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Abstract

These are the informal notes for a one-and-a-half-hour talk given in the

students seminar1 on the new proof of Mordell’s conjecture by Brian Lawrence

and Akshay Venkatesh. The objective of the talk is to explain the technical

core of the proof. More precisely, I go over the proof of the finiteness of the set

of rational points of bounded size on the base of an abelian-by-finite family

with some additional properties. The notes follow very closely section 6 of

Lawrence–Venkatesh’s article [1] and contain no original results.

1 The main result

We consider the same setting as in the previous talks. In particular, throughout K
denotes a number field and S denotes a finite set of places of K containing all the
archimedean ones.

Last time in David’s talk we saw how to deduce the proof of Mordell’s conjec-
ture from the next result.

Main theorem. Let Y be a (smooth projective) curve over K of genus g ≥ 2. Let
X → Y′ → Y be an abelian-by-finite family, consisting of a finite étale morphism
π : Y′ → Y and a polarized abelian scheme X → Y′ of relative dimension d.
Suppose that this family has full monodromy and that it admits a good model over
O = OK[S−1]. Let v 6∈ S be a friendly place of K (over a rational prime p). The set

Y(K)∗ =
{

y ∈ Y(K) : sizev
(
π−1(y)

)
<

1
d + 1

}
is finite.

1I am grateful to Henri Darmon, Mike Lipnowski and Giovanni Rosso for organizing the
seminar.
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Remark. The notion of a good model was defined in previous talks, but we still have
not defined what full monodromy or a place being friendly mean. These concepts
will appear later as we need them in the proof (although we will not give the
formal definition of the latter for the sake of conciseness).

All in all, the proof of Mordell’s conjecture will be complete once
• we prove the main theorem above (the topic of this talk) and
• we construct the Kodaira–Parshin family with the properties described in

the previous talk (the topic of the next couple of talks).

2 Outline of the strategy

The rough strategy that we follow (and that appeared already in earlier talks) can
be summarized as follows. We are going to consider a period mapping Φv from a
v–adic disk Ωv in Y(Kv) to some sort of flag variety and prove that

dimKv

(
Z(ϕv) ·Φv(y)

)
< dimKv

(
Φv(Ωv)

)
(where the bar denotes the Zariski closure inside the flag variety and Z(ϕv) denotes
the centralizer of the crystalline Frobenius ϕv). This inequality implies that the
set of points of Ωv with local Galois representation isomorphic to ρy|GKv

, which is
precisely Φ−1

v
(
Z(ϕv) ·Φv(y)

)
, is contained in a proper Zariski-closed subvariety

of Ωv. Since Ωv is a curve (dimension 1), any such subvariety is of dimension 0.
Therefore, Φ−1

v
(
Z(ϕv) ·Φv(y)

)
must be finite. That is, the map y 7→

[
ρy|GKv

]
has

finite fibres.
To prove the inequality above, we are going to argue in the same way as in

Jim’s talk on the especial case of the modified Legendre family.
(1) “Φv(Ωv) is large”. By the lemma at the end of Ju-Feng’s talk, we can compare

Φv with the corresponding complex period mapping ΦC. Namely,

dimKv

(
Φv(Ωv)

)
≥ dimC

(
Γ · hι

0
)
,

where h0 = ΦC(y0) and Γ is the Zariski-closure of the image of the mono-
dromy map. Here we are going to use the hypothesis of full monodromy.

(2) “Z(ϕv) is small”. We can use the semilinearity of ϕv together with the fact
that most extensions of residue fields K(y′) / K(y) are large to obtain bounds
on dimQp

(
Z(ϕv)

)
. The last fact comes from the hypothesis on sizev

(
π−1(y)

)
for y ∈ Y(K)∗.
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Problem. We cannot conclude by Faltings’s lemma as in Marta’s talk because ρy

might not be semisimple. That is, the map y 7→
[
ρy|GKv

]
could have infinite image

even if it has finite fibres. To prove that this is not the case, we are going to use the
hypothesis that v is friendly and some results of p–adic Hodge theory.

Checking that most of the ρy are simple is the most complicated part of the
proof (and we will have to content ourselves with a sketch).

3 Setting and notation

Fix y0 ∈ Y(K)∗ and Ωv = { y ∈ Y(Kv) : y ≡ y0 mod v }. It suffices to prove that
Y(K)∗ ∩Ωv is finite, as we can cover Y(K)∗ with finitely many such v–adic disks.

Consider a rational point y ∈ Y(K) ∩Ωv. Taking fibres over y, we can express
π−1(y) = Spec(Ey) for a finite étale K–algebra Ey and then the fibre Xy of X over
y is an Ey–scheme. More precisely,

Ey = ∏
y′|y

K(y′);

that is, Ey is a product of finite separable extensions of K, each corresponding to
the residue field of a point y′ ∈ Y′

(
K
)

such that π(y′) = y. In turn, Xy / Ey is
the disjoint union of the d–dimensional polarized abelian varieties Xy′ / K(y′) for
y′
∣∣ y. The geometric setting is summarized in the next diagram:

Xy′ Xy X

ρy′

y′ : Spec
(
K(y′)

)
Spec(Ey) Y′

y : Spec(K) Y

p p
d–dim. pol.

ab. sch.

p
π f. ét.

y

y′

Xy′Xy :

Remark. I somewhat “lied” in the rough strategy of the proof in section 2. We are
not going to use the map

y 7−→ ρy = H1
ét
(
(Xy)K, Qp

)
but rather

y′ 7−→ ρy′ = H1
ét
(
(Xy′)K, Qp

)
(of course this is not precise: in any case we consider only the isomorphism classes
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of the restrictions of all these representations to GKv = Gal
(
Kv / Kv

)
, so that we

can use the usual p–adic Hodge theory equivalence with isomorphism classes of
filtered ϕ–modules). As a matter of fact, for y ∈ Y(K) we are going to decompose
everything over the points y′

∣∣ y.

By the definition of an abelian-by-finite family, we obtain the following extra
structure:

• Since Ey / K is finite étale, it is unramified and Ω1
Ey / K = 0. Therefore,

Hi
dR(Xy / K) = Hi

dR(Xy / Ey) = ∏
y′|y

Hi
dR
(
Xy′ / K(y′)

)
(in these equalities, there is a slight abuse of notation: we identify these
sheaves with their global sections). We always regard Hi

dR(Xy / K) as a free
Ey–module of finite rank.

• The polarization of X / Y′ provides a symplectic Ey–bilinear pairing

ω : H1
dR(Xy / Ey)×H1

dR(Xy / Ey)→ Ey

compatible with the decompositions as products over y′
∣∣ y.

We consider the analogous local situation at v and fix some additional notation.
• Set

Ey,v = Ey ⊗K Kv = ∏
(y′,w)|(y,v)

K(y′)w,

where the product is over the pairs (y′, w) consisting of a point y′ ∈ Y′
(
K
)

with π(y′) = y and a valuation w of K(y′) above the valuation v of K = K(y).
Note that we can also identify Ey,v = H0

dR
(
(Xy)Kv / Kv

)
.

• Set
Vy,v = H1

dR
(
(Xy)Kv / Kv

)
= H1

dR
(
(Xy)Kv / Ey,v

)
(regarded as an Ey,v–module).

• For every (y′, w)
∣∣ (y, v), set

Vy′,w = H1
dR
(
(Xy′)K(y′)w / K(y′)w

)
.

• All in all, we obtain a decomposition

Vy,v = ∏
(y′,w)|(y,v)

Vy′,w compatible with Ey,v = ∏
(y′,w)|(y,v)

K(y′)w.

4 Period mappings

Let y ∈ Y(K) ∩Ωv as before. As in previous talks, we want to use p–adic Hodge
theory to identify the crystalline representation ρy|GKv

with a filtered ϕ–module
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via the comparison theorems between different cohomology theories. However,
we are going to use the extra structure described above to obtain “finer-tuned”
period mappings.

Regard Vy,v as a free Ey,v–module of rank 2d endowed with a symplectic form
ω and a crystalline Frobenius ϕv. Observe that F1 Vy,v, the first filtered piece of the
Hodge filtration, is a d–dimensional lagrangian submodule (i.e., the restriction of
ω to F1 Vy,v is identically 0). The Gauss–Manin connection provides compatible
(canonical) identifications

Ey,v ∼= Ey0,v and (Vy,v, ω, ϕv) ∼= (Vy0,v, ω, ϕv).

Therefore, the image of F1 Vy,v in Vy0,v is a lagrangian Ey0,v–submodule and we
obtain a refined period mapping

Gv = Res
Ey0,v
Kv

Gr(Vy0,v, d)

Φv : Ωv Hv = Res
Ey0,v
Kv

LGr(Vy0,v, ω)

y F1 Vy,v

⊂

(here, Gr and LGr denote the grassmannian and the lagrangian grassmannian
varieties over Ey0,v, while Res

Ey0,v
Kv

denotes the Weil restriction to Kv–varieties).
Similarly, the Gauss–Manin connection identifies

{ (y′, w)
∣∣ (y, v) } ∼= { (y′0, w0)

∣∣ (y0, v) }

because

∏
(y′,w)|(y,v)

K(y′)w = Ey,v ∼= Ey0,v = ∏
(y′0,w0)|(y0,v)

K(y′0)w0 .

We decompose

Hv = ∏
(y′0,w0)|(y0,v)

Hy′0,w0
, where Hy′0,w0

= Res
K(y′0)w0
Kv

LGr(Vy′0,w0
, ω).

Furthermore, if (y′, w)
∣∣ (y, v) corresponds to (y′0, w0)

∣∣ (y0, v), the Gauss–Manin
connection identifies

(Vy′,w, ω, ϕω) ∼= (Vy′0,w0
, ω, ϕw0)

compatibly and the image of F1 Vy′,w in Vy′0,w0
is a lagrangian K(y′0)w0–subspace.

All in all, we can define a refined period mapping

Φy′0,w0
: Ωv Hv Hy′0,w0

y F1 Vy′,w

Φv
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for every componentHy′0,w0
ofHv (where (y′, w) corresponds to (y′0, w0)).

5 Full monodromy

The assumption that X → Y′ → Y has full monodromy means that

Γ = Im
(

π1
(
Y(C), y0

)
−→ GL

(
H1

B(Xy0(C), Q)
))

(the Zariski-closure of the image of the complex monodromy) contains

∏
y′0|y0

Sp
(
H1

B(Xy′0
(C), Q), ω

)
,

where ω is the symplectic form coming from the polarization of X → Y′. By the
comparison theorem between Betti cohomology and de Rham cohomology over C,
this hypothesis says that Γ acts transitively on the flag varietyHC = LGr

(
VC, ω

)
,

where
VC = H1

dR
(
Xy0(C)

)
= ∏

y′0|y0

H1
dR
(
Xy′0

(C)
)
.

We conclude that Φv(Ωv) is dense inHv because

dimKv

(
Φv(Ωv)

)
≥ dimC

(
Γ · hι

0
)
.

This was the first point of the outline of the strategy (cf. section 2).

6 The proof of the main theorem

The rest of the proof of the main theorem follows from two “kind-of-complicated”
lemmata. We now state them and deduce the conclusion from them.

Lemma A (generic simplicity). For all but finitely many points y ∈ Ωv ∩Y(K)∗,
there exists a pair (y′, w)

∣∣ (y, v) satisfying that
(A1) [K(y′)w : Kv] ≥ 8 and
(A2) ρy′ is a simple representation of GK(y′).

Lemma B (variation of Galois representations). Fix an extension K′v / Kv with
8 ≤ [K′v : Kv] < ∞ and a representation ρ′ of GK′v . There are only finitely many
points y ∈ Ωv ∩Y(K) for which there exists a pair (y′, w)

∣∣ (y, v) with properties
(A1) and (A2) and such that(

K(y′)w, ρy′ |GK(y′)w

) ∼= (K′v, ρ′
)
.
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As y and y′ vary among the points considered in lemma A, there are only
finitely many possibilities for the isomorphism class of K(y′) (which is isomorphic
to K(y′0) for some y′0

∣∣ y0) and so also for the isomorphism class of
(
K(y′), ρy′

)
by

Faltings’s lemma. Thus, lemma B concludes the proof of the theorem.
In the next two sections, we give the proofs of lemma B and lemma A.

7 Variation of representations (proof of lemma B)

We have correspondences
(y′, w)←→ (y′0, w0)

and
ρy′ |GK(y′)w

←→ (Vy′,w, ϕw, F1 Vy′,w)←→ Φy′0,w0
(y).

Consider the point h ofHy′0,w0
corresponding to ρ′. We have to prove that the

set
{ y ∈ Ωv ∩Y(K) : Φy′0,w0

(y) ∈ Z(ϕw0) · h }

is finite, where

Z(ϕw0) =
{

f ∈ GL
(
Vy′0,w0

)
: f ◦ ϕw0 = ϕw0 ◦ f

}
.

Since ϕw0 is Frobenius-semilinear, Z(ϕw0) is a Qp–vector space but not a Kv–vector
space, so we modify it a bit.

Write K′w0
= K(y′0)w0 , r = [K′w0

: Kv] ≥ 8 and n = [Kv : Qp] to simplify the
notation. We use that Z(ϕw0) ⊂ Z(ϕn

w0
) (the latter is a Kv–vector space) and prove

instead that the set

{ y ∈ Ωv ∩Y(K) : Φy′0,w0
(y) ∈ Z(ϕn

w0
) · h }

is finite. We do so with the already familiar argument of comparing dimensions:

dimKv

(
Z(ϕn

w0
)
)
= dimK′w0

(
Z(ϕnr

w0
)
)
≤ dimK′w0

(
GL(Vy′0,w0

)
)
= (2d)2

>

dimKv

(
Hy′0,w0

)
= r · dimK′w0

(
LGr(Vy′0,w0

, ω)
)
≥ 8 · d(d + 1)

2
= 4d(d + 1)

and so we deduce that the set above lies in a proper Zariski-closed subvariety of a
curve, which means that it is finite. This was the second point of the outline of the
strategy (cf. section 2).
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8 Generic simplicity (proof of lemma A)

What remains is to find a workaround for the problem described in the outline
of the strategy (cf. section 2). Namely, we want to prove that, up to discarding
a finite number of points, the considered representations are simple and so we
can apply Faltings’s lemma. This is the trickiest part and we will have to content
ourselves with a sketch of the proof, as we have not seen the p–adic Hodge theory
background involved. We divide the proof of lemma A into two sublemmata.

Sublemma 1. If y ∈ Ωv ∩Y(K)∗ is a bad point (i.e., does not satisfy the conclusion
of lemma A), then at least there exists a pair (y′, w)

∣∣ (y, v) such that
(A1) [K(y′)w : Kv] ≥ 8 and
(A2’) there is a non-trivial proper subspace Wy′,w of Vy′,w which is ϕw–stable and

with the property that

dim
(
F1 Wy′,w

)
≥ 1

2
dim

(
Vy′,w

)
.

(Here and in the proof, all occurrences of dim mean dimK(y′)w .)

Idea of the proof. For each y′
∣∣ y, let Wy′ be a subrepresentation of ρy′ that is minimal

of positive dimension. For each w
∣∣ v, Wy′ induces by p–adic Hodge theory a

ϕw–stable subspace Wy′,w of Vy′,w.
If y is bad but [K(y′)w : Kv] ≥ 8, then ρy′ must fail to be simple. This together

with the choice of Wy′ minimal and the fact that ρy′ preserves the bilinear form ω

imply that

dim
(
Wy′
)
≤ 1

2
dim

(
ρy′
)
,

whence dim
(
Wy′,w

)
≤ d (recall that Xy′ is an abelian variety of dimension d).

Now suppose, for the sake of contradiction, that (as y′ varies over the points of
Y′ lying over a fixed bad y) the implication

[K(y′)w : Kv] ≥ 8 =⇒ dim
(
F1 Wy′,w

)
<

1
2

dim
(
Vy′,w

)
holds. Observe that, whenever [K(y′)w : Kv] ≥ 8,

dim
(
F1 Wy′,w

)
dim

(
Wy′,w

) <
1
2

and dim
(
Wy′,w

)
≤ d,

whence we deduce that

dim
(
F1 Wy′,w

)
dim

(
Wy′,w

) ≤ 1
2
− 1

2d

because all dimensions are integer numbers.
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The place v being friendly is a technical condition that constrains the possible
Hodge–Tate weights of any (global) Galois representation that is crystalline at all
primes above p and pure of some weight. In particular, one can prove that

∑
w|v

[K(y′)w : Kv] ·
dim

(
F1 Wy′,w

)
dim

(
Wy′,w

) =
1
2
[K(y′) : K].

Summing over all y′
∣∣ y, we obtain that

∑
(y′,w)|(y,v)

[K(y′)w : Kv] ·
1
2
= ∑
(y′,w)|(y,v)

[K(y′)w : Kv] ·
dim

(
F1 Wy′,w

)
dim

(
Wy′,w

) ≤
≤ ∑
[K(y′)w :Kv]≥8

[K(y′)w : Kv] ·
(1

2
− 1

2d

)
+ ∑

[K(y′)w :Kv]<8
[K(y′)w : Kv] · 1

and rearranging

∑
[K(y′)w :Kv]<8

[K(y′)w : Kv] ·
(1

2
+

1
2d

)
≥ ∑
(y′,w)|(y,v)

[K(y′)w : Kv] ·
1

2d
.

Interpreting [K(y′)w : Kv] as the size of the Frobv–orbit of y′, the last inequality
says that

sizev
(
π−1(y)

)
≥ 1

d + 1
,

which contradicts the choice of y ∈ Y(K)∗.

Fix (y′0, w0)
∣∣ (y0, v) such that [K(y′0)w0 : Kv] ≥ 8. By sublemma 1, it suffices to

prove that the set {
y ∈ Ωv ∩Y(K) : Φy′0,w0

(y) ∈ Hbad
y′0,w0

}
is finite, where the subvarietyHbad

y′0,w0
ofHy′0,w0

parametrizes lagrangian subspaces
F ⊂ Vy′0,w0

for which there exists 0 6= W ( Vy′0,w0
that is ϕw0–stable and such that

dim
(

F ∩W
)
≥ 1

2 dim
(
W
)
. As usual, we prove thatHbad

y′0,w0
lies in a proper closed

subvariety ofHy′0,w0
.

Sublemma 2. Let Lw / Kv be a finite unramified extension with [Lw : Kv] = r ≥ 8.
Let (V, ω) be a symplectic Lw–vector space with dimLw

(
V
)
= 2d and let ϕ : V → V

be a Frobw–semilinear bijective map. For lagrangian subspaces F1, . . . , Fn ⊂ V and
0 6= W ( V ϕ–stable, let P(F1, . . . , Fn; W) be the property

dim
(

Fj ∩W
)
≥ 1

2
dim

(
W
)

for every 1 ≤ j ≤ n.

Then{
F ⊂ V lagrangian : there exists 0 6= W ( V ϕ–stable such that P(F; W)

}
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defines a proper Zariski-closed subset of ResLw
Kv

(
LGr(V, ω)

)
.

Idea of the proof. Since we want to work on points of the lagrangian grassmannian
variety, we have to base change everything to the algebraic closure Kv. We can
decompose

V ⊗Kv Kv =
⊕

σi : Lw↪→Kv

Vi,

where every (Vi, ω) is a symplectic Kv–vector space with dim
(
Vi
)
= 2d. We can

even number the r embeddings σi in such a way that ϕ|Vi : Vi
∼=−→ Vi+1. Similarly,

we decompose

W ⊗Kv Kv =
r⊕

i=1

Wi and F⊗Kv Kv =
r⊕

i=1

Fi

with Wi, Fi ⊂ Vi and ϕ|Wi : Wi
∼=−→Wi+1. Moreover, P(F; W) implies that P(Fi; Wi)

for every 1 ≤ i ≤ r.
Identifying each Vi with V1 via ϕi−1, it suffices to prove that

E =
{
(F1, . . . , Fr) ∈ LGr(V1, ω)r : P(F1, . . . , Fr; W1) for some 0 6= W1 ( V1

}
defines a proper Zariski-closed subset of

(
ResLw

Kv
LGr(V, ω)

)
⊗Kv Kv = LGr(V1, ω)r.

Note that we identify these varieties over Kv with their closed points.
That E is closed follows by upper-semicontinuity of dim

(
Fi ∩W1

)
. To see that E

is proper, we construct (F1, . . . , Fr) 6∈ E with an ad-hoc argument2 (linear algebra).
As a matter of fact, the argument works so long as r ≥ 5.

Let e1, e′1, . . . , ed, e′d be a standard symplectic basis, with ω(ei, e′i) = 1. Consider
the lagrangian subspaces

F1 = 〈e1, e2, . . . , ed〉
F2 = 〈e′1, e′2, . . . , e′d〉
F3 = 〈e1 + e′1, e2 + e′2, . . . , ed + e′d〉
F4 = 〈e1 + 2e′1, e2 + 4e′2, . . . , ed + 2de′d〉.

Observe that Fi ∩ Fj = 0 if i 6= j and V = F1 ⊕ F2 = F3 ⊕ F4. Let π1 : V � F1 and
π2 : V � F2 be the two projections from F1 ⊕ F2. We obtain isomorphisms

Φ3 : F1 F3 F2

ei e′i

π1∼=
π2∼= and

Φ4 : F1 F4 F2

ei 2ie′i

π1∼=
π2∼=

(where π1 and π2 denote the corresponding restrictions to F3 or F4).

2In the seminar talk, I stopped here without explaining the argument any further.
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We claim that there are only finitely many non-trivial subspaces W such that
P(F1, F2, F3, F4; W). Indeed, since

dim
(
W ∩ Fi

)
≥ 1

2
dim

(
W
)
,

comparing dimensions we see that

W =
(
W ∩ F1

)
⊕
(
W ∩ F2

)
and W =

(
W ∩ F3

)
⊕
(
W ∩ F4

)
and so in fact

dim
(
W ∩ Fi

)
=

1
2

dim
(
W
)
.

Again by comparison of dimensions, we see that π1 and π2 induce isomorphisms(
W ∩ F1

) (
W ∩ F3

) (
W ∩ F2

)π1∼=
π2∼=

and (
W ∩ F1

) (
W ∩ F4

) (
W ∩ F2

)
.

π1∼=
π2∼=

Thus, Φ−1
3 ◦Φ4 induces an automorphism of W ∩ F1. But Φ−1

3 ◦Φ4 is “diagonal”
with pairwise distinct eigenvalues (it is given by ei 7→ 2iei), so there are only
finitely many possibilities for W ∩ F1. Same for W ∩ F2 = Φ3(W ∩ F1) and so for
W =

(
W ∩ F1

)
⊕
(
W ∩ F2

)
too.

Let W1, . . . , WN be the possibilities for W satisfying that P(F1, F2, F3, F4; W).
The condition

P(F5; Wi) : dim
(

F5 ∩Wi
)
≥ 1

2
dim

(
Wi
)

cuts out a proper Zariski-closed subset of LGr(V1, ω). Therefore, we can choose
F5 ∈ LGr(V1, ω) such that P(F5; Wi) does not hold for any 1 ≤ i ≤ N. Finally,
choosing any other lagrangians F6, . . . , Fr, we conclude that (F1, . . . , Fr) 6∈ E by
construction.
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