Modular forms modulo *p* and *p*-adic modular forms

FRANCESC GISPERT

Montréal, 12th November 2020

Abstract

These are the notes for a one-and-a-half-hour talk given in an informal seminar¹ to prepare for a workshop on higher Coleman theory at the Centre de Recherches Mathématiques. I present the theory of (classical) modular forms modulo a fixed prime number p and introduce the notion of p-adic modular forms using their power series expansions. I tried to present these objects in the most elementary possible form thinking of the variety of back-grounds amongst the audience. The notes follow almost verbatim Serre and Swinnerton-Dyer's original work in the early 70's, published in the articles [2, 5, 4]. At the end, there is a brief review of p-adic Banach theory, following Serre's article [3], which was meant to set the ground for Giovanni Rosso's talk that followed mine. No originality is claimed.

1 Modular forms over C

We begin by quickly recalling the basic definitions and results of the theory of modular forms. Let $\mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}.$

Definition 1.

(1) A *modular form* of *weight* $k \in \mathbb{Z}$ (and *level*² 1) is a holomorphic function $f: \mathbb{H} \to \mathbb{P}^1(\mathbb{C})$ with the property that

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k \cdot f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ and all $z \in \mathbb{H}$

¹I thank Adrian Iovita for organizing the seminar and thinking of me to give this talk.

²The notion of *level* will appear in Giovanni's talk on Katz's definitions of modular forms. I will focus on the simplest case.

and admitting a *q*-expansion

$$f(z) = \sum_{n \ge 0} a_n(f)q^n$$
, where $q = e^{2\pi i z}$.

We identify *f* with its *q*-expansion (i.e., we view it as an element of $\mathbb{C}[\![q]\!]$).

- (2) Let *A* be a subring of \mathbb{C} . We say that *f* is *defined over A* if $f \in A[[q]]^3$.
- (3) Let M_k(A) denote the set of modular forms of weight k defined over A. (It is, in fact, an A–module.)
- (4) Set

$$M(A) = \bigoplus_{k \in \mathbb{Z}} M_k(A).$$

(It is a graded *A*–algebra.)

Example 2. The first examples of modular forms are the (normalized) *Eisenstein series*

$$E_{2k} = 1 - 2 \cdot \frac{2k}{B_{2k}} \cdot \sum_{n \ge 1} \sigma_{2k-1}(n) q^n \in M_{2k}(\mathbb{Q}) \text{ for } k \ge 2,$$

where B_{2k} is the 2k-th Bernoulli number and

$$\sigma_{2k-1}(n) = \sum_{0 < d \mid n} d^{2k-1}.$$

In particular, we will mostly be interested in the following series:

$$P = E_2 = 1 - 24 \sum_{n \ge 1} \sigma_1(n) q^n \notin M_2,^4$$
$$Q = E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \in M_4,$$
$$R = E_6 = 1 - 504 \sum_{n \ge 1} \sigma_5(n) q^n \in M_6.$$

From these, we can also construct a modular form whose *q*–expansion has trivial constant coefficient, the (normalized) *modular discriminant*

$$\Delta = \frac{Q^3 - R^2}{1728} = \dots = q \prod_{n \ge 1} (1 - q^n)^{24} \in M_{12}.$$

Theorem 3. *There is a canonical isomorphism of graded* C*–algebras*

$$\mathbb{C}[X,Y] \cong \mathbb{C}[Q,R] = M(\mathbb{C})$$
$$X \mapsto Q$$
$$Y \mapsto R$$

³This definition of being *defined over a certain ring* will agree with Katz's one, which is more natural, thanks to a result known as the *q*-expansion principle.

⁴This is not a mistake. The Eisenstein series of weight 2 is not a modular form in the sense of definition 1, but "almost": it is a *p*-adic modular form and even a modular form of level $\Gamma_0(p)$.

(where X and Y are independent variables of weights 4 and 6, respectively).

Idea of the proof. This classical result can be proved using contour integration and studying the possible poles of modular forms to compare dimensions at each degree. \Box

Theorem 4. Let k be an even integer ≥ 4 and let $d = \dim_{\mathbb{C}}(M_k(\mathbb{C})) - 1$. Choose $\alpha, \beta \geq 0$ such that

- (i) $4\alpha + 6\beta \equiv k \mod 12$ and
- (ii) $4\alpha + 6\beta \le 14$.

Define, for $0 \le j \le d$, $g_j = \Delta^j Q^{\alpha} R^{2(d-j)+\beta}$. The elements g_0, g_1, \ldots, g_d form an integral basis of $M_k(\mathbb{C})$. That is,

$$M_k(A) = \bigoplus_{j=0}^d A \cdot g_j$$

for every subring $A \subseteq \mathbb{C}$.

Remark. In the way this theorem is stated, it is unclear even if $g_j \in M_k$. What happens is that one can compute *d*, which happens to be approximately $\frac{k}{12}$. Then α and β are chosen to compensate the difference between 12*d* and *k*.

Idea of the proof. There are the right number of elements g_j , $0 \le j \le d$, and by construction

$$g_j = q^j + O(q^{j+1}) \in \mathbb{Z}\llbracket q \rrbracket$$

(cf. the formulae in example 2). The theorem follows by looking at the coefficients of $1, q, \ldots, q^d$.

In particular, $M(A) = A[Q, R, \Delta]$ with the relation $1728\Delta = Q^3 - R^2$.

2 Modular forms modulo *p* (Serre–Swinnerton-Dyer)

This section is mostly a rewriting of some of the work of Serre and Swinnerton-Dyer, which they published in the articles [2] and [5]. Since most of the proofs are quite short and elementary, I tried to include at least the main ideas.

Fix a prime number p and let $\overline{\cdot}$ denote reduction modulo p.

Definition 5.

(1) For $k \in \mathbb{Z}$, let $M_k(\mathbb{F}_p) = \{ \overline{f} \in \mathbb{F}_p[\![q]\!] : f \in M_k(\mathbb{Z}_{(p)}) \}.$

(2) The algebra of modular forms modulo p is the \mathbb{F}_p -algebra

$$M(\mathbb{F}_p) = \sum_{k \in \mathbb{Z}} M_k(\mathbb{F}_p).$$

Remark. The last sum is not direct (i.e., a power series in $\mathbb{F}_p[\![q]\!]$ may appear as the reduction of two modular forms with different weights).

If p = 2 or 3, $M(\mathbb{F}_p) = \mathbb{F}_p[\overline{\Delta}] \cong \mathbb{F}_p[T]$ (where *T* is an independent variable) because $\overline{Q} = \overline{R} = 1$. From now on, assume that $p \ge 5$. Then $p \nmid 1728$ and so $M(\mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)}[Q, R]$. We have surjections

$$M(\mathbb{Z}_{(p)}) \cong \mathbb{Z}_{(p)}[X,Y] \longrightarrow \mathbb{F}_p[X,Y] \longrightarrow M(\mathbb{F}_p)$$

$$\phi(Q,R) \longmapsto \phi(X,Y) \longmapsto \overline{\phi}(X,Y) \longmapsto \overline{\phi}(\overline{Q},\overline{R})$$

and just need to describe $\text{Ker}(\mathbb{F}_p[X, Y] \twoheadrightarrow M(\mathbb{F}_p))$. To do so, we will use Serre's differential operator

$$\theta = q \frac{d}{dq}.$$

Theorem 6 (Ramanujan).

- (1) Let $k \in \mathbb{Z}$. If $f \in M_k(\mathbb{C})$, then $(12\theta kP)f \in M_{k+2}(\mathbb{C})$.
- (2) We have the following identities:

$$(12\theta - P)P = -Q,5$$
$$(12\theta - 4P)Q = -4R,$$
$$(12\theta - 6P)R = -6Q^{2},$$
$$(12\theta - 12P)\Delta = 0.$$

Idea of the proof. Since all these forms live in 1–dimensional \mathbb{C} –vector spaces, it suffices to compare the first coefficients of the *q*–expansions in each equality. \Box

Definition 7.

(1) Let ∂ be the graded derivation on $M(\mathbb{C})$ given by

$$\partial|_{M_k(\mathbb{C})} = 12\theta - kP$$
 for every $k \in \mathbb{Z}$.

- (2) On $\mathbb{Z}_{(p)}[X, Y]$ (resp. $\mathbb{F}_p[X, Y]$), define ∂ by $\partial X = -4Y$ and $\partial Y = -6X^2$.
- (3) Let $k \in \mathbb{Z}$. For $f \in M_k(\mathbb{Z}_{(p)})$, write $\partial \overline{f} = \overline{\partial f} \in M_{k+2}(\mathbb{F}_p)$.

Next, we want to find congruences between Eisenstein series, but there are Bernoulli numbers in their q-expansions (see example 2).

⁵I did not forget a k = 2 before the first *P*; as mentioned earlier, *P* is somewhat special.

Theorem 8. Let $k \in \mathbb{Z}_{\geq 1}$.

(1) If p - 1 | 2k, then $pB_{2k} \in \mathbb{Z}_{(p)}$ and

$$pB_{2k} \equiv -1 \mod p$$
 (Clausen–von Staudt congruence).

In particular, $v_p(B_{2k}) = -1$. (2) If $p - 1 \nmid 2k$, then $B_{2k} / 2k \in \mathbb{Z}_{(p)}$ and

 $\frac{B_{2k}}{2k} \equiv \frac{B_{2k+m(p-1)}}{2k+m(p-1)} \mod p \quad for every \ m \in \mathbb{Z} \qquad (Kummer \ congruence).$ That is, the class of B_{2k} / 2k mod p depends only on 2k mod p-1.

Corollary 9.

- (1) $\overline{E}_{p-1} = 1$.
- (2) $\overline{E}_{p+1} = \overline{P}$.

Definition 10. We define $A, B \in \mathbb{Z}_{(p)}[X, Y]$ to be the polynomials determined by the equations

 $A(Q, R) = E_{p-1}$ and $B(Q, R) = E_{p+1}$.

Lemma 11.

- (1) $\partial \overline{A} = \overline{B} \text{ and } \partial \overline{B} = -X\overline{A} \text{ in } \mathbb{F}_p[X, Y].$
- (2) The polynomial \overline{A} has no repeated factors in $\overline{\mathbb{F}}_p[X, Y]$.

Idea of the proof.

- (1) These equalities follow from a simple calculation.
- (2) Using (1), one can argue by contradiction.

Theorem 12. We have an isomorphism of rings

$$M(\mathbb{F}_p) \cong \mathbb{F}_p[X, Y] / (\overline{A} - 1).$$

Idea of the proof. We know that dim($\mathbb{F}_p[X, Y]$) = 2 and one can check that the ideal $\mathfrak{a} = \operatorname{Ker}(\varphi(X, Y) \mapsto \varphi(\overline{Q}, \overline{R}) \colon \mathbb{F}_p[X, Y] \to M(\mathbb{F}_p))$ is prime of height 1 and contains ($\overline{A} - 1$). By lemma 11, the ideal ($\overline{A} - 1$) is also prime. Therefore, $\mathfrak{a} = (\overline{A} - 1)$.

In particular, congruences between modular forms are only possible when the weights are congruent modulo p - 1.

3 *p*-adic modular forms (Serre)

The next two sections are my attempt to summarize Serre's article [4]. The original in this case is much longer and contains many more interesting results that I had to omit due to the time constraints.

Fix $p \ge 3$ (for simplicity). For $f \in \mathbb{Q}_p[\![q]\!]$, write

$$v_p(f) = \inf_{n \ge 0} \left\{ v_p(a_n(f)) \right\}.$$

Theorem 13. Let $f \in M_k(\mathbb{Q})$ and $\tilde{f} \in M_{\tilde{k}}(\mathbb{Q})$. Suppose that $f \neq 0$. Let $m \in \mathbb{Z}_{\geq 0}$. If $v_p(f - \tilde{f}) \geq v_p(f) + m$, then

$$\widetilde{k} \equiv k \mod (p-1)p^{m-1}$$

Idea of the proof. The theorem can be proved by induction on *m*. The base case follows from theorem 12. \Box

Intuitively, this theorem says that two modular forms can be p-adically close only if their weights are.

Definition 14. For $m \in \mathbb{Z}_{\geq 0}$, set

$$W_m = \left(\mathbb{Z} / (p-1)\mathbb{Z}\right) \times \left(\mathbb{Z} / p^{m-1}\mathbb{Z}\right) \cong \left(\mathbb{Z} / p^m\mathbb{Z}\right)^{\times}.$$

The group of *p*–adic weights is

$$W = \varprojlim_m W_m = \left(\mathbb{Z} / (p-1)\mathbb{Z} \right) \times \mathbb{Z}_p \cong \mathbb{Z}_p^{\times}.$$

Remark. One often identifies W with $\operatorname{Hom}_{\mathbb{Z}_p}(\mathbb{Z}_p^{\times}, \mathbb{Z}_p^{\times})$ via $k \mapsto (x \mapsto x^k)$.⁶

Definition 15.

A *p*-adic modular form is a formal power series *f* ∈ Q_p[[*q*]] such that there exist *f_i* ∈ *M*_{k_i}(Q) for *i* ∈ Z_{≥1} with the property that

$$v_p(f-f_i) \xrightarrow[i\to\infty]{} +\infty.$$

If $k = \lim_{i\to\infty} k_i \in W$ (i.e., this limit exists and is well-defined in *W*), we say that *f* has *weight k*.

- Let M_k(Q_p) denote the set of *p*-adic modular forms of weight *k*. (It is, in fact, a Banach space over Q_p.)
- 3. Set

$$M(\mathbb{Q}_p) = \bigoplus_{k \in W} M_k(\mathbb{Q}_p).^7$$

(It is a graded Q_p -algebra.)

⁶We will see more of this and other interpretations of the weight space in future talks.

Remark. Since a *p*-adic modular form can be obtained as the limit of several sequences of modular forms, it might seem unclear whether weights are well-defined. Theorem 13 is what justifies this definition (with a little work that is left to the reader).

Example 16. If p = 3, then $Q \equiv 1 \mod p$ and so we obtain

$$\frac{1}{Q} = \lim_{i \to \infty} \frac{Q^{p^i}}{Q} = \lim_{i \to \infty} Q^{p^i - 1} \in M_{-4}(\mathbb{Q}_p).$$

Theorem 17. Consider $f_i \in M_{k_i}(\mathbb{Q}_p)$ for $i \in \mathbb{Z}_{\geq 1}$. If

(i) each sequence
$$(a_n(f_i))_{i>1}$$
 for $n \in \mathbb{Z}_{>1}$ has a limit $a_n \in \mathbb{Q}_p$ and

(ii) the sequence $(k_i)_{i \ge 1}$ has a limit $k \in W$ which is $\ne 0$,

then the sequence $(a_0(f_i))_{i>1}$ too admits a limit $a_0 \in \mathbb{Q}_p$ and

$$f=\sum_{n\geq 0}a_nq^n\in M_k(\mathbb{Q}_p).$$

Idea of the proof. By theorem 13 applied to any $g \in M_k(\mathbb{Q}_p)$ and $\tilde{g} = a_0(g)$ (i.e., a constant, which we view in $M_0(\mathbb{Q}_p)$), if we choose $m \gg 0$ such that $k \neq 0$ in W_{m+1} , then

$$v_p(a_0(g)) + m \ge \inf_{n\ge 1} \{ v_p(a_n(g)) \}.$$

Thus, the convergence of the $a_0(\cdot)$ coefficients is forced by that of the $a_n(\cdot)$ for $n \ge 1.^8$

Example 18. Take a sequence $k_i \in 2\mathbb{Z}_{\geq 2}$ such that

(i) $k_i \rightarrow k \in 2W$ and

(ii) $|k_i| \to \infty$ (in \mathbb{R} , where $|\cdot|$ is the usual archimedean absolute value). Then

$$\sigma_{k_i-1}(n) = \sum_{d|n} d^{k_i-1} \xrightarrow[i \to \infty]{i \to \infty} \sum_{p \nmid d|n} d^{k-1} = \sigma_{k-1}^*(n),$$

where the last sum skips any p factors because condition (ii) makes them tend to 0 p-adically. Hence, we obtain a limit of Eisenstein series

$$\frac{B_{k_i}}{2k_i}E_{k_i} = \frac{B_{k_i}}{2k_i} + \sum_{n\geq 1}\sigma_{k_i-1}(n)q^n \xrightarrow[i\to\infty]{}''\frac{B_k}{2k}'' + \sum_{n\geq 1}\sigma_{k-1}^*(n)q^n = E_k^* \in M_k(\mathbb{Q}_p).$$

⁷The notation I use here is not compatible with that of the previous sections. It is important to note that *p*–adic modular forms are not the same as modular forms defined over \mathbb{Q}_p . However, I believe there is little chance of confusion at the level of this talk.

⁸Here I did my best to give a bit of intuition, but the explanation is admittedly not enough to see how the proof would proceed. There is at least another key idea in the proof that I decided to omit because of the time constraints.

(The factors $B_{k_i} / 2k_i$ occur as special values of the Riemann zeta function; likewise, the limit factor " $B_k / 2k$ " occurs as a special value of its *p*-adic counterpart, known as the Kubota–Leopoldt *p*-adic L–function.)

4 Hecke operators

Definition 19. Let

$$f = \sum_{n \ge 0} a_n(f) q^n \in \mathbb{Q}_p[\![q]\!].$$

We define

$$f | \mathbf{U}_p = \sum_{n \ge 0} a_{np}(f) q^n,$$

$$f | \mathbf{V}_p = \sum_{n \ge 0} a_n(f) q^{np},$$

$$f |_k \mathbf{T}_\ell = \sum_{n \ge 0} a_{n\ell}(f) q^n + \ell^{k-1} \sum_{n \ge 0} a_n(f) q^{n\ell}$$

(for any prime number ℓ and any $k \in W$).

Theorem 20.

- (1) The operators T_{ℓ} , for ℓ prime, act on $M_k(\mathbb{Z}_{(v)})$ for every $k \in \mathbb{Z}$.
- (2) The operators U_p , V_p and T_ℓ for $\ell \neq p$ act on $M_k(\mathbb{Q}_p)$ for every $k \in W$.
- (3) The operators T_{ℓ} , for ℓ prime, commute among themselves and with U_p and V_p .

We are usually interested in simultaneous eigenvectors for these operators (i.e., *eigenforms*). We also consider the operator $\theta = q \frac{d}{dq}$, which increases weights by 2.

Since $T_p \equiv U_p \mod p$, we get an action of U_p on $M(\mathbb{F}_p)$ with the following *contracting* property:

Theorem 21.

- (1) Let $k \in \mathbb{Z}$. If k > p + 1, then U_p maps $M_k(\mathbb{F}_p)$ into $M_{\widetilde{k}}(\mathbb{F}_p)$ for some $\widetilde{k} < k$.
- (2) The operator U_p acts on $M_{p-1}(\mathbb{F}_p)$ bijectively.

Corollary 22. Assume that $p \ge 5$. Let $[a] \in (2\mathbb{Z} / (p-1)\mathbb{Z})$ and define

$$M_{[a]}(\mathbb{F}_p) = \bigcup_{k \in [a]} M_k(\mathbb{F}_p).$$

- (1) There exists a unique decomposition $M_{[a]}(\mathbb{F}_p) = S \oplus N$ with the property that U_p acts invertibly on S and acts nilpotently on N.
- (2) If $k \in [a]$ and $4 \leq k \leq p+1$, then $S \subset M_k(\mathbb{F}_p)$.
- (3) If [a] = [0], then $S = M_{p-1}(\mathbb{F}_p)$.

It is natural to wonder if there are similar decompositions for p-adic modular forms, as that would allow us to study smaller spaces of modular forms by means of the U_p-action. To go in that direction, we need functional analysis.

5 Compact operators on Banach spaces

This last section (which one might think of as an appendix) is a very brief summary of the results that we will need from Serre's article [3].

Definition 23. A \mathbb{Q}_p -Banach space *X* is called *orthonormalizable* if there exists a family $(e_i)_{i \in I} \subset X$ (an *orthonormal basis*) with the property that each $x \in X$ admits a unique expression as a linear combination

$$x = \sum_{i \in I} x_i e_i, \quad x_i \in \mathbb{Q}_p \text{ for all } i \in I,$$

with

(i) $x_i \xrightarrow{i \to \infty} 0$ (i.e., for every $\epsilon > 0$, $|x_i|_p < \epsilon$ for all but finitely many $i \in I$) and

(ii)
$$|x| = \sup_{i \in I} \{ |x_i|_p \}.$$

From now on, fix an orthonormalizable \mathbb{Q}_p -Banach space X and write $\mathscr{L}(X)$ for the space of continuous \mathbb{Q}_p -linear maps $U: X \to X$ endowed with the supremum norm

$$||U|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|Ux|}{|x|}.$$

Definition 24.

- (1) An operator $U \in \mathscr{L}(X)$ is *compact* if it is the limit of a sequence of maps of finite rank in $\mathscr{L}(X)$.
- (2) Let $\mathscr{C}(X)$ denote the Banach algebra of compact operators on *X*.

Given $U \in \mathscr{C}(X)$, we can construct what is known as the *Fredholm determinant*, $det(1 - tU) \in \mathbb{Q}_p[\![t]\!]$, as follows:

- Up to scaling, we may assume that $||U|| \le 1$ and so that U acts on the unit ball $X_0 = \{x \in X : |x| \le 1\}$.
- By the definition of compact, for each n ∈ Z_{≥1}, the image of U|_(X₀ / pⁿX₀) is contained in a finite free (Z / pⁿZ)-module Y_n; then there is a well-defined

$$\det(1-tU|_{Y_n}) \in (\mathbb{Z} / p^n \mathbb{Z})[t].$$

• Take projective limits of the previous polynomials over $n \in \mathbb{Z}_{\geq 1}$ to obtain

$$\det(1-tU)\in\mathbb{Z}_p[\![t]\!].$$

(The assumption in the first step forces coefficients to lie in \mathbb{Z}_p , but for general *U* we get an element of $\mathbb{Q}_p[\![t]\!]$.)

Proposition 25. For every $U \in \mathscr{C}(X)$, the Fredholm determinant det(1 - tU) is entire (i.e., has an infinite radius of convergence).

Theorem 26 (Riesz decomposition). Let $a \in \mathbb{Q}_p^{\times}$ be a zero of order h of $\det(1 - tU)$. There exists a unique decomposition as a direct sum of closed subspaces $X = S(a) \oplus N(a)$ with the property that 1 - aU acts invertibly on S(a) and acts nilpotently on N(a). Moreover, $\dim_{\mathbb{Q}_p}(N(a)) = h$.

Remark. $N(a) = \text{Ker}((1 - aU)^h)$ is the *U*-eigenspace of eigenvalue a^{-1} ; its elements are *generalized U*-eigenvectors of slope $\alpha = -v_p(a)$, which is one of the slopes of the Newton polygon of det(1 - tU).

Idea of the proof. One can use Fredholm's resolvent det(1 - tU) / (1 - tU) and divided differences to obtain several identities and then evaluate them at t = a to explicitly find projectors for the decomposition $X = S(a) \oplus N(a)$.

Corollary 27. Let Q(t) be an irreducible polynomial of $\mathbb{Q}_p[t]$ with Q(0) = 1. There exists a unique decomposition as a direct sum of closed subspaces $X = S(Q) \oplus N(Q)$ such that the operator Q(U) acts invertibly on S(Q) and acts nilpotently on N(Q). Moreover, $\dim_{\mathbb{Q}_p}(N(Q)) < \infty$.

Proof. Write $Q(U) = 1 - \widetilde{U}$ and apply theorem 26 to \widetilde{U} and a = 1.

Fix $h \in \mathbb{R}$. By an analogue of Weierstrass's preparation theorem, there are only finitely many Q as in corollary 27 with slope

$$v_p(Q) = v_p(\text{"root of } Q") \le h.$$

Defining

$$X^{(\leq h)} = \bigoplus_{v_p(Q) \leq h} N(Q),$$

we obtain a unique *slope* $\leq h$ *decomposition* $X = X^{(\leq h)} \oplus X^{(>h)}$ and the first part is even finite-dimensional.

Fact. The space $M_k(\mathbb{Q}_p)$ of *p*-adic modular forms of weight $k \in W$ is a \mathbb{Q}_p -Banach space. However, the operator \mathbb{U}_p acting on $M_k(\mathbb{Q}_p)$ is not compact.

The reason why we cannot apply this theory to the operator U_p is that the space $M_k(\mathbb{Q}_p)$ is *too large*. As we will see in the next talk, Katz's solution to this problem was to work with subspaces of *overconvergent modular forms*.

References

- [1] Ramanujan, S. "On certain arithmetical functions". In: *Trans. Cambridge Phil. Soc.* 22.9 (1916), pp. 159–184.
- [2] Serre, J.-P. "Congruences et formes modulaires". In: Séminaire Bourbaki. Vol. 1971/72. Exposés 400–417. Ed. by Dold, A. and Eckmann, B. Lecture notes in mathematics 317. Berlin, Germany: Springer-Verlag, 1973, pp. 319–338.
- [3] Serre, J.-P. "Endomorphismes complètement continus des espaces de Banach p-adiques". In: Publ. Math. IHÉS 12 (1962), pp. 69–85.
- [4] Serre, J.-P. "Formes modulaires et fonctions zêta *p*-adiques". In: *Modular functions of one variable III*. Ed. by Serre, J.-P. and Kuijk, W. Lecture notes in mathematics 350. Berlin, Germany: Sprinver-Verlag, 1973, pp. 191–268.
- [5] Swinnerton-Dyer, H. P. F. "On ℓ-adic representations and congruences for coefficients of modular forms". In: *Modular functions of one variable III*. Ed. by Serre, J.-P. and Kuijk, W. Lecture notes in mathematics 350. Berlin, Germany: Springer-Verlag, 1973, pp. 1–55.