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Abstract

These are the (extended) notes for a talk given in the students seminar1 on

the Mazur–Tate–Teitelbaum conjecture. I present briefly the theory of modular

symbols and show how they can be used to construct p–adic L–functions. The

notes are a summary of various sources and contain no original results.

Notation. Throughout this document, fix a positive integer N and a prime
number p such that p > 2 and p

∣∣- N. Fix algebraic closures Q and Qp of Q and
Qp, respectively, together with embeddings Q ↪→ Qp and Q ↪→ C. Set Γ = Γ0(N)

and Γ0 = Γ0(Np).2 Take an integer k ≥ 0.

0 Motivation

We begin with the simplest case. Consider the space S2(Γ) of cusp forms of
level 2 for Γ, which is a complex vector space of finite dimension. Let TC be the
subalgebra of EndC(S2(Γ)) generated by the Hecke operators T` for the primes
`
∣∣- N and U` for the primes `

∣∣ N.
The TC–algebra S2(Γ) is an important object of study in number theory and

we naturally want to gain a better understanding of it. One way to do so is by
computing an explicit basis in terms of which all interesting operations have a
concrete and simple description. The following result hints at a first step in that
direction.

1I thank Henri Darmon and Adrian Iovita for organizing the seminar.
2We use the groups Γ0(−) for simplicity, but the theory works in the same way for Γ1(−).
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Theorem 1. The map
〈−,−〉 : S2(Γ)×TC −→ C

given by 〈 f , T〉 = a1(T f ) (where a1(−) denotes the coefficient of q in the q–expansion
of a cusp form) defines a perfect pairing of complex vector spaces and so induces an
isomorphism S2(Γ) ∼= HomC(TC, C).

Proof. The pairing is bilinear because TC ⊂ EndC(S2(Γ)) and a1 is also a linear
map.

Let f ∈ S2(Γ) such that 〈 f , T〉 = 0 for all T ∈ TC. In particular,

an( f ) = a1(Tn f ) = 〈 f , Tn〉 = 0

for all n ∈N, which means that f = 0.
Similarly, let T ∈ TC with the property that 〈 f , T〉 = 0 for all f ∈ S2(Γ). Take

g ∈ S2(Γ). We want to prove that T g = 0 (as g is arbitrary, this implies that T is
the 0 operator in EndC(S2(Γ))). Indeed, using the commutativity of TC we get
that

an(T g) = a1(Tn T g) = a1(T Tn g) = 〈Tn g, T〉 = 0

for all n ∈N.
The previous two paragraphs show that 〈−,−〉 is a perfect pairing. But the

C–vector space S2(Γ) is finite-dimensional. Therefore, we obtain an induced
isomorphism S2(Γ) ∼= HomC(TC, C) of complex vector spaces.

This theorem tells us that, to understand the space S2(Γ), it suffices to study
TC instead. And we can do so by making Hecke operators act in the same way
on other spaces, which we hope will be easier to work with. More precisely, we
are going to introduce a new (larger) space with an analogous action of Hecke
operators T` for the primes `

∣∣- N and U` for the primes `
∣∣ N that contains an

isomorphic copy of S2(Γ) (as TC–modules).
For example, consider the compactified modular curve X(Γ) = Γ \H∗, which

is a compact Riemann surface. Recall that S2(Γ) corresponds naturally to the space
Ω1(X(Γ)) of (global) holomorphic differential forms on X(Γ). If g(Γ) denotes the
genus of X(Γ), then Ω1(X(Γ)) is a C–vector space of dimension g(Γ) and the first
homology group H1(X(Γ), Z) is a free Z–module of rank 2g(Γ). We can relate
Ω1(X(Γ)) to H1(X(Γ), Z) by means of the following result from the theory of
compact Riemann surfaces.

Theorem 2. The integration pairing

I : H1(X(Γ), R)× S2(Γ) −→ C
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defined by

I(γ, f ) = 2πi
∫

γ
f (z) dz

is non-degenerate and induces an isomorphism H1(X(Γ), R) ∼= HomC(S2(Γ), C) as real
vector spaces.

The space H1(X(Γ), R) is given roughly by R–linear combinations of closed
paths on X(Γ) modulo some homology relations and we can view H1(X(Γ), Z)

embedded in H1(X(Γ), R) in a natural way. The composition

H1(X(Γ), Z) H1(X(Γ), R) HomC(S2(Γ), C)

Z2g(Γ) Cg(Γ)

∼=

∼=

∼=

is used to obtain a full rank lattice and define the jacobian of X(Γ).
By duality, we obtain an action of Hecke operators on H1(X(Γ), R). However,

there are many possible paths on X(Γ), so we could try to restrict to a narrower
class of paths making use of the construction of X(Γ) as a quotient of H∗. For
instance, we could focus on paths coming from geodesics between cusps in H∗ and
determine their relations. This was the original idea of Manin. A detailed account
of this approach can be found in Manin’s original article [3]. Stein’s book [9] also
explains Manin’s theory and some generalizations from a computational point of
view. Here, we do something dual, corresponding to cohomology with compact
supports instead of homology.

Let ∆0 = Div0(P1(Q)). This group is generated by the elements of the form
{s} − {r} for r, s ∈ P1(Q). (The divisor {s} − {r} should be thought of as a path
from r to s in H∗.) We endow ∆0 with an action of GL2(Q) as follows:(

a b
c d

)(
{s} − {r}

)
=
{ as + b

cs + d

}
−
{ ar + b

cr + d

}
.

We define the space of (classical) modular symbols for Γ to be HomΓ(∆0, C), where
we regard Γ acting trivially on C.

Given f ∈ S2(Γ), we can construct a modular symbol ψ f ∈ HomΓ(∆0, C)

defined by

ψ f
(
{s} − {r}

)
= 2πi

∫ s

r
f (z) dz.

The morphism ψ f is indeed invariant under the action of Γ:

2πi
∫ γs

γr
f (z) dz = 2πi

∫ s

r
f (γz) d(γz) = 2πi

∫ s

r
f (z) dz for all γ ∈ Γ.

Now we can define an action of Hecke operators on HomΓ(∆0, C) coinciding
with the action on S2(Γ). For ψ ∈ HomΓ(∆0, C) and

(
a b
c d

)
∈ GL2(Q), we define
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ψ
∣∣( a b

c d

)
∈ HomΓ(∆0, C) by(

ψ
∣∣( a b

c d

))
(D) = ψ

((
a b
c d

)
D
)

for all D ∈ ∆0.

Let ` denote a prime number. The action of Hecke operators on ψ ∈ HomΓ(∆0, C)

is given by

ψ
∣∣T` =

`−1

∑
b=1

ψ
∣∣( 1 b

0 `

)
+ ψ

∣∣( ` 0
0 1

)
if `

∣∣- N and

ψ
∣∣U` =

`−1

∑
b=1

ψ
∣∣( 1 b

0 `

)
if `

∣∣ N.
We will get more involved constructions of modular symbols if we replace C

with other Γ–modules. For instance, to work with Sk+2(Γ) for k > 0, we need to
use the space Vk(C) = C[X, Y]k of homogeneous polynomials of degree k in two
variables X and Y endowed with some action of Γ. We are going to see this and
other examples in the following sections.

1 The Eichler–Shimura isomorphism

Let R be a ring (we will only be interested in the cases R = Q, Qp or C) and set

S0(p) =

{(
a b
c d

)
∈ Mat2(Z) : p

∣∣- a, p
∣∣ c and ad− bc 6= 0

}
.

Consider any R–module V with a right action of S0(p). Hecke operators act on V
as follows: for v ∈ V and a prime number `,

v
∣∣T` = v

∣∣( ` 0
0 1

)
+

`−1

∑
b=0

v
∣∣( 1 b

0 `

)
if `

∣∣- Np,

v
∣∣U` =

`−1

∑
b=0

v
∣∣( 1 b

0 `

)
if `

∣∣ Np.

To any R–module V with a right action of S0(p), one can attach a locally free
sheaf Ṽ on Y(Γ0) = Γ0 \H. By functoriality, we obtain an induced right action
of Hecke operators on H1

c(Y(Γ0), Ṽ), the first cohomology group with compact
supports of Y(Γ) with coefficients in Ṽ. Define H1

c(Γ0, V) = H1
c(Y(Γ0), Ṽ).

We are going to define spaces of modular symbols in a more combinatorial way.
These spaces of modular symbols are much easier to work with, but in any case
they correspond to the cohomology groups with compact supports introduced
above.
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Let Vk(R) = R[X, Y]k (the subscript k indicates the subspace of homogeneous
polynomials of degree k). We can endow Vk(R) with a right action of S0(p) as
follows: for P ∈ Vk(R) and γ ∈ S0(p), we define P

∣∣γ ∈ Vk(R) by(
P
∣∣γ)(X, Y) = P

(
(X, Y) · γ∗

)
= P(dX− cY,−bX + aY),

where

γ =

(
a b
c d

)
and γ∗ =

(
d −b
−c a

)
.

Theorem 3 (Eichler–Shimura). There is a canonical isomorphism of Hecke modules

H1
c(Γ0, Vk(C)) ∼= Mk+2(Γ0)⊕ Sk+2(Γ0),

where Sk+2(Γ0) = { f (z) : f (−z) ∈ Sk+2(Γ0) }.

Proof. See chapter 8 of Shimura’s book [7], especially theorem 8.4.
In section 8.1 of ibid., Shimura provides an ad hoc description of H1

par(Γ0, V),
the first parabolic cohomology group of the group Γ0 with coefficients in V, using
the same kind of cochains as in standard group cohomology but with some
extra conditions related to the parabolic elements. There is a canonical map
H1

c(Γ0, V)→ H1(Γ0, V) whose image is precisely H1
par(Γ0, V). Theorem 8.4 of ibid.

shows that H1
par(Γ0, V) ∼= Sk+2(Γ0)⊕ Sk+2(Γ0). A modification of that argument

yields the desired result (the kernel of H1
c(Γ0, V) → H1(Γ0, V) accounts for the

extra Eisenstein series).

2 Modular symbols

Recall from section 0 that ∆0 is the group of divisors of degree 0 on P1(Q) endowed
with the action of GL2(Q) given by linear fractional transformations.

Given an R–module V with a right action of S0(p) as in section 1, we consider
the set Hom(∆0, V) of group homomorphism from ∆0 to V with the right action of
S0(p) defined as follows: for ϕ ∈ Hom(∆0, V) and γ ∈ S0(p), ϕ

∣∣γ ∈ Hom(∆0, V)

is given by (
ϕ
∣∣γ)(D) = ϕ(γD)

∣∣γ for all D ∈ ∆0.

Definition 4. The space of modular symbols on Γ0 with values in V is

SymbΓ0
(V) = HomΓ0(∆0, V) = { ϕ ∈ Hom(∆0, V) : ϕ

∣∣γ = ϕ for all γ ∈ Γ0 }.

The action of S0(p) naturally induces a right action of Hecke operators on
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SymbΓ0
(V): for ϕ ∈ SymbΓ0

(V) and a prime number `,
ϕ
∣∣T` = ϕ

∣∣( ` 0
0 1

)
+

`−1

∑
b=0

ϕ
∣∣( 1 b

0 `

)
if `

∣∣- Np,

ϕ
∣∣U` =

`−1

∑
b=0

ϕ
∣∣( 1 b

0 `

)
if `

∣∣ Np.

Theorem 5. If the orders of all torsion elements of Γ0 are invertible in R (e.g., if R is a
field of characteristic 0), then there is a canonical isomorphism of Hecke modules

SymbΓ0
(V) ∼= H1

c(Γ0, V).

Proof. See proposition 4.2 of Ash–Stevens’s article [1].

There is another important operator on SymbΓ0
(V): for ϕ ∈ SymbΓ0

(V), we
define

ϕ
∣∣ι = ϕ

∣∣( −1 0
0 1

)
.

The operator ι is an involution on SymbΓ0
(V). Thus, if 2 ∈ R×, ι is diagonalizable

and we obtain a decomposition

SymbΓ0
(V) = SymbΓ0

(V)+ ⊕ SymbΓ0
(V)−,

where SymbΓ0
(V)± is the ±1–eigenspace for ι. That is, every ϕ ∈ SymbΓ0

(V) can
be written uniquely as ϕ = ϕ+ + ϕ− with ϕ±

∣∣ι = ±ϕ±.
In particular, for V = Vk(C), the Eichler–Shimura theorem gives us two modu-

lar symbols for each f ∈ Sk+2(Γ0) which can be interpreted in this way. Namely,
one can check that ψ f ∈ Hom(∆0, Vk(C)) defined by

ψ f ({s} − {r}) = 2πi
∫ s

r
f (z)(zX + Y)k dz

is a modular symbol and so induces ψ±f ∈ SymbΓ0
(Vk(C))±. Moreover, a change

of variables in the integral shows that the assignment f 7→ ψ f is Hecke-equivariant.
The two modular symbols ψ+

f and ψ−f are given by the images of f ∈ Sk+2(Γ0)

and f ∈ Sk+2(Γ0) under the Eichler–Shimura isomorphism (cf. theorem 3).

3 Classical modular symbols and p–adic L–functions

Since we want to get p–adic L–functions, we work with Vk = Vk(Qp) = Qp[X, Y]k
and focus on elements of Sk+2(Γ) whose q–expansions have coefficients in Qp.
Recall from section 1 that we have a right action of S0(p) (in fact, even of GL2(Qp))
on Vk given by (

P
∣∣γ)(X, Y) = P

(
(X, Y) · γ∗

)
.
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Thus, we can apply the theory of section 2 to Vk.
The following result tells us that, for the class of modular forms we are most

interested in, we essentially obtain modular symbols in SymbΓ(Vk).

Theorem 6 (Shimura). Let f ∈ Sk+2(Γ0) be a normalized eigenform and consider the
associated modular symbols ψ±f ∈ SymbΓ0

(Vk(C))±. There exist periods Ω±f ∈ C× such
that the modular symbols

ϕ±f =
ψ±f

Ω±f

are defined over R = Z[an( f ) : n ≥ 1] (i.e., ϕ±f ∈ SymbΓ0
(Vk(R))± via the natural

inclusions SymbΓ0
(Vk(R))± ⊂ SymbΓ0

(Vk(Q))± ⊂ SymbΓ0
(Vk(C))±). In particular,

the Hecke eigenspace corresponding to f in SymbΓ0
(Vk(Frac(R)))± via the Eichler–

Shimura isomorphism is generated by ϕ±f .

Proof. See Shimura’s article [8].

Now suppose that f ∈ Sk+2(Γ) is a p–ordinary normalized eigenform, so that
ap( f ) ∈ Z×p . Consider f1, f2 ∈ Sk+2(Γ0) given by f1(z) = f (z) and f2(z) = f (pz).
By construction, the forms f1 and f2 are eigenvectors of the Hecke operators T`,
`
∣∣- Np, and U`, `

∣∣ N, but not necessarily of Up. Using the definitions of Tp and
Up, one checks that(

f1
∣∣Up f2

∣∣Up

)
=
(

f1 f2

)( ap( f ) 1
−pk+1 0

)
.

Therefore, the characteristic polynomial of Up acting on the subspace of Sk+2(Γ0)

generated by f1 and f2 is of the form

X2 − ap( f )X + pk+1 = (X− α)(X− β)

with vp(α) = 0 and vp(β) = k + 1 and the corresponding eigenvectors are

fα = f1 − β f2 and fβ = f1 − α f2.

In fact, the p–stabilizations fα and fβ are eigenforms over Γ0 (i.e., simultaneous
eigenvectors of the Hecke operators T` for the primes ` such that `

∣∣- Np and U`

for the primes ` such that `
∣∣ Np).

Next take the modular symbol ϕ fα
∈ SymbΓ0

(Vk) corresponding to fα accord-
ing to theorem 6. Since ϕ fα

∣∣Up = α · ϕ fα
, for every a ∈ Z such that p

∣∣- a and every
n ∈N,

α · ϕ fα

({ a
pn

}
− {∞}

)
=

p−1

∑
b=0

ϕ fα

({ a + bpn

pn+1

}
− {∞}

)
.
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Except for the factor α on the left-hand side, this equation looks like the compatibil-
ity condition required to define a distribution on balls. Thus, we obtain a measure
on Zp defined on (characteristic functions of) balls by

µ fα
(1a+pnZp) =

1
αn ϕ fα

({ a
pn

}
− {∞}

)∣∣∣X=0
Y=1

.

The measure µ fα
yields the p–adic L–function3 of f via a p–adic Mellin trans-

form as follows. Recall that there is a canonical decomposition Z×p
∼= F×p ×U1,

where U1 is the multiplicative subgroup 1 + pZp. Namely, every x ∈ Z×p can
be expressed as x = ω(x mod p) · 〈x〉, where ω : F×p ↪→ Z×p is the Teichmüller
character and 〈−〉 : Z×p → U1 ⊂ Z×p . The p–adic L–function of f is

Lp( f , s) =
∫

Z×p
〈x〉s−1 dµ fα

(x),

where 〈x〉s−1 = expp
(
(s− 1) logp〈x〉

)
.

With this construction one interpolates special values of the classical L–function
attached to f . The following result is an example of this kind of p–adic interpola-
tion.

Proposition 7. For a Dirichlet character χ of conductor pn and 0 ≤ j ≤ k,

µ fα
(zj · χ) = 1

αn ·
(pn)j+1

(−2πi)j ·
j!

τ(χ−1)
· L( f , χ−1, j + 1)

Ωsgn(χ)
f

,

where
τ(χ−1) = ∑

a mod pn
χ(a)−1 · e2πia/pn

.

Proof. See sections I.7 and I.8 of Mazur–Tate–Teitelbaum’s article [4].

4 The weight space

In the same way as one can embed spaces of classical modular forms in (much
larger) spaces of overconvergent modular forms that can be studied using p–adic
analysis, we are going to embed the spaces of classical modular symbols in (much
larger) spaces of overconvergent modular symbols. To define the latter, it is
convenient to extend the notion of weight.

3In the last lecture we saw p–adic L–functions in a more general setting. There, the initial
modular form was not necessarily p–ordinary. Instead, one could use a theorem of Vishik and
Amice–Velú (cf. section 11 of Mazur–Tate–Teitelbaum’s article [4]) to produce a p–adic distribution
taking the role of µ fα

so long as vp(α) < k− 1.
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Continuing with the notation from the previous section, we write Un for the
multiplicative subgroup 1+ pnZp of Z×p . One can check that U1 = lim←−n≥1

U1 / Un.
Recall also the Teichmüller splitting Z×p

∼= F×p ×U1.
Define the Iwasawa algebra Λ to be the completed group ring

Λ = Zp[[Z
×
p ]] = lim←−

n≥1
Zp
[
(Z / pnZ)×

]
.

By the observations in the previous paragraph, we can express

Λ ∼= Zp[F
×
p ][[U1]] ∼=

⊕
ζ∈F×p

Zp[[U1]] · [ω(ζ)], where Zp[[U1]] = lim←−
n≥1

Zp[U1 / Un].

On the other hand, since 1 + p is a topological generator of U1, there is an iso-
morphism Zp[[U1]] ∼= Zp[[T]] given by [1 + p] ↔ 1 + T. We obtain in this way a
very concrete description of Λ. As a matter of fact, Λ is also isomorphic to the
space Meas(Zp) of measures on Zp with values in Zp via the Mahler transform

µ 7→
∫

Zp
(1 + T)z dµ(z).

Definition 8. The weight spaceW is the rigid analytic space over Qp associated
with the formal Spf(Zp)–scheme Spf(Λ), so that, for every complete p–adic al-
gebra R,

W(R) = HomZp(Λ, R) = Homcont(Z
×
p , R×).

An element κ ∈ W(Cp) is called a weight.

Remark. There is an embedding

Z Homcont(Z×p , Z×p )

identifying k ∈ Z with the character
(
a 7→ ak) (i.e., taking k–th powers). Thus,

every integer is a weight in the sense of definition 8.

5 Locally analytic distributions

Next, we recall some notions of p–adic analysis that will allow us to construct
overconvergent modular symbols.

Definition 9. We say that a function f : Zp → Cp is locally analytic if, for each
z0 ∈ Zp, there is a power series expansion

f (z) = ∑
n≥0

an(z0)(z− z0)
n ∈ Cp[[z− z0]] for z in some ball around z0.
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Let A denote the set of locally analytic functions with coefficients in Qp (i.e., the set
of functions f as above with the property that an(z0) ∈ Qp for all z0 ∈ Zp and all
n ≥ 0).

We want to define a topology on A. This topology will appear naturally from
the alternative description of A given in the following paragraphs.

For each r ∈ |C×p |p, set

B[Zp, r] = { z ∈ Cp : there exists a ∈ Zp such that |z− a|p ≤ r }

(that is, B[Zp, r] is the union of all closed balls of radius r centred at some point of
Zp). Intuitively, we want to take r → 0+ to obtain coverings of Zp by smaller and
smaller balls in Cp.

Fix r ∈ |C×p |p. Since Zp is compact, we can decompose

B[Zp, r] =
m⊔

i=1

B[zi, r]

for some z1, . . . , zm ∈ Zp, where B[zi, r] denotes the closed ball of radius r centred
at zi in Cp. Define A[r] to be the set of functions f : Zp → Cp with the property
that, for every i ∈ { 1, . . . , m }, there is a power series expansion

f (z) = ∑
n≥0

an(zi)(z− zi)
n ∈ Qp[[z− zi]] for z ∈ B[zi, r].

On A[r] there is a norm ‖−‖r given by

‖ f ‖r = sup
z∈B[Zp,r]

| f (z)|p.

To simplify the notation, write simply A for the set A[1] of rigid analytic
functions on the closed unit ball and with coefficients in Qp.

There are natural restriction maps

A[r1] A[r2] A whenever r1 > r2

and one can easily see that
lim−→

r∈|C×p |p

A[r] ∼= A

(this simply says that locally analytic functions are analytic on balls of a small
enough radius). Therefore, we can endow A with the limit topology induced by
the norms ‖−‖r for r ∈ |C×p |p.

Definition 10. The space of locally analytic distributions on Zp is

D = Homcont(A, Qp).
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The space of rigid analytic distributions on Zp is

D = Homcont(A, Qp).

Since polynomials are dense in the spaces of (locally) analytic functions, such
distributions can be described quite simply:

Proposition 11. A distribution µ ∈ D (resp. µ ∈ D) is uniquely determined by its
moments { µ(zj) }j≥0.

Remark. The natural inclusion A ↪→ A induces by duality an inclusion D ↪→ D.

6 Overconvergent modular symbols

Consider a fixed weight κ : Z×p → Z×p . We define a left action of S0(p) on A (resp.
A) by (

γ ·κ f
)
(z) = κ(a + cz) · f

(b + dz
a + cz

)
if γ =

(
a b
c d

)
and write Aκ (resp. Aκ) instead of just A (resp. A) to make the action of weight κ

explicit. By duality, we obtain a right action on D (resp. D):(
µ
∣∣
κ
γ
)
( f ) =

∫
Zp

(
γ ·κ f

)
dµ.

Similarly, we write Dκ (resp. Dκ) instead of just D (resp. D) to make the action of
weight κ explicit.

Definition 12. The space of overconvergent modular symbols of weight κ is SymbΓ0
(Dκ).

The space of rigid modular symbols of weight κ is SymbΓ0
(Dκ).

7 The control theorem

Now take the classical weight κ = k ∈ Z. We would like to find some relation
between classical and overconvergent modular symbols of weight k. We use rigid
modular symbols as an intermediate step.

There is a map ρk : Dk → Vk sending µ ∈ Dk to the polynomial∫
Zp

(Y− zX)k dµ(z) =
k

∑
j=0

(
k
j

)
(−1)jµ(zj)X jYk−j ∈ Vk.

One can check that ρk is S0(p)–invariant (i.e., compatible with the actions of weight
k).
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Definition 13. The specialization map of weight k is the map

ρ∗k : SymbΓ0
(Dk)→ SymbΓ0

(Vk)

induced by duality by ρk : Dk → Vk.

Ideally, we would like to say that the specialization map identifies rigid modu-
lar symbols with classical modular symbols, but there seems to be little hope that
this could be true: Dk is a much larger space than Vk. However, we can obtain
such a result so long as we restrict to classical non-critical slopes. A precise statement
is given by the control theorem at the end of this section.

Definition 14. Let M be a Zp–module with an action of Up. The slope of a (gen-
eralized) Up–eigenvector m ∈ M with eigenvalue λ is the valuation vp(λ). For
every h ∈ R, let M(<h) denote the subspace of M where Up acts with slope < h.

Proposition 15. The slope of an eigenform g ∈ Sk+2(Γ0) is ≤ k + 1.

Remark. This is a classical result that follows from a computation with character-
istic polynomials of Up as in section 3. A theorem of Coleman shows that every
overconvergent eigenform of weight k + 2 and slope < k + 1 is in fact classical,
whence k + 1 is called the critical slope.

Theorem 16 (Stevens). The specialization map ρ∗k induces an isomorphism

SymbΓ0
(Dk)

(<k+1) ∼= SymbΓ0
(Vk)

(<k+1).

In addition, for every h ∈ R, the natural inclusion Dk ↪→ Dk induces an isomorphism

SymbΓ0
(Dk)

(<h) ∼= SymbΓ0
(Dk)

(<h).

Proof. See theorem 5.12 of Pollack–Stevens’s article [6].

8 p–adic L–functions revisited

Overconvergent modular symbols yield an alternative way to construct p–adic
L–functions associated with eigenforms.

Theorem 17. Let g ∈ Sk+2(Γ0) be an eigenform of slope < k+ 1. Let ϕg ∈ SymbΓ0
(Vk)

be the corresponding modular symbol (cf. theorem 6) and let Φg ∈ SymbΓ0
(Dk) be its

unique overconvergent lift (cf. theorem 16). Then, Φg
(
{0} − {∞}

)∣∣
Z×p

is the measure
µg giving rise to the p–adic L–function of g (cf. section 3).

Proof. See proposition 6.3 of Pollack–Stevens’s article [6].
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Let us see the idea behind the last result in a particularly simple case: suppose
that k = 0 and g is the p–stabilization fα of some p–ordinary normalized eigenform
f ∈ Sk+2(Γ) corresponding to the eigenvalue α with vp(α) = 0, as in section 3. In
this situation, we have to check that the measures Φ fα

(
{0} − {∞}

)
and µ fα

agree
on (characteristic functions of) balls of the form a + pnZp, where a ∈ Z with p

∣∣- a
and n ∈N. Indeed,(

Φ fα

(
{0} − {∞}

))
(1a+pnZp) =

1
αn

((
Φ fα

∣∣Un
p
)(
{0} − {∞}

))
(1a+pnZp)

=
1

αn

pn−1

∑
b=0

(
Φ fα

({ b
pn

}
− {∞}

))(
1a+pnZp

∣∣∣
0

(
1 b
0 pn

))
and by definition of the action (of weight 0)(

1a+pnZp

∣∣∣
0

(
1 b
0 pn

))
(z) = 1a+pnZp(b + pnz) =

{
0 if a 6≡ b mod pn,

1 if a ≡ b mod pn.

Therefore,(
Φ fα

(
{0} − {∞}

))
(1a+pnZp) =

1
αn

(
Φ fα

({ a
pn

}
− {∞}

))
(1Zp)

=
1

αn ρ∗0Φ fα

({ a
pn

}
− {∞}

)
=

1
αn ϕ fα

({ a
pn

}
− {∞}

)
= µ fα

(1a+pnZp)

as desired.
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