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Abstract

These are the notes for a talk given in the graduate students seminar1

at Concordia University. I present the theory of (classical) modular forms

modulo a fixed prime number p using their power series expansions. The

notes follow almost verbatim Serre and Swinnerton-Dyer’s original work in

the early 70’s, published in two articles [2, 3]. The exposition should hopefully

be accessible to graduate students in all areas of mathematics. No originality

is claimed.

1 The classical theory

We begin by recalling the basic definitions and facts of the theory of modular
forms. Consider the upper half-plane H = { z ∈ C : Im(z) > 0 } with the left
action of SL2(Z) given by (

a b
c d

)
· z =

az + b
cz + d

.

Definition 1. A weakly modular form of weight k ∈ Z is a meromorphic function
f : H→ P1(C) with the property that

f
( az + b

cz + d

)
= (cz + d)k · f (z) for all

(
a b
c d

)
∈ SL2(Z) and all z ∈H.

Remark. The transformation rule above for the matrix(
1 1
0 1

)
∈ SL2(Z)

is that f (z + 1) = f (z) for all z ∈ H. That is, a weakly modular form must be
periodic (with respect to the real axis) of period 1. Therefore, and as it is also

1I thank Kenzy Abdel Malek for organizing the seminar.
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meromorphic, f admits a Fourier series of the form

f (z) = ∑
n∈Z

an( f )qn, where q = e2πiz,

its q–expansion.

Definition 2. A modular form of weight k ∈ Z is a weakly modular form f : H→ C

of weight k that is holomorphic on H and at ∞ (in the sense that its q–expansion is
of the form

f (z) = ∑
n≥0

an( f )qn

with no negative powers of q).

Remark. We identify a modular form f with its q–expansion and so view f ∈ C[[q]].

Our objective in this talk is not to study modular forms individually, but to
understand the algebraic structure of some spaces of modular forms.

Definition 3.
(1) Let Mk denote the C–vector space of modular forms of weight k ∈ Z.
(2) The algebra of modular forms is the graded C–algebra

M =
⊕
k∈Z

Mk.

Spaces of modular forms have “nice” algebraic structures (vector spaces, al-
gebras. . . ), as this talk will emphasize. What makes them interesting to number
theorists, however, is not the “linear algebra” but that the q–expansions are often
generating functions of invariants of arithmetic objects (class numbers, rational
points in curves,. . . ).

Example 4. The first examples of modular forms are the (normalized) Eisenstein
series

E2k = 1− 2
2k
B2k

∑
n≥1

σ2k−1(n)qn ∈ M2k for k ≥ 2,

where Bj is the j–th Bernoulli number and

σt(n) = ∑
0<d|n

dt.
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In particular, we will mostly be interested in the following series:

P = E2 = 1− 24 ∑
n≥1

σ1(n)qn 6∈ M2, 2

Q = E4 = 1 + 240 ∑
n≥1

σ3(n)qn ∈ M4,

R = E6 = 1− 504 ∑
n≥1

σ5(n)qn ∈ M6.

From these, we can also construct a modular form whose q–expansion has trivial
constant coefficient, the (normalized) modular discriminant

∆ =
Q3 − R2

1728
= · · · = q ∏

n≥1
(1− qn)24 ∈ M12.

Theorem 5. There is a canonical isomorphism of graded C–algebras

C[X, Y] ∼= C[Q, R] = M

X 7→ Q

Y 7→ R

(where X and Y are independent variables of weights 4 and 6, respectively).

Idea of the proof. This classical result can be proved using contour integration and
studying the possible poles of modular forms to compare dimensions at each
degree.

Theorem 6. Let k be an even integer ≥ 4 and let d = dimC Mk − 1. Choose α, β ≥ 0
such that

(i) 4α + 6β ≡ k mod 12 and
(ii) 4α + 6β ≤ 14.

Define, for 0 ≤ j ≤ d, gj = ∆jQαR2(d−j)+β. Every f ∈ Mk ∩Z[[q]] can be expressed
uniquely as a Z–linear combination of g0, g1, . . . , gd.

Remark. In the way this theorem is stated, it is unclear even if gj ∈ Mk. What
happens is that one can compute d, which happens to be approximately k

12 . Then
α and β are chosen to compensate the difference between 12d and k.

Proof. From the formulae in example 4, it is clear that Q, R, ∆ ∈ Z[[q]] and that the
first non-zero coefficient of each of them is equal to 1. Therefore,

gj = qj + O(qj+1) ∈ Z[[q]].

2This is not a mistake. The Eisenstein series of weight 2 is not a modular form in the sense of
definition 2, but “almost”: it is a p–adic modular form and even a modular form of level Γ0(p).
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Looking at the coefficients of 1, q, . . . , qd, it is now clear that the gj, 0 ≤ j ≤ d, are
linearly independent and so form a C–basis of Mk by the definition of d.

Let f ∈ Mk ∩Z[[q]] and write

f =
d

∑
j=0

λj · gj with λ0, . . . , λd ∈ C.

Again looking at the coefficients of 1, q, . . . , qd, we obtain a system of equations

1
∗ 1
∗ ∗ 1
...

...
... . . .

∗ ∗ ∗ . . . 1


·



λ0

λ1

λ2
...

λd


=



a0( f )
a1( f )
a2( f )

...
ad( f )


(where ∗ represents any integer entry). But this lower triangular matrix admits an
inverse with integer entries. Thus, λ0, . . . , λd ∈ Z if a0( f ), . . . , ad( f ) ∈ Z.

Theorem 6 gives an explicit basis g0, g1, . . . , gd of the C–vector space Mk with
a very interesting “algebraicity” property: the (infinitely many) coefficients ap-
pearing in the q–expansion of a modular form f lie in the same ring where the
coefficients λ0, λ1, . . . , λd of the linear combination

f =
d

∑
j=0

λj · gj

are defined.

2 The theory modulo p

Fix a prime number p and consider the p–adic valuation vp : Q→ Z∪ {∞ } given
by

vp

(
pn · a

b

)
= n if p

∣∣- ab and n ∈ Z and vp(0) = ∞.

Let Z(p) = { x ∈ Q : vp(x) ≥ 0 } and write ·̃ : Z(p) →→ Fp for the reduction
modulo p. (The ring Z(p) might look strange at first sight, but it is just the set of
rational numbers that can be reduced modulo p.)

Definition 7.
(1) Let Mp

k = Mk ∩ Z(p)[[q]] denote the Z(p)–module of p–integral modular
forms of weight k ∈ Z.
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(2) The algebra of p–integral modular forms is the graded Z(p)–algebra

Mp =
⊕
k∈Z

Mp
k .

Given any power series

f = ∑
n≥0

anqn ∈ Z(p)[[q]],

we write
f̃ = ∑

n≥0
ãnqn ∈ Fp[[q]]

for its reduction modulo p. This construction provides a natural notion of “reduc-
tions of modular forms modulo p”.

Definition 8.
(1) Let

M̃p
k =

{
f̃ ∈ Fp[[q]] : f ∈ Mp

k

}
be the Fp–vector space of modular forms of weight k ∈ Z reduced modulo
p.

(2) The algebra of modular forms modulo p is the Fp–algebra

M̃p = ∑
k∈Z

M̃p
k .

Remark. In this case, we do not necessarily have a direct sum because modu-
lar forms of different weights might have equivalent q–expansions modulo p.
Therefore, M̃p is not graded by the integer degrees.

Our main objective is to determine the (algebraic) structure of M̃p. By theo-
rem 6, we can express Mp = Z(p)[Q, R, ∆] with 1728∆ = Q3 − R2. Thus, we only
need to find the relations that Q̃, R̃ and ∆̃ satisfy in Fp[[q]].

Theorem 9. If p = 2 or 3, then P̃ = Q̃ = R̃ = 1 and M̃p = Fp[∆̃] ∼= Fp[T] (where T
is a formal variable with no relations).

Proof. It is immediate from the formulae in example 4, as 24, 240 and 504 are all
divisible by p and the coefficient of q in ∆ is 1.

From now on, assume that p ≥ 5. Then p
∣∣- 1728 and so Mp = Z(p)[Q, R]. That

is, we can even forget about ∆. By construction and theorems 5 and 6, we can
express M̃p as a quotient via the composition

Mp ∼= Z(p)[X, Y] Fp[X, Y] M̃p ⊂ Fp[[q]]

Φ(X, Y) Φ̃(X, Y) Φ̃(Q̃, R̃)
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and we need to describe Ker
(
Fp[X, Y] →→ M̃p), which is to say the relations

between Q̃ and R̃. To do so, we will use Serre’s differential operator

θ = q
d
dq

=

(
∑
n≥0

anqn 7→ ∑
n≥0

nanqn
)

.

Theorem 10 (Ramanujan).
(1) Let k ∈ Z. If f ∈ Mk, then (12θ − kP) f ∈ Mk+2.
(2) We have the following identities:

(12θ − P)P = −Q, 3

(12θ − 4P)Q = − 4R,

(12θ − 6P)R = − 6Q2,

(12θ − 12P)∆ = 0.

Idea of the proof. For the proof of (1), one can express θ in terms of d
dz and use

implicit differentiation on the modularity condition.
For the proof of (2), it suffices to compare the first (i.e., constant) coefficients of

the q–expansions on the left-hand and right-hand sides of each equality because
M4, M6 and M8 are 1–dimensional.

Definition 11. Let ∂ be the graded derivation on M given by

∂|Mk = 12θ − kP for every k ∈ Z.

Remarks.
(1) Since ∂Q = −4R and ∂R = −6Q2, we see that ∂ acts on Mp = Z(p)[Q, R].

Define ∂ on Z(p)[X, Y] (resp. on Fp[X, Y]) by ∂X = −4Y and ∂Y = −6X2.
(2) For f ∈ Mp

k , we define ∂ f̃ = ∂ f mod p ∈ M̃p
k+2. Thus ∂ f̃ = (12θ − kP̃) f̃ in

Fp[[q]]. There is an abuse of notation here, as k̃ ∈ Fp depends on the choice of
the representative f , not only on f̃ . (We also write 12 and k for their images
in Fp; it should be clear from the context.)

Next, we want to focus on some congruences between Eisenstein series, which
are the first building block of the algebras of modular forms. Recall from example 4
that in the definition of E2k appears the Bernoulli number B2k. Therefore, we need
to recall some classical congruences between Bernoulli numbers first.

Theorem 12. Let k ∈ Z≥1.

3I did not forget a k = 2 before the first P; as mentioned earlier, P is somewhat special. We will
see that this coefficient before P has to be ≡ p + 1 mod p for every p ≥ 5, so it really must be 1.
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(1) If p− 1
∣∣ 2k, then pB2k ∈ Z(p) and

pB2k ≡ −1 mod p (Clausen–von Staudt congruence).

In particular, vp(B2k) = −1.
(2) If p− 1

∣∣- 2k, then B2k / 2k ∈ Z(p) and

B2k
2k
≡

B2k+m(p−1)

2k + m(p− 1)
mod p for every m ∈ Z (Kummer congruence).

That is, the class of B2k / 2k mod p depends only on 2k mod p− 1.

Corollary 13.
(1) Ep−1 ∈ Mp

p−1 and Ẽp−1 = 1.
(2) Ep+1 ∈ Mp

p+1 and Ẽp+1 = P̃.

Proof. Items (1) and (2) follow from the explicit formulae for the Eisenstein series
Ep−1 and Ep+1 and from items (1) and (2) of theorem 12, respectively. (The proof
of (2) also uses Fermat’s little theorem.)

Corollary 14. The subalgebra M̃p of Fp[[q]] is stable under the action of θ.

Proof. Given f̃ ∈ M̃p
k , we can express

12θ f̃ = kP̃ f̃ + ∂ f̃ = kẼp+1 f̃ + Ẽp−1∂ f̃ .

Since the terms appearing in the right-hand side are reductions of actual modular
forms (cf. part (1) of theorem 10), we can see looking at the weights that

Ẽp+1 f̃ ∈ M̃p
k+p+1 and Ẽp−1∂ f̃ ∈ M̃p

k+p+1.

Therefore, θ f̃ ∈ M̃p
k+p+1.

We have almost all the tools required to give an explicit algebraic description
of M̃p. Recall that we have surjective homomorphisms

Mp ∼= Z(p)[X, Y] Fp[X, Y] M̃p ⊂ Fp[[q]]

Φ(X, Y) Φ̃(X, Y) Φ̃(Q̃, R̃)

and it is now apparent that both Eisenstein series Ep−1 and Ep+1 play some role in
determining the structure of M̃p. Indeed,

• the congruence Ẽp−1 = 1 yields a non-trivial element of the kernel of the
reduction map Mp →→ M̃p and

• the congruence Ẽp+1 = P̃ allows us to replace any occurrence of P (usually
coming from the definition of ∂) by the modular form Ep+1.
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Definition 15. We define A, B ∈ Z(p)[X, Y] to be the polynomials uniquely char-
acterized by the equations

A(Q, R) = Ep−1 and B(Q, R) = Ep+1.

Lemma 16. The reductions modulo p of A and B satisfy that

∂Ã = B̃ and ∂B̃ = −XÃ in Fp[X, Y].

Proof. First observe that, since Ẽp−1 = 1, we can express

∂Ẽp−1 = 12θẼp−1 + P̃Ẽp−1 = P̃Ẽp−1 = Ẽp+1.

This is only possible if ∂A(Q, R)− B(Q, R) ∈ pMp
p+1 or, equivalently under the

isomorphism Mp ∼= Z(p)[X, Y], ∂A− B ∈ pZ(p)[X, Y]. Therefore, ∂Ã− B̃ = 0 in
Fp[X, Y].

Similarly, for the second identity, we express

∂Ẽp+1 = (12θ − P̃)Ẽp+1 = (12θ − P̃)P̃ = −Q̃ = −Q̃Ẽp−1,

where in the second-to-last equality we used theorem 10. But this is only possible if
∂B(Q, R) + QA(Q, R) ∈ pMp

p+3 or, equivalently, ∂B + XA ∈ pZ(p)[X, Y]. Hence,
∂B̃ + XÃ = 0 in Fp[X, Y].

Lemma 17. The polynomial Ã has no repeated factors in Fp[X, Y] and is prime to B̃.

Proof. Recall that X and Y have weights 4 and 6, respectively. Since Ã is isobaric
(of weight p− 1), its factors must be of the form X3 − cY2 with c ∈ F

×
p or X or Y.

• Suppose that there exist c ∈ F
×
p and n ∈ Z≥2 such that (X3 − cY2)n divides

Ã exactly. Since Ã(Q̃, R̃) = 1 and Q̃3 − R̃2 = 1728∆̃ ∈ qFp[[q]], we see
that c 6= 1. But then ∂(X3 − cY2) = 12(c − 1)X2Y is prime to X3 − cY2,
which implies that (X3 − cY2)n−1 divides ∂Ã = B̃ exactly and (repeating the
argument) that (X3 − cY2)n−2 divides ∂B̃ = −XÃ exactly. Thus, we obtain a
contradiction (as n− 2 < n).

• Similar arguments show that it is impossible that Xn or Yn for n ∈ Z≥2

divide Ã exactly.
• In conclusion, the factors of Ã have multiplicity n = 1 and so appear with

multiplicity n− 1 = 0 in B̃ = ∂Ã.

We are finally in a position to state and proof the main theorem of this talk,
which gives an explicit algebraic description of the algebra M̃p:

Theorem 18. The algebra M̃p of modular forms modulo p is isomorphic to the ring
Fp[X, Y] / (Ã− 1) via

Φ(Q, R) 7−→ Φ̃(X, Y).
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Proof. Let a be the kernel of the morphism Fp[X, Y]→→ M̃p ⊂ Fp[[q]] defined by

ϕ(X, Y) 7−→ ϕ(Q̃, R̃).

It is clear that the ideal (Ã − 1) is contained in a; it remains to check that this
inclusion is actually an equality.

Since Fp[[q]] is a domain, we see that a is a prime ideal of Fp[X, Y]. But Fp[X, Y]
has Krull dimension 2 and a is not maximal because M̃p ∼= Fp[X, Y] / a is not
finite. Therefore, a must have height 1. Since the ideal (Ã− 1) has height 1 too, it
suffices to prove that it is prime.

Suppose, for the sake of contradiction, that the polynomial Ã− 1 is not irre-
ducible and let ϕ be one of its irreducible factors. Decompose

ϕ = ϕn + ϕn−1 + · · ·+ ϕ0,

where ϕk is an isobaric polynomial of weight k for each k ∈ { 0, 1, . . . , n }, and
suppose that ϕn 6= 0. In particular, n < p− 1 = deg(Ã). Let ζ ∈ Fp be a primitive
(p− 1)–th root of 1. Since

Ã(ζ4X, ζ6Y) = Ã(X, Y) but ϕn(ζ
4X, ζ6Y) = ζn ϕn(X, Y) 6= ϕn(X, Y),

we obtain another irreducible factor of Ã− 1 (distinct from ϕ): we can write

Ã(X, Y)− 1 = ϕ(X, Y)ϕ(ζ4X, ζ6Y)ψ(X, Y) for some ψ ∈ Fp[X, Y]

and decompose ψ = ψm + ψm−1 + · · ·+ ψ0, where ψk is an isobaric polynomial of
weight k for each k ∈ { 0, 1, . . . , m } and ψm 6= 0. Comparing the terms of maximal
weight in both sides of the previous equation, we conclude that

Ã(X, Y) = ϕn(X, Y)ϕn(ζ
4X, ζ6Y)ψm(X, Y) = ζn(ϕn(X, Y)

)2
ψm(X, Y),

which contradicts lemma 17.

After seeing these results, one may wonder about congruences modulo higher
powers of p. Or even modulo all powers of p at the same time, which leads to
the notion of what are known as p–adic modular forms. But the arguments in that
direction start being less elementary.
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