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Abstract

These are the notes for a one-and-a-half-hour talk given in an informal

seminar1 to prepare for a workshop on higher Coleman theory at the Centre

de Recherches Mathématiques. I present the theory of (classical) modular

forms modulo a fixed prime number p and introduce the notion of p-adic

modular forms using their power series expansions. I tried to present these

objects in the most elementary possible form thinking of the variety of back-

grounds amongst the audience. The notes follow almost verbatim Serre and

Swinnerton-Dyer’s original work in the early 70’s, published in the articles

[2, 5, 4]. At the end, there is a brief review of p-adic Banach theory, following

Serre’s article [3], which was meant to set the ground for Giovanni Rosso’s

talk that followed mine. No originality is claimed.

1 Modular forms over C

We begin by quickly recalling the basic definitions and results of the theory of
modular forms. Let H = { z ∈ C : Im(z) > 0 }.

Definition 1.
(1) A modular form of weight k ∈ Z (and level2 1) is a holomorphic function

f : H→ P1(C) with the property that

f
( az + b

cz + d

)
= (cz + d)k · f (z) for all

(
a b
c d

)
∈ SL2(Z) and all z ∈H

1I thank Adrian Iovita for organizing the seminar and thinking of me to give this talk.
2The notion of level will appear in Giovanni’s talk on Katz’s definitions of modular forms. I will

focus on the simplest case.
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and admitting a q–expansion

f (z) = ∑
n≥0

an( f )qn, where q = e2πiz.

We identify f with its q–expansion (i.e., we view it as an element of C[[q]]).
(2) Let A be a subring of C. We say that f is defined over A if f ∈ A[[q]].3

(3) Let Mk(A) denote the set of modular forms of weight k defined over A. (It
is, in fact, an A–module.)

(4) Set
M(A) =

⊕
k∈Z

Mk(A).

(It is a graded A–algebra.)

Example 2. The first examples of modular forms are the (normalized) Eisenstein
series

E2k = 1− 2 · 2k
B2k
· ∑

n≥1
σ2k−1(n)qn ∈ M2k(Q) for k ≥ 2,

where B2k is the 2k–th Bernoulli number and

σ2k−1(n) = ∑
0<d|n

d2k−1.

In particular, we will mostly be interested in the following series:

P = E2 = 1− 24 ∑
n≥1

σ1(n)qn 6∈ M2, 4

Q = E4 = 1 + 240 ∑
n≥1

σ3(n)qn ∈ M4,

R = E6 = 1− 504 ∑
n≥1

σ5(n)qn ∈ M6.

From these, we can also construct a modular form whose q–expansion has trivial
constant coefficient, the (normalized) modular discriminant

∆ =
Q3 − R2

1728
= · · · = q ∏

n≥1
(1− qn)24 ∈ M12.

Theorem 3. There is a canonical isomorphism of graded C–algebras

C[X, Y] ∼= C[Q, R] = M(C)

X 7→ Q

Y 7→ R

3This definition of being defined over a certain ring will agree with Katz’s one, which is more
natural, thanks to a result known as the q–expansion principle.

4This is not a mistake. The Eisenstein series of weight 2 is not a modular form in the sense of
definition 1, but “almost”: it is a p–adic modular form and even a modular form of level Γ0(p).
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(where X and Y are independent variables of weights 4 and 6, respectively).

Idea of the proof. This classical result can be proved using contour integration and
studying the possible poles of modular forms to compare dimensions at each
degree.

Theorem 4. Let k be an even integer ≥ 4 and let d = dimC(Mk(C)) − 1. Choose
α, β ≥ 0 such that

(i) 4α + 6β ≡ k mod 12 and
(ii) 4α + 6β ≤ 14.

Define, for 0 ≤ j ≤ d, gj = ∆jQαR2(d−j)+β. The elements g0, g1, . . . , gd form an integral
basis of Mk(C). That is,

Mk(A) =
d⊕

j=0

A · gj

for every subring A ⊆ C.

Remark. In the way this theorem is stated, it is unclear even if gj ∈ Mk. What
happens is that one can compute d, which happens to be approximately k

12 . Then
α and β are chosen to compensate the difference between 12d and k.

Idea of the proof. There are the right number of elements gj, 0 ≤ j ≤ d, and by
construction

gj = qj + O(qj+1) ∈ Z[[q]]

(cf. the formulae in example 2). The theorem follows by looking at the coefficients
of 1, q, . . . , qd.

In particular, M(A) = A[Q, R, ∆] with the relation 1728∆ = Q3 − R2.

2 Modular forms modulo p (Serre–Swinnerton-Dyer)

This section is mostly a rewriting of some of the work of Serre and Swinnerton-
Dyer, which they published in the articles [2] and [5]. Since most of the proofs are
quite short and elementary, I tried to include at least the main ideas.

Fix a prime number p and let · denote reduction modulo p.

Definition 5.
(1) For k ∈ Z, let Mk(Fp) =

{
f ∈ Fp[[q]] : f ∈ Mk(Z(p))

}
.
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(2) The algebra of modular forms modulo p is the Fp–algebra

M(Fp) = ∑
k∈Z

Mk(Fp).

Remark. The last sum is not direct (i.e., a power series in Fp[[q]] may appear as the
reduction of two modular forms with different weights).

If p = 2 or 3, M(Fp) = Fp[∆] ∼= Fp[T] (where T is an independent variable)
because Q = R = 1. From now on, assume that p ≥ 5. Then p

∣∣- 1728 and so
M(Z(p)) = Z(p)[Q, R]. We have surjections

M(Z(p)) Z(p)[X, Y] Fp[X, Y] M(Fp)

φ(Q, R) φ(X, Y) φ(X, Y) φ(Q, R)

∼=

and just need to describe Ker
(
Fp[X, Y]→→ M(Fp)

)
. To do so, we will use Serre’s

differential operator

θ = q
d
dq

.

Theorem 6 (Ramanujan).
(1) Let k ∈ Z. If f ∈ Mk(C), then (12θ − kP) f ∈ Mk+2(C).
(2) We have the following identities:

(12θ − P)P = −Q, 5

(12θ − 4P)Q = − 4R,

(12θ − 6P)R = − 6Q2,

(12θ − 12P)∆ = 0.

Idea of the proof. Since all these forms live in 1–dimensional C–vector spaces, it
suffices to compare the first coefficients of the q–expansions in each equality.

Definition 7.
(1) Let ∂ be the graded derivation on M(C) given by

∂|Mk(C) = 12θ − kP for every k ∈ Z.

(2) On Z(p)[X, Y] (resp. Fp[X, Y]), define ∂ by ∂X = −4Y and ∂Y = −6X2.
(3) Let k ∈ Z. For f ∈ Mk(Z(p)), write ∂ f = ∂ f ∈ Mk+2(Fp).

Next, we want to find congruences between Eisenstein series, but there are
Bernoulli numbers in their q–expansions (see example 2).

5I did not forget a k = 2 before the first P; as mentioned earlier, P is somewhat special.
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Theorem 8. Let k ∈ Z≥1.
(1) If p− 1

∣∣ 2k, then pB2k ∈ Z(p) and

pB2k ≡ −1 mod p (Clausen–von Staudt congruence).

In particular, vp(B2k) = −1.
(2) If p− 1

∣∣- 2k, then B2k / 2k ∈ Z(p) and

B2k
2k
≡

B2k+m(p−1)

2k + m(p− 1)
mod p for every m ∈ Z (Kummer congruence).

That is, the class of B2k / 2k mod p depends only on 2k mod p− 1.

Corollary 9.
(1) Ep−1 = 1.
(2) Ep+1 = P.

Definition 10. We define A, B ∈ Z(p)[X, Y] to be the polynomials determined by
the equations

A(Q, R) = Ep−1 and B(Q, R) = Ep+1.

Lemma 11.
(1) ∂A = B and ∂B = −XA in Fp[X, Y].
(2) The polynomial A has no repeated factors in Fp[X, Y].

Idea of the proof.
(1) These equalities follow from a simple calculation.
(2) Using (1), one can argue by contradiction.

Theorem 12. We have an isomorphism of rings

M(Fp) ∼= Fp[X, Y] / (A− 1).

Idea of the proof. We know that dim(Fp[X, Y]) = 2 and one can check that the
ideal a = Ker

(
ϕ(X, Y) 7→ ϕ(Q, R) : Fp[X, Y] → M(Fp)

)
is prime of height 1

and contains (A− 1). By lemma 11, the ideal (A− 1) is also prime. Therefore,
a = (A− 1).

In particular, congruences between modular forms are only possible when the
weights are congruent modulo p− 1.
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3 p–adic modular forms (Serre)

The next two sections are my attempt to summarize Serre’s article [4]. The original
in this case is much longer and contains many more interesting results that I had
to omit due to the time constraints.

Fix p ≥ 3 (for simplicity). For f ∈ Qp[[q]], write

vp( f ) = inf
n≥0

{
vp(an( f ))

}
.

Theorem 13. Let f ∈ Mk(Q) and f̃ ∈ Mk̃(Q). Suppose that f 6= 0. Let m ∈ Z≥0. If
vp( f − f̃ ) ≥ vp( f ) + m, then

k̃ ≡ k mod (p− 1)pm−1.

Idea of the proof. The theorem can be proved by induction on m. The base case
follows from theorem 12.

Intuitively, this theorem says that two modular forms can be p–adically close
only if their weights are.

Definition 14. For m ∈ Z≥0, set

Wm =
(
Z / (p− 1)Z

)
×
(
Z / pm−1Z

) ∼= (Z / pmZ
)×.

The group of p–adic weights is

W = lim←−
m

Wm =
(
Z / (p− 1)Z

)
×Zp ∼= Z×p .

Remark. One often identifies W with HomZp(Z
×
p , Z×p ) via k 7−→

(
x 7→ xk).6

Definition 15.
1. A p–adic modular form is a formal power series f ∈ Qp[[q]] such that there

exist fi ∈ Mki(Q) for i ∈ Z≥1 with the property that

vp( f − fi) −−→
i→∞

+∞.

If k = limi→∞ ki ∈W (i.e., this limit exists and is well-defined in W), we say
that f has weight k.

2. Let Mk(Qp) denote the set of p–adic modular forms of weight k. (It is, in fact,
a Banach space over Qp.)

3. Set
M(Qp) =

⊕
k∈W

Mk(Qp).7

(It is a graded Qp–algebra.)

6We will see more of this and other interpretations of the weight space in future talks.
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Remark. Since a p–adic modular form can be obtained as the limit of several
sequences of modular forms, it might seem unclear whether weights are well-
defined. Theorem 13 is what justifies this definition (with a little work that is left
to the reader).

Example 16. If p = 3, then Q ≡ 1 mod p and so we obtain

1
Q

= lim
i→∞

Qpi

Q
= lim

i→∞
Qpi−1 ∈ M−4(Qp).

Theorem 17. Consider fi ∈ Mki(Qp) for i ∈ Z≥1. If
(i) each sequence

(
an( fi)

)
i≥1 for n ∈ Z≥1 has a limit an ∈ Qp and

(ii) the sequence
(
ki
)

i≥1 has a limit k ∈W which is 6= 0,
then the sequence

(
a0( fi)

)
i≥1 too admits a limit a0 ∈ Qp and

f = ∑
n≥0

anqn ∈ Mk(Qp).

Idea of the proof. By theorem 13 applied to any g ∈ Mk(Qp) and g̃ = a0(g) (i.e., a
constant, which we view in M0(Qp)), if we choose m� 0 such that k 6= 0 in Wm+1,
then

vp(a0(g)) + m ≥ inf
n≥1

{
vp(an(g))

}
.

Thus, the convergence of the a0(·) coefficients is forced by that of the an(·) for
n ≥ 1.8

Example 18. Take a sequence ki ∈ 2Z≥2 such that
(i) ki → k ∈ 2W and

(ii) |ki| → ∞ (in R, where | · | is the usual archimedean absolute value).
Then

σki−1(n) = ∑
d|n

dki−1 | · |p−−→
i→∞

∑
p |- d|n

dk−1 = σ∗k−1(n),

where the last sum skips any p factors because condition (ii) makes them tend to 0
p–adically. Hence, we obtain a limit of Eisenstein series

Bki

2ki
Eki =

Bki

2ki
+ ∑

n≥1
σki−1(n)qn | · |p−−→

i→∞

“ Bk
2k

”
+ ∑

n≥1
σ∗k−1(n)q

n = E∗k ∈ Mk(Qp).

7The notation I use here is not compatible with that of the previous sections. It is important to
note that p–adic modular forms are not the same as modular forms defined over Qp. However, I believe
there is little chance of confusion at the level of this talk.

8Here I did my best to give a bit of intuition, but the explanation is admittedly not enough to
see how the proof would proceed. There is at least another key idea in the proof that I decided to
omit because of the time constraints.
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(The factors Bki / 2ki occur as special values of the Riemann zeta function; likewise,
the limit factor “Bk / 2k” occurs as a special value of its p–adic counterpart, known
as the Kubota–Leopoldt p–adic L–function.)

4 Hecke operators

Definition 19. Let
f = ∑

n≥0
an( f )qn ∈ Qp[[q]].

We define

f |Up = ∑
n≥0

anp( f )qn,

f |Vp = ∑
n≥0

an( f )qnp,

f |k T` = ∑
n≥0

an`( f )qn + `k−1 ∑
n≥0

an( f )qn`

(for any prime number ` and any k ∈W).

Theorem 20.
(1) The operators T`, for ` prime, act on Mk(Z(p)) for every k ∈ Z.
(2) The operators Up, Vp and T` for ` 6= p act on Mk(Qp) for every k ∈W.
(3) The operators T`, for ` prime, commute among themselves and with Up and Vp.

We are usually interested in simultaneous eigenvectors for these operators (i.e.,
eigenforms). We also consider the operator θ = q d

dq , which increases weights by 2.
Since Tp ≡ Up mod p, we get an action of Up on M(Fp) with the following

contracting property:

Theorem 21.
(1) Let k ∈ Z. If k > p + 1, then Up maps Mk(Fp) into Mk̃(Fp) for some k̃ < k.
(2) The operator Up acts on Mp−1(Fp) bijectively.

Corollary 22. Assume that p ≥ 5. Let [a] ∈
(
2Z / (p− 1)Z

)
and define

M[a](Fp) =
⋃

k∈[a]
Mk(Fp).

(1) There exists a unique decomposition M[a](Fp) = S⊕ N with the property that Up

acts invertibly on S and acts nilpotently on N.
(2) If k ∈ [a] and 4 ≤ k ≤ p + 1, then S ⊂ Mk(Fp).
(3) If [a] = [0], then S = Mp−1(Fp).
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It is natural to wonder if there are similar decompositions for p–adic modular
forms, as that would allow us to study smaller spaces of modular forms by means
of the Up–action. To go in that direction, we need functional analysis.

5 Compact operators on Banach spaces

This last section (which one might think of as an appendix) is a very brief summary
of the results that we will need from Serre’s article [3].

Definition 23. A Qp–Banach space X is called orthonormalizable if there exists a
family (ei)i∈I ⊂∈ X (an orthonormal basis) with the property that each x ∈ X
admits a unique expression as a linear combination

x = ∑
i∈I

xiei, xi ∈ Qp for all i ∈ I,

with
(i) xi −−→

i→∞
0 (i.e., for every ε > 0, |xi|p < ε for all but finitely many i ∈ I) and

(ii) |x| = sup
i∈I

{
|xi|p

}
.

From now on, fix an orthonormalizable Qp–Banach space X and write L (X) for
the space of continuous Qp–linear maps U : X → X endowed with the supremum
norm

‖U‖ = sup
x∈X
x 6=0

|Ux|
|x| .

Definition 24.
(1) An operator U ∈ L (X) is compact if it is the limit of a sequence of maps of

finite rank in L (X).
(2) Let C (X) denote the Banach algebra of compact operators on X.

Given U ∈ C (X), we can construct what is known as the Fredholm determinant,
det(1− tU) ∈ Qp[[t]], as follows:

• Up to scaling, we may assume that ‖U‖ ≤ 1 and so that U acts on the unit
ball X0 = { x ∈ X : |x| ≤ 1 }.

• By the definition of compact, for each n ∈ Z≥1, the image of U|(X0 / pnX0) is
contained in a finite free

(
Z / pnZ

)
–module Yn; then there is a well-defined

det
(
1− tU|Yn

)
∈
(
Z / pnZ

)
[t].

• Take projective limits of the previous polynomials over n ∈ Z≥1 to obtain

det(1− tU) ∈ Zp[[t]].
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(The assumption in the first step forces coefficients to lie in Zp, but for
general U we get an element of Qp[[t]].)

Proposition 25. For every U ∈ C (X), the Fredholm determinant det(1− tU) is entire
(i.e., has an infinite radius of convergence).

Theorem 26 (Riesz decomposition). Let a ∈ Q×p be a zero of order h of det(1− tU).
There exists a unique decomposition as a direct sum of closed subspaces X = S(a)⊕ N(a)
with the property that 1 − aU acts invertibly on S(a) and acts nilpotently on N(a).
Moreover, dimQp(N(a)) = h.

Remark. N(a) = Ker
(
(1− aU)h) is the U–eigenspace of eigenvalue a−1; its ele-

ments are generalized U–eigenvectors of slope α = −vp(a), which is one of the slopes
of the Newton polygon of det(1− tU).

Idea of the proof. One can use Fredholm’s resolvent det(1 − tU) / (1 − tU) and
divided differences to obtain several identities and then evaluate them at t = a to
explicitly find projectors for the decomposition X = S(a)⊕ N(a).

Corollary 27. Let Q(t) be an irreducible polynomial of Qp[t] with Q(0) = 1. There
exists a unique decomposition as a direct sum of closed subspaces X = S(Q)⊕N(Q) such
that the operator Q(U) acts invertibly on S(Q) and acts nilpotently on N(Q). Moreover,
dimQp(N(Q)) < ∞.

Proof. Write Q(U) = 1− Ũ and apply theorem 26 to Ũ and a = 1.

Fix h ∈ R. By an analogue of Weierstrass’s preparation theorem, there are only
finitely many Q as in corollary 27 with slope

vp(Q) = vp(“root of Q”) ≤ h.

Defining
X(≤h) =

⊕
vp(Q)≤h

N(Q),

we obtain a unique slope ≤ h decomposition X = X(≤h) ⊕ X(>h) and the first part is
even finite-dimensional.

Fact. The space Mk(Qp) of p–adic modular forms of weight k ∈W is a Qp–Banach
space. However, the operator Up acting on Mk(Qp) is not compact.

The reason why we cannot apply this theory to the operator Up is that the
space Mk(Qp) is too large. As we will see in the next talk, Katz’s solution to this
problem was to work with subspaces of overconvergent modular forms.
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