Modular forms modulo p and p-adic modular forms

Francesc Gispert

Montréal, 12th November 2020

Abstract

These are the notes for a one-and-a-half-hour talk given in an informal seminar ${ }^{1}$ to prepare for a workshop on higher Coleman theory at the Centre de Recherches Mathématiques. I present the theory of (classical) modular forms modulo a fixed prime number p and introduce the notion of p-adic modular forms using their power series expansions. I tried to present these objects in the most elementary possible form thinking of the variety of backgrounds amongst the audience. The notes follow almost verbatim Serre and Swinnerton-Dyer's original work in the early 70's, published in the articles $[2,5,4]$. At the end, there is a brief review of p-adic Banach theory, following Serre's article [3], which was meant to set the ground for Giovanni Rosso's talk that followed mine. No originality is claimed.

1 Modular forms over \mathbb{C}

We begin by quickly recalling the basic definitions and results of the theory of modular forms. Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.

Definition 1.

(1) A modular form of weight $k \in \mathbb{Z}$ (and level ${ }^{2} 1$) is a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with the property that

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} \cdot f(z) \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { and all } z \in \mathbb{H}
$$

[^0]and admitting a q-expansion
$$
f(z)=\sum_{n \geq 0} a_{n}(f) q^{n}, \quad \text { where } q=e^{2 \pi i z}
$$

We identify f with its q-expansion (i.e., we view it as an element of $\mathbb{C} \llbracket q \rrbracket$).
(2) Let A be a subring of \mathbb{C}. We say that f is defined over A if $f \in A \llbracket q \rrbracket .{ }^{3}$
(3) Let $M_{k}(A)$ denote the set of modular forms of weight k defined over A. (It is, in fact, an A-module.)
(4) Set

$$
M(A)=\bigoplus_{k \in \mathbb{Z}} M_{k}(A)
$$

(It is a graded A-algebra.)
Example 2. The first examples of modular forms are the (normalized) Eisenstein series

$$
E_{2 k}=1-2 \cdot \frac{2 k}{B_{2 k}} \cdot \sum_{n \geq 1} \sigma_{2 k-1}(n) q^{n} \in M_{2 k}(\mathbb{Q}) \text { for } k \geq 2
$$

where $B_{2 k}$ is the $2 k$-th Bernoulli number and

$$
\sigma_{2 k-1}(n)=\sum_{0<\left.d\right|_{n}} d^{2 k-1}
$$

In particular, we will mostly be interested in the following series:

$$
\begin{aligned}
& P=E_{2}=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n} \notin M_{2}, 4 \\
& Q=E_{4}=1+240 \sum_{n \geq 1} \sigma_{3}(n) q^{n} \in M_{4} \\
& R=E_{6}=1-504 \sum_{n \geq 1} \sigma_{5}(n) q^{n} \in M_{6}
\end{aligned}
$$

From these, we can also construct a modular form whose q-expansion has trivial constant coefficient, the (normalized) modular discriminant

$$
\Delta=\frac{Q^{3}-R^{2}}{1728}=\cdots=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24} \in M_{12}
$$

Theorem 3. There is a canonical isomorphism of graded \mathbb{C}-algebras

$$
\begin{aligned}
\mathbb{C}[X, Y] & \cong \mathbb{C}[Q, R]=M(\mathbb{C}) \\
X & \mapsto Q \\
Y & \mapsto R
\end{aligned}
$$

[^1](where X and Y are independent variables of weights 4 and 6, respectively).

Idea of the proof. This classical result can be proved using contour integration and studying the possible poles of modular forms to compare dimensions at each degree.

Theorem 4. Let k be an even integer ≥ 4 and let $d=\operatorname{dim}_{\mathbb{C}}\left(M_{k}(\mathbb{C})\right)-1$. Choose $\alpha, \beta \geq 0$ such that
(i) $4 \alpha+6 \beta \equiv k \bmod 12$ and
(ii) $4 \alpha+6 \beta \leq 14$.

Define, for $0 \leq j \leq d, g_{j}=\Delta^{j} Q^{\alpha} R^{2(d-j)+\beta}$. The elements $g_{0}, g_{1}, \ldots, g_{d}$ form an integral basis of $M_{k}(\mathbb{C})$. That is,

$$
M_{k}(A)=\bigoplus_{j=0}^{d} A \cdot g_{j}
$$

for every subring $A \subseteq \mathbb{C}$.
Remark. In the way this theorem is stated, it is unclear even if $g_{j} \in M_{k}$. What happens is that one can compute d, which happens to be approximately $\frac{k}{12}$. Then α and β are chosen to compensate the difference between $12 d$ and k.

Idea of the proof. There are the right number of elements $g_{j}, 0 \leq j \leq d$, and by construction

$$
g_{j}=q^{j}+O\left(q^{j+1}\right) \in \mathbb{Z} \llbracket q \rrbracket
$$

(cf. the formulae in example 2). The theorem follows by looking at the coefficients of $1, q, \ldots, q^{d}$.

In particular, $M(A)=A[Q, R, \Delta]$ with the relation $1728 \Delta=Q^{3}-R^{2}$.

2 Modular forms modulo p (Serre-Swinnerton-Dyer)

This section is mostly a rewriting of some of the work of Serre and SwinnertonDyer, which they published in the articles [2] and [5]. Since most of the proofs are quite short and elementary, I tried to include at least the main ideas.

Fix a prime number p and let ${ }^{-}$denote reduction modulo p.

Definition 5.

(1) For $k \in \mathbb{Z}$, let $M_{k}\left(\mathbb{F}_{p}\right)=\left\{\bar{f} \in \mathbb{F}_{p} \llbracket q \rrbracket: f \in M_{k}\left(\mathbb{Z}_{(p)}\right)\right\}$.
(2) The algebra of modular forms modulo p is the \mathbb{F}_{p}-algebra

$$
M\left(\mathbb{F}_{p}\right)=\sum_{k \in \mathbb{Z}} M_{k}\left(\mathbb{F}_{p}\right)
$$

Remark. The last sum is not direct (i.e., a power series in $\mathbb{F}_{p} \llbracket q \rrbracket$ may appear as the reduction of two modular forms with different weights).

If $p=2$ or $3, M\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p}[\bar{\Delta}] \cong \mathbb{F}_{p}[T]$ (where T is an independent variable) because $\bar{Q}=\bar{R}=1$. From now on, assume that $p \geq 5$. Then $p \nmid 1728$ and so $M\left(\mathbb{Z}_{(p)}\right)=\mathbb{Z}_{(p)}[Q, R]$. We have surjections

$$
\begin{aligned}
& M\left(\mathbb{Z}_{(p)}\right) \cong \mathbb{Z}_{(p)}[X, Y] \longrightarrow \mathbb{F}_{p}[X, Y] \longrightarrow M\left(\mathbb{F}_{p}\right) \\
& \phi(Q, R) \longmapsto \phi(X, Y) \longmapsto \bar{\phi}(X, Y) \longmapsto(\bar{Q}, \bar{R})
\end{aligned}
$$

and just need to describe $\operatorname{Ker}\left(\mathbb{F}_{p}[X, Y] \rightarrow M\left(\mathbb{F}_{p}\right)\right)$. To do so, we will use Serre's differential operator

$$
\theta=q \frac{d}{d q}
$$

Theorem 6 (Ramanujan).

(1) Let $k \in \mathbb{Z}$. If $f \in M_{k}(\mathbb{C})$, then $(12 \theta-k P) f \in M_{k+2}(\mathbb{C})$.
(2) We have the following identities:

$$
\begin{aligned}
(12 \theta-P) P & =-Q,^{5} \\
(12 \theta-4 P) Q & =-4 R \\
(12 \theta-6 P) R & =-6 Q^{2} \\
(12 \theta-12 P) \Delta & =0
\end{aligned}
$$

Idea of the proof. Since all these forms live in 1-dimensional \mathbb{C}-vector spaces, it suffices to compare the first coefficients of the q-expansions in each equality.

Definition 7.

(1) Let ∂ be the graded derivation on $M(\mathbb{C})$ given by

$$
\left.\partial\right|_{M_{k}(\mathbb{C})}=12 \theta-k P \quad \text { for every } k \in \mathbb{Z}
$$

(2) $\operatorname{On} \mathbb{Z}_{(p)}[X, Y]$ (resp. $\left.\mathbb{F}_{p}[X, Y]\right)$, define ∂ by $\partial X=-4 Y$ and $\partial Y=-6 X^{2}$.
(3) Let $k \in \mathbb{Z}$. For $f \in M_{k}\left(\mathbb{Z}_{(p)}\right)$, write $\partial \bar{f}=\overline{\partial f} \in M_{k+2}\left(\mathbb{F}_{p}\right)$.

Next, we want to find congruences between Eisenstein series, but there are Bernoulli numbers in their q-expansions (see example 2).

[^2]Theorem 8. Let $k \in \mathbb{Z}_{\geq 1}$.
(1) If $p-1 \mid 2 k$, then $p B_{2 k} \in \mathbb{Z}_{(p)}$ and

$$
p B_{2 k} \equiv-1 \bmod p \quad \text { (Clausen-von Staudt congruence). }
$$

In particular, $v_{p}\left(B_{2 k}\right)=-1$.
(2) If $p-1 \nmid 2 k$, then $B_{2 k} / 2 k \in \mathbb{Z}_{(p)}$ and

$$
\frac{B_{2 k}}{2 k} \equiv \frac{B_{2 k+m(p-1)}}{2 k+m(p-1)} \bmod p \quad \text { for every } m \in \mathbb{Z} \quad \text { (Kummer congruence). }
$$

That is, the class of $B_{2 k} / 2 k \bmod p$ depends only on $2 k \bmod p-1$.

Corollary 9.

(1) $\bar{E}_{p-1}=1$.
(2) $\bar{E}_{p+1}=\bar{P}$.

Definition 10. We define $A, B \in \mathbb{Z}_{(p)}[X, Y]$ to be the polynomials determined by the equations

$$
A(Q, R)=E_{p-1} \quad \text { and } \quad B(Q, R)=E_{p+1} .
$$

Lemma 11.

(1) $\partial \bar{A}=\bar{B}$ and $\partial \bar{B}=-X \bar{A}$ in $\mathbb{F}_{p}[X, Y]$.
(2) The polynomial \bar{A} has no repeated factors in $\overline{\mathbb{F}}_{p}[X, Y]$.

Idea of the proof.
(1) These equalities follow from a simple calculation.
(2) Using (1), one can argue by contradiction.

Theorem 12. We have an isomorphism of rings

$$
M\left(\mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[X, Y] /(\bar{A}-1)
$$

Idea of the proof. We know that $\operatorname{dim}\left(\mathbb{F}_{p}[X, Y]\right)=2$ and one can check that the ideal $\mathfrak{a}=\operatorname{Ker}\left(\varphi(X, Y) \mapsto \varphi(\bar{Q}, \bar{R}): \mathbb{F}_{p}[X, Y] \rightarrow M\left(\mathbb{F}_{p}\right)\right)$ is prime of height 1 and contains $(\bar{A}-1)$. By lemma 11, the ideal $(\bar{A}-1)$ is also prime. Therefore, $\mathfrak{a}=(\bar{A}-1)$.

In particular, congruences between modular forms are only possible when the weights are congruent modulo $p-1$.

$3 \quad p$-adic modular forms (Serre)

The next two sections are my attempt to summarize Serre's article [4]. The original in this case is much longer and contains many more interesting results that I had to omit due to the time constraints.

Fix $p \geq 3$ (for simplicity). For $f \in Q_{p} \llbracket q \rrbracket$, write

$$
v_{p}(f)=\inf _{n \geq 0}\left\{v_{p}\left(a_{n}(f)\right)\right\}
$$

Theorem 13. Let $f \in M_{k}(\mathbb{Q})$ and $\tilde{f} \in M_{\widetilde{k}}(\mathbb{Q})$. Suppose that $f \neq 0$. Let $m \in \mathbb{Z}_{\geq 0}$. If $v_{p}(f-\tilde{f}) \geq v_{p}(f)+m$, then

$$
\widetilde{k} \equiv k \bmod (p-1) p^{m-1} .
$$

Idea of the proof. The theorem can be proved by induction on m. The base case follows from theorem 12.

Intuitively, this theorem says that two modular forms can be p-adically close only if their weights are.

Definition 14. For $m \in \mathbb{Z}_{\geq 0}$, set

$$
W_{m}=(\mathbb{Z} /(p-1) \mathbb{Z}) \times\left(\mathbb{Z} / p^{m-1} \mathbb{Z}\right) \cong\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{\times}
$$

The group of p-adic weights is

$$
W={\underset{m}{\underset{m}{l}}}_{\lim } W_{m}=(\mathbb{Z} /(p-1) \mathbb{Z}) \times \mathbb{Z}_{p} \cong \mathbb{Z}_{p}^{\times} .
$$

Remark. One often identifies W with $\operatorname{Hom}_{\mathbb{Z}_{p}}\left(\mathbb{Z}_{p}^{\times}, \mathbb{Z}_{p}^{\times}\right)$via $k \longmapsto\left(x \mapsto x^{k}\right) .{ }^{6}$

Definition 15.

1. A p-adic modular form is a formal power series $f \in \mathbb{Q}_{p} \llbracket q \rrbracket$ such that there exist $f_{i} \in M_{k_{i}}(\mathbb{Q})$ for $i \in \mathbb{Z}_{\geq 1}$ with the property that

$$
v_{p}\left(f-f_{i}\right) \underset{i \rightarrow \infty}{\longrightarrow}+\infty
$$

If $k=\lim _{i \rightarrow \infty} k_{i} \in W$ (i.e., this limit exists and is well-defined in W), we say that f has weight k.
2. Let $M_{k}\left(\mathbb{Q}_{p}\right)$ denote the set of p-adic modular forms of weight k. (It is, in fact, a Banach space over Q_{p}.)
3. Set

$$
M\left(\mathbf{Q}_{p}\right)=\bigoplus_{k \in W} M_{k}\left(\mathbf{Q}_{p}\right) .^{7}
$$

(It is a graded Q_{p}-algebra.)

[^3]Remark. Since a p-adic modular form can be obtained as the limit of several sequences of modular forms, it might seem unclear whether weights are welldefined. Theorem 13 is what justifies this definition (with a little work that is left to the reader).

Example 16. If $p=3$, then $Q \equiv 1 \bmod p$ and so we obtain

$$
\frac{1}{Q}=\lim _{i \rightarrow \infty} \frac{Q^{p^{i}}}{Q}=\lim _{i \rightarrow \infty} Q^{p^{i}-1} \in M_{-4}\left(Q_{p}\right)
$$

Theorem 17. Consider $f_{i} \in M_{k_{i}}\left(\mathbb{Q}_{p}\right)$ for $i \in \mathbb{Z}_{\geq 1}$. If
(i) each sequence $\left(a_{n}\left(f_{i}\right)\right)_{i \geq 1}$ for $n \in \mathbb{Z}_{\geq 1}$ has a limit $a_{n} \in \mathbb{Q}_{p}$ and
(ii) the sequence $\left(k_{i}\right)_{i \geq 1}$ has a limit $k \in W$ which is $\neq 0$,
then the sequence $\left(a_{0}\left(f_{i}\right)\right)_{i \geq 1}$ too admits a limit $a_{0} \in \mathbb{Q}_{p}$ and

$$
f=\sum_{n \geq 0} a_{n} q^{n} \in M_{k}\left(\mathbb{Q}_{p}\right) .
$$

Idea of the proof. By theorem 13 applied to any $g \in M_{k}\left(\mathbb{Q}_{p}\right)$ and $\widetilde{g}=a_{0}(g)$ (i.e., a constant, which we view in $M_{0}\left(\mathbb{Q}_{p}\right)$), if we choose $m \gg 0$ such that $k \neq 0$ in W_{m+1}, then

$$
v_{p}\left(a_{0}(g)\right)+m \geq \inf _{n \geq 1}\left\{v_{p}\left(a_{n}(g)\right)\right\} .
$$

Thus, the convergence of the $a_{0}(\cdot)$ coefficients is forced by that of the $a_{n}(\cdot)$ for $n \geq 1$. ${ }^{8}$

Example 18. Take a sequence $k_{i} \in 2 \mathbb{Z}_{\geq 2}$ such that
(i) $k_{i} \rightarrow k \in 2 W$ and
(ii) $\left|k_{i}\right| \rightarrow \infty$ (in \mathbb{R}, where $|\cdot|$ is the usual archimedean absolute value).

Then

$$
\sigma_{k_{i}-1}(n)=\sum_{\left.d\right|_{n}} d^{k_{i}-1} \xrightarrow[i \rightarrow \infty]{\stackrel{|\cdot|_{p}}{\longrightarrow}} \sum_{\left.p \nmid d\right|_{n}} d^{k-1}=\sigma_{k-1}^{*}(n),
$$

where the last sum skips any p factors because condition (ii) makes them tend to 0 p-adically. Hence, we obtain a limit of Eisenstein series

$$
\frac{B_{k_{i}}}{2 k_{i}} E_{k_{i}}=\frac{B_{k_{i}}}{2 k_{i}}+\sum_{n \geq 1} \sigma_{k_{i}-1}(n) q^{n} \xrightarrow[i \rightarrow \infty]{|\cdot|_{p}}{ }^{\prime \prime} \frac{B_{k} "}{2 k}+\sum_{n \geq 1} \sigma_{k-1}^{*}(n) q^{n}=E_{k}^{*} \in M_{k}\left(\mathbf{Q}_{p}\right)
$$

[^4](The factors $B_{k_{i}} / 2 k_{i}$ occur as special values of the Riemann zeta function; likewise, the limit factor " $B_{k} / 2 k$ " occurs as a special value of its p-adic counterpart, known as the Kubota-Leopoldt p-adic L-function.)

4 Hecke operators

Definition 19. Let

$$
f=\sum_{n \geq 0} a_{n}(f) q^{n} \in \mathbf{Q}_{p} \llbracket q \rrbracket .
$$

We define

$$
\begin{aligned}
f \mid \mathrm{U}_{p} & =\sum_{n \geq 0} a_{n p}(f) q^{n} \\
f \mid \mathrm{V}_{p} & =\sum_{n \geq 0} a_{n}(f) q^{n p} \\
\left.f\right|_{k} \mathrm{~T}_{\ell} & =\sum_{n \geq 0} a_{n \ell}(f) q^{n}+\ell^{k-1} \sum_{n \geq 0} a_{n}(f) q^{n \ell}
\end{aligned}
$$

(for any prime number ℓ and any $k \in W$).

Theorem 20.

(1) The operators T_{ℓ}, for ℓ prime, act on $M_{k}\left(\mathbb{Z}_{(p)}\right)$ for every $k \in \mathbb{Z}$.
(2) The operators $\mathrm{U}_{p}, \mathrm{~V}_{p}$ and T_{ℓ} for $\ell \neq p$ act on $M_{k}\left(\mathrm{Q}_{p}\right)$ for every $k \in W$.
(3) The operators T_{ℓ}, for ℓ prime, commute among themselves and with U_{p} and V_{p}.

We are usually interested in simultaneous eigenvectors for these operators (i.e., eigenforms). We also consider the operator $\theta=q \frac{d}{d q}$, which increases weights by 2 .

Since $\mathrm{T}_{p} \equiv \mathrm{U}_{p} \bmod p$, we get an action of U_{p} on $M\left(\mathbb{F}_{p}\right)$ with the following contracting property:

Theorem 21.

(1) Let $k \in \mathbb{Z}$. If $k>p+1$, then U_{p} maps $M_{k}\left(\mathbb{F}_{p}\right)$ into $M_{\widetilde{k}}\left(\mathbb{F}_{p}\right)$ for some $\widetilde{k}<k$.
(2) The operator U_{p} acts on $M_{p-1}\left(\mathbb{F}_{p}\right)$ bijectively.

Corollary 22. Assume that $p \geq 5$. Let $[a] \in(2 \mathbb{Z} /(p-1) \mathbb{Z})$ and define

$$
M_{[a]}\left(\mathbb{F}_{p}\right)=\bigcup_{k \in[a]} M_{k}\left(\mathbb{F}_{p}\right) .
$$

(1) There exists a unique decomposition $M_{[a]}\left(\mathbb{F}_{p}\right)=S \oplus N$ with the property that U_{p} acts invertibly on S and acts nilpotently on N.
(2) If $k \in[a]$ and $4 \leq k \leq p+1$, then $S \subset M_{k}\left(\mathbb{F}_{p}\right)$.
(3) If $[a]=[0]$, then $S=M_{p-1}\left(\mathbb{F}_{p}\right)$.

It is natural to wonder if there are similar decompositions for p-adic modular forms, as that would allow us to study smaller spaces of modular forms by means of the U_{p}-action. To go in that direction, we need functional analysis.

5 Compact operators on Banach spaces

This last section (which one might think of as an appendix) is a very brief summary of the results that we will need from Serre's article [3].

Definition 23. A Q_{p}-Banach space X is called orthonormalizable if there exists a family $\left(e_{i}\right)_{i \in I} \subset \in X$ (an orthonormal basis) with the property that each $x \in X$ admits a unique expression as a linear combination

$$
x=\sum_{i \in I} x_{i} e_{i}, \quad x_{i} \in \mathbb{Q}_{p} \text { for all } i \in I,
$$

with
(i) $x_{i} \xrightarrow[i \rightarrow \infty]{\longrightarrow} 0$ (i.e., for every $\epsilon>0,\left|x_{i}\right|_{p}<\epsilon$ for all but finitely many $i \in I$) and (ii) $|x|=\sup _{i \in I}\left\{\left|x_{i}\right|_{p}\right\}$.

From now on, fix an orthonormalizable Q_{p}-Banach space X and write $\mathscr{L}(X)$ for the space of continuous Q_{p}-linear maps $U: X \rightarrow X$ endowed with the supremum norm

$$
\|U\|=\sup _{\substack{x \in X \\ x \neq 0}} \frac{|U x|}{|x|}
$$

Definition 24.

(1) An operator $U \in \mathscr{L}(X)$ is compact if it is the limit of a sequence of maps of finite rank in $\mathscr{L}(X)$.
(2) Let $\mathscr{C}(X)$ denote the Banach algebra of compact operators on X.

Given $U \in \mathscr{C}(X)$, we can construct what is known as the Fredholm determinant, $\operatorname{det}(1-t U) \in \mathbb{Q}_{p} \llbracket t \rrbracket$, as follows:

- Up to scaling, we may assume that $\|U\| \leq 1$ and so that U acts on the unit ball $X_{0}=\{x \in X:|x| \leq 1\}$.
- By the definition of compact, for each $n \in \mathbb{Z}_{\geq 1}$, the image of $\left.U\right|_{\left(X_{0} / p^{n} X_{0}\right)}$ is contained in a finite free $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$-module Y_{n}; then there is a well-defined

$$
\operatorname{det}\left(1-\left.t U\right|_{Y_{n}}\right) \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)[t] .
$$

- Take projective limits of the previous polynomials over $n \in \mathbb{Z}_{\geq 1}$ to obtain

$$
\operatorname{det}(1-t U) \in \mathbb{Z}_{p} \llbracket t \rrbracket .
$$

(The assumption in the first step forces coefficients to lie in \mathbb{Z}_{p}, but for general U we get an element of $Q_{p} \llbracket t \rrbracket$.)

Proposition 25. For every $U \in \mathscr{C}(X)$, the Fredholm determinant $\operatorname{det}(1-t U)$ is entire (i.e., has an infinite radius of convergence).

Theorem 26 (Riesz decomposition). Let $a \in \mathbb{Q}_{p}^{\times}$be a zero of order h of $\operatorname{det}(1-t U)$. There exists a unique decomposition as a direct sum of closed subspaces $X=S(a) \oplus N(a)$ with the property that $1-a U$ acts invertibly on $S(a)$ and acts nilpotently on $N(a)$. Moreover, $\operatorname{dim}_{\mathbb{Q}_{p}}(N(a))=h$.

Remark. $N(a)=\operatorname{Ker}\left((1-a U)^{h}\right)$ is the U-eigenspace of eigenvalue a^{-1}; its elements are generalized U-eigenvectors of slope $\alpha=-v_{p}(a)$, which is one of the slopes of the Newton polygon of $\operatorname{det}(1-t U)$.

Idea of the proof. One can use Fredholm's resolvent $\operatorname{det}(1-t U) /(1-t U)$ and divided differences to obtain several identities and then evaluate them at $t=a$ to explicitly find projectors for the decomposition $X=S(a) \oplus N(a)$.

Corollary 27. Let $Q(t)$ be an irreducible polynomial of $\mathbb{Q}_{p}[t]$ with $Q(0)=1$. There exists a unique decomposition as a direct sum of closed subspaces $X=S(Q) \oplus N(Q)$ such that the operator $Q(U)$ acts invertibly on $S(Q)$ and acts nilpotently on $N(Q)$. Moreover, $\operatorname{dim}_{Q_{p}}(N(Q))<\infty$.

Proof. Write $Q(U)=1-\widetilde{U}$ and apply theorem 26 to \widetilde{U} and $a=1$.
Fix $h \in \mathbb{R}$. By an analogue of Weierstrass's preparation theorem, there are only finitely many Q as in corollary 27 with slope

$$
v_{p}(Q)=v_{p}(\text { "root of } Q ") \leq h
$$

Defining

$$
X^{(\leq h)}=\bigoplus_{v_{p}(Q) \leq h} N(Q)
$$

we obtain a unique slope $\leq h$ decomposition $X=X^{(\leq h)} \oplus X^{(>h)}$ and the first part is even finite-dimensional.

Fact. The space $M_{k}\left(\mathbb{Q}_{p}\right)$ of p-adic modular forms of weight $k \in W$ is a \mathbb{Q}_{p}-Banach space. However, the operator U_{p} acting on $M_{k}\left(\mathbb{Q}_{p}\right)$ is not compact.

The reason why we cannot apply this theory to the operator U_{p} is that the space $M_{k}\left(\mathbb{Q}_{p}\right)$ is too large. As we will see in the next talk, Katz's solution to this problem was to work with subspaces of overconvergent modular forms.

References

[1] Ramanujan, S. "On certain arithmetical functions". In: Trans. Cambridge Phil. Soc. 22.9 (1916), pp. 159-184.
[2] Serre, J.-P. "Congruences et formes modulaires". In: Séminaire Bourbaki. Vol. 1971/72. Exposés 400-417. Ed. by Dold, A. and Eckmann, B. Lecture notes in mathematics 317. Berlin, Germany: Springer-Verlag, 1973, pp. 319-338.
[3] Serre, J.-P. "Endomorphismes complètement continus des espaces de Banach p-adiques". In: Publ. Math. IHÉS 12 (1962), pp. 69-85.
[4] Serre, J.-P. "Formes modulaires et fonctions zêta p-adiques". In: Modular functions of one variable III. Ed. by Serre, J.-P. and Kuijk, W. Lecture notes in mathematics 350. Berlin, Germany: Sprinver-Verlag, 1973, pp. 191-268.
[5] Swinnerton-Dyer, H. P. F. "On ℓ-adic representations and congruences for coefficients of modular forms". In: Modular functions of one variable III. Ed. by Serre, J.-P. and Kuijk, W. Lecture notes in mathematics 350. Berlin, Germany: Springer-Verlag, 1973, pp. 1-55.

[^0]: ${ }^{1}$ I thank Adrian Iovita for organizing the seminar and thinking of me to give this talk.
 ${ }^{2}$ The notion of level will appear in Giovanni's talk on Katz's definitions of modular forms. I will focus on the simplest case.

[^1]: ${ }^{3}$ This definition of being defined over a certain ring will agree with Katz's one, which is more natural, thanks to a result known as the q-expansion principle.
 ${ }^{4}$ This is not a mistake. The Eisenstein series of weight 2 is not a modular form in the sense of definition 1, but "almost": it is a p-adic modular form and even a modular form of level $\Gamma_{0}(p)$.

[^2]: ${ }^{5}$ I did not forget a $k=2$ before the first P; as mentioned earlier, P is somewhat special.

[^3]: ${ }^{6} \mathrm{We}$ will see more of this and other interpretations of the weight space in future talks.

[^4]: ${ }^{7}$ The notation I use here is not compatible with that of the previous sections. It is important to note that p-adic modular forms are not the same as modular forms defined over \mathbb{Q}_{p}. However, I believe there is little chance of confusion at the level of this talk.
 ${ }^{8}$ Here I did my best to give a bit of intuition, but the explanation is admittedly not enough to see how the proof would proceed. There is at least another key idea in the proof that I decided to omit because of the time constraints.

