the corresponding affinoid algebra and
Ω(X) for the module of rigid analytic differentials on X. There is the canonical
map d : A(X)→ Ω(X).

Definition 183. Let X be an affinoid and let X̃ denote its reduction to characteristic
p. An endomorphism φ : X → X is called a Frobenius endomorphism if its reduction
φ̃ is the Frobenius endomorphism of X̃.
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Theorem 184 (Coleman). Let K be a complete subfield of Cp and let X be a connected
affinoid over K with good reduction X̃. Let ω be a closed 1–form on X and let φ be the
Frobenius endomorphism. If there exists P(T) ∈ Cp[T] whose roots are not roots of unity
and such that

P(φ∗)ω ∈ dA(X),

then there exists a locally analytic function fω on X(Cp), unique up to additive constant,
such that

(1) d fω = ω and
(2) P(φ∗) fω ∈ A(X).

Remark. The Coleman primitive fω is independent of the choice of P and φ.

Take X = Gm(OCp) = { z ∈ Cp : |z|p = 1 }. We can fix a branch of the p–adic
logarithm log : C×p → Cp, characterized by

d
dz

log(z) =
1
z

.

Given ω ∈ Ω(X), we can integrate ω locally and thus obtain a locally analytic
function F on X such that dF = ω. Two such primitives differ by a locally constant
function, but we would like integration to be defined up to a (global) constant.

Lemma 185. Let X be an affinoid with a Frobenius endomorphism φ. If f is a locally
constant function on X such that φ∗ f = a f for some a ∈ Cp that is not a root of unity,
then f = 0.

For our simple choice of X, we can take φ to be the map z 7→ zp. Then

φ∗
(dz

z

)
= p

dz
z

and we obtain a Coleman primitive F(z) such that

φ∗F(z) = pF(z).

This is the usual p–adic logarithm.

A.11 Calculation of singular moduli on Shimura curves (Sofia

Giampietro)

Let S be an odd set of places of Q containing ∞. Let Bp be the quaternion algebra
ramified at the places in S \ { p }. Let RS,p be the maximal Z[p−1]–order in Bp and
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consider Γp = (R×S,p)1 embedded inside SL2(Qp). We have a Shimura curve XS

such that XS(Cp) = Γp\Hp.
For a quadratic order O of discriminant D, the elements of CM(O) ⊆ XS(Cp)

are in bijection with optimal embeddings of O [p−1] into RS,p.
Fix two quadratic discriminants D1 and D2. Take conjugate pairs (τi, τ′i ) of CM

points of discriminants Di and define

Di = (τi)− (τ′i ) ∈ Div0(Hp).

We want to compute [D1;D2]Γp in some particular cases. Recall that, if D1 is
principal, then this quantity is defined in the compositum HD1 HD2 , where HDi

denotes the ring class field corresponding to the order Oi of discriminant Di.
We can express

[D1;D2]Γp = ∏
γ∈Γp

(τ1 − γτ2)(τ
′
1 − γτ′2)

(τ1 − γτ′2)(τ
′
1 − γτ2)

=
θD2(τ1)

θD2(τ
′
1)

.

Assume that XS has genus 0, so that cD1 is trivial. This happens only for the sets
of places S = { 2, 3, ∞ }, { 2, 5, ∞ } or { 2, 11, ∞ }. Write Jp(τ1, τ2) = [D1;D2]Γp .

The θ–functions can be computed separating the elements of Γp according to
their p–adic valuation and using a recursive algorithm in terms of factorizations
in Bp that works under the assumption that Bp has class number 1.

A.12 Heegner points (Reginald Lybbert)

Let K be a quadratic imaginary field. Recall that, if CMC(OK) = { τ1, . . . , τh }, then
H = K(j(τ1), . . . , j(τh)) is the Hilbert class field of K.

Let E be an elliptic curve over Q. The modularity theorem provides a modular
parametrization

φE : X0(N) −→ E,

where N is the conductor of E. Analytically, this map can be defined as follows:

φE(τ) =
(
℘(zτ),℘′(zτ)

)
where, if fE is the modular form of level Γ0(N) corresponding to E, then

zτ = 2πi
∫ τ

i∞
fE(z) dz = ∑

n≥1

an( fE)

n
qn, where q = e2πiτ.
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For a CM point τ ∈ h, we consider the order

O
(N)
τ =

{
γ ∈ M2(Z) : γ ≡

(∗ ∗
0 ∗

)
mod N and γτ = τ

}
∪ { 0 }.

Theorem 186. Let τ ∈ h ∩ K and let H be the ray class field attached to O
(N)
τ . Then

φE(τ) ∈ E(H).

In particular, one can use this result to compute some rational points of E over
(hopefully) “small” fields. In fact, we can even obtain points in E(K) as follows:

• for each class [a] ∈ Gal(H/K), we can find some τa such that O
(N)
τa
∼= a;

• thus, φE(τa) ∈ E(H), and
• summing over all such elements, we obtain

PK = ∑
a∈Cl(K)

φE(τa) ∈ E(K).

Theorem 187 (Gross–Zagier). Let PK be the Heegner point defined above. Then

L′(1, E) =
32π2‖ fE‖2

|O×K |2
√
|DK|deg(φE)

hE(PK),

where hE denotes the Néron–Tate height.

A.13 The Chowla–Selberg formula (Subham Roy)

Let O be an order of discriminant D in a quadratic imaginary field K. Write ZD for
the set of CM points of discriminant D in h. For each τ ∈ ZD, there exists a period
Ωτ (depending only on τ) such that, for every modular form f of weight k and
level SL2(Z) defined over Q, f (τ) ∈ Ωk

τ ·Q. In fact, we can deduce the following
more general result:

Proposition 188. Let K be a quadratic imaginary field. There exists a period ΩK ∈ C×

with the property that, for every τ ∈ h ∩ K and every modular form f of weight k ∈ Z

and level SL2(Z) defined over Q,

f (τ) ∈ Ωk
K ·Q.

We apply this result to F(z) = Im(z)|η(z)|4 and to all the CM points τ ∈ ZD,
where D = disc(K).
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Theorem 189 (Chowla–Selberg). In the situation above,

∏
τ∈SL2(Z)\ZD

(
4π
√
|D|F(τ)

)2/w
=
|D|−1

∏
m=1

Γ
( m
|D|

)χD(m)
,

where w = |O×K | and χD is the quadratic character associated with K.

Using this formula, one checks that the period ΩK can be chosen to be

ΩK =
1√

2π|D|

(|D|−1

∏
m=1

Γ
( m
|D|

)χD(m)
)w/4h(D)

.
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