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Throughout this document, we consider a fixed function field K in one variable
over a ground field k. We use the same notation as Goldschmidt’s book [1] and
the previous talks.

The main objectives of this talk are to prove the residue theorem, which roughly
states that the sum of the local residues of a differential form is zero, and to exhibit
a duality between differential forms and Weil differentials in the case that K / k is
geometric.

Residues

In the last talk, residues were introduced in general. Here, we restrict our attention
to the local residues of differential forms. In order to define them, we need a
previous observation.

Lemma 1. For every P ∈ PK, ÔP is a near K̂P–submodule of K̂P.

Proof. Fix a local parameter t at P. Since dimk(ÔP / tÔP) = dimk(FP) < ∞, for
n ∈N we get that dimk(ÔP / tnÔP) = n dimk(ÔP / tÔP) < ∞. This implies that
ÔP ∼ tnÔP for all n ≥ 0. Moreover, multiplication by tn induces an isomorphism
t−nÔP / ÔP

∼= ÔP / tnÔP, so ÔP ∼ tnÔP for all n ∈ Z. Finally, for every x ∈ K̂P,
there exists some n ∈ Z such that xÔP = tnÔP; in particular, xÔP 4 ÔP.

Definition 2. The local residue map at P ∈ PK is the k–linear map

ResP : ΩK −→ k

ω 7−→ ResK̂P
ÔP

(ω)

(which is well-defined by the previous lemma).

Now we can already start working towards the proof of the residue theorem.
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Lemma 3. If x, y ∈ ÔP, ResP(y dx) = 0. Consequently, for every α ∈ AK and x ∈ K,
ResP(αP dx) = 0 for all but finitely many primes P ∈ PK.

Proof. If x, y ∈ ÔP, ÔP is invariant under both x and y and so the trace which
defines ResP(y dx) is zero (as proved in the previous talk; see lemma 1.4.9 in [1]).

The second assertion follows from the first because both α and x have only
finitely many poles.

Theorem 4 (Tate). Let S ⊆ PK and define

OS =
⋂

P∈S
OP .

OS is a near K–submodule of K and

∑
P∈S

ResP(ω) = ResK
OS

(ω)

for every ω ∈ ΩK.

Proof. Let A = AK be the adèle ring of K and consider the subring

AS = { α ∈ A : αP = 0 for all P 6∈ S } .

For any D ∈ Div(K), write AS(D) = A(D) ∩ AS. Consider also the natural
projection π : A→ AS and KS = π(K). Clearly, π induces isomorphisms K ∼= KS

and OS
∼= KS ∩ AS(0), so we can view these spaces as subspaces of AS. Let us

check that they are near K–submodules of AS.
Indeed, KS is even K–invariant. As for AS(0), take x ∈ K and we see that, for

every α ∈ AS(0) and every P ∈ S,

vP(xα) = vP(x) + vP(α) ≥ vP(x) ≥ −vP([x]∞) ,

whence xAS(0) ⊆ AS([x]∞) and so xAS(0) + AS(0) ⊆ AS([x]∞). From this, using
that AS([x]∞) = A([x]∞) ∩ AS and AS(0) = A(0) ∩ AS, we obtain that

dimk
xAS(0) + AS(0)

AS(0)
≤ dimk

AS([x]∞)

AS(0)
≤ dimk

A([x]∞)

A(0)
= deg[x]∞ < ∞ .

Therefore, KS and AS(0) are near K–submodules of AS, and so are KS ∩ AS(0)
and KS + AS(0) too. In addition,

ResAS
KS+AS(0)

+ResAS
KS∩AS(0)

= ResAS
KS

+ResAS
AS(0)

.

Since KS is K–invariant, ResAS
KS

= 0. Similarly, from

dimk
AS

AS(0) + KS
≤ dimk

A
A(0) + K

= g− δ(0) = g < ∞ ,
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we deduce that AS(0) + KS ∼ AS and then ResAS
AS(0)+KS

= ResAS
AS

= 0 too. Also, as
the spaces where the residues are computed can be enlarged,

ResK
OS

= ResKS
KS∩AS(0)

= ResAS
KS∩AS(0)

.

All in all,
ResK

OS
= ResAS

AS(0)
.

Take ω = y dx ∈ ΩK for some x, y ∈ K. Let { P1, . . . , Pn } ⊆ S be the finite set
of primes of S where at least one of x and y has a pole and let T be its complement
in S. We observe that

AS(0) = AT(0)⊕
(

n⊕
i=1

ÔPi

)

and, as ResAS
0 = 0, the formula for the residue map on the sum of near submodules

yields

ResAS
AS(0)

= ResAS
AT(0)

+
n

∑
i=1

ResAS
ÔPi

= ResAS
AT(0)

+
n

∑
i=1

ResPi .

Furthermore, AT(0) is invariant under both x and y because neither x nor y has
poles in T, whence ResAS

AT(0)
(y dx) = 0. For the same reason, lemma 3 implies that

ResP(y dx) = 0 for all P ∈ T. In conclusion,

ResK
OS

(ω) = ResAS
AS(0)

(ω) =
n

∑
i=1

ResPi(ω) = ∑
P∈S

ResP(ω)

as claimed.

As a particular case of this theorem, we obtain the result which is usually
referred to as the residue theorem.

Corollary 5. For every ω ∈ ΩK,

∑
P∈PK

ResP(ω) = 0 .

Proof. It is immediate from the theorem because⋂
P∈PK

OP = k ∼ 0

and so ResK
OPK

= 0.

Duality

From now on, assume further that K / k is a geometric function field of genus
g. In this case, the theory of residues allows us to construct an explicit duality
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isomorphism between the space ΩK of differential forms on K and the space WK

of Weil differentials on K.

Theorem 6. The map

∗ : ΩK −→WK

ω 7−→ ω∗

defined by

ω∗ : AK −→ k

α 7−→ ∑
P∈PK

ResP(αP ω)

is a K–linear isomorphism.

Proof. First, we must prove that the duality map is well-defined, i.e., that ω∗ is a
Weil differential for every ω ∈ ΩK. Let ω = y dx 6= 0 for some x, y ∈ K and define
D = [x]∞ + [y]∞ + 1. We want to show that ω∗ vanishes on AK(−D). Indeed,
take α ∈ AK(−D). Let P ∈ PK and choose a local parameter t at P. We can write
x = utn with n = vP(x) ∈ Z and then

ω = ytn du + nyutn−1 dt .

Thus, by our choice of D, vP(αPytn), vP(nαPyutn−1) ≥ 0 and so ResP(αPω) = 0
by lemma 3. On the other hand, theorem 4 shows that ω∗ vanishes on K too.
Therefore, ω∗ vanishes on AK(−D) + K, which means that it is a Weil differential.

From the definition, one sees easily that the map ∗ is K–linear. Since both
ΩK and WK are K–vector spaces of dimension 1, it suffices to prove that ∗ is not
trivial. To do so, take a separable prime P ∈ P

sep
K with local parameter t. For every

x ∈ OP, let α(x) be the adèle α ∈ AK with αP = t−1x and αQ = 0 for Q 6= P. Then,

(dt)∗(α(x)) = ResP(t−1x dt) = trOP/tOP(x) = trFP(x)

(as proved in the previous talk; see theorem 1.4.12 in [1]). But FP / k is a separable
extension, and this is equivalent to the trace form trFP being non-zero. Therefore,
we can find some x ∈ OP such that trFP(x) 6= 0.

The techniques used to prove that the duality map is an isomorphism can be
used to obtain some additional results.

Corollary 7. Let P ∈ PK and let t be a local parameter at P. vP((dt)∗) = 0 if and only
if P is a separable prime. Moreover, in this case, t is a separating variable of K / k.
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Proof. Recall that, for a Weil differential w ∈ WK and e ∈ Z, vP(w) ≥ e if and
only if w vanishes on t−eÔP. As in the proof of theorem 6, define α(x) (for every
x ∈ K̂P) to be the adèle α ∈ AK defined by αP = t−1x and αQ = 0 for Q 6= P, so
that

(dt)∗(α(x)) = trFP(x) .

If P is separable, trFP is not zero, which shows that (dt)∗ does not vanish on
t−1ÔP. In particular, we obtain that dt 6= 0 or, equivalently, that t is a separating
variable (as K / k is geometric). On the other hand, (dt)∗ vanishes on ÔP by
lemma 3. Therefore, vP((dt)∗) = 0.

Conversely, if P is not separable, the trace form trFP is zero, which implies that
(dt)∗ vanishes on t−1ÔP or, equivalently, that vP((dt)∗) ≥ 1.

Corollary 8. Let P ∈ PK and let x ∈ K be a separating variable.
(i) There exists y ∈ K̂P such that ResP(y dx) 6= 0.

(ii) The separable closure Fsep of k in FP is the maximal finite extension of k contained
in K̂P.

Proof. For (i), we have that dx 6= 0 and so (dx)∗ 6= 0. Setting e = vP((dx)∗) ∈ Z,
we get that (dx)∗ does not vanish on P−(e+1)ÔP, from which the claim follows.

Now we turn to (ii). Consider k′ to be the maximal finite extension of k
contained in K̂P. We must prove that k′ = Fsep. Recall that, if x ∈ K̂P is algebraic
over k, vP(x) = 0. Hence, k′ lies in ÔP and so defines a subfield of FP.

On the one hand, we know that Fsep has a unique lift to a subfield of ÔP (see
lemma 1.2.12 in [1]), so that Fsep ⊆ k′ by the maximality of k′.

On the other hand, we can choose a differential form y dx with ResP(y dx) 6= 0
as in (i). But, since k′ ⊆ ÔP, ÔP is k′–invariant and we saw in the previous talk
that, in this situation, the residue in K/k can be computed in terms of the residue
in K/k′: ResP(y dx) = trk′/k(Res′P(y dx)) (see lemma 1.4.16 in [1]). From this, we
see that trk′/k is not zero. Therefore, k′ / k is separable and so k′ ⊆ Fsep.

Using the duality between differential forms and Weil differentials, we can ex-
press the properties and results involving Weil differentials in terms of differential
forms. To conclude, we write down some of these results, which were actually
proved in another form in the preceding talks of the seminar.

Definition 9. For every P ∈ PK, we define the valuation vP on ΩK as follows:

vP(ω) = vP(ω
∗) for all ω ∈ ΩK .
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The divisor of ω ∈ ΩK is
[ω] = ∑

P∈PK

vP(ω)P .

For any divisor D ∈ Div(K), we define ΩK(D) to be the preimage of WK(D) under
the duality isomorphism. In particular, the differential forms in ΩK(0) are called
regular (or holomorphic if k = C).

Corollary 10. Let P ∈ PK. For all ω, ω′ ∈ ΩK and x ∈ K,

vP(xω) = vP(x) + vP(ω) and vP(ω + ω′) ≥ min{ vP(ω), vP(ω
′) } .

In particular, [ω] is a canonical divisor and deg[ω] = 2g− 2 for all ω ∈ ΩK.

Corollary 11. dimk(ΩK(0)) = g.

Corollary 12 (Riemann–Roch). For every D ∈ Div(K),

dimk(LK(D)) = deg(D) + 1− g + dimk(ΩK(D)) .

Corollary 13. Let D ∈ Div(K). If D ≥ 0 and deg(D) < g, then dimk(ΩK(D)) > 0.

Proof. Since D ≥ 0, k = LK(0) ⊆ LK(D). Therefore,

dimk(ΩK(D)) = g− 1− deg(D) + dimk(LK(D)) ≥ dimk(LK(D)) > 0 .
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