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Abstract

These are the notes for a talk given in the students seminar1 on derived

categories. I present the basic properties of localizing classes and the descrip-

tion of the localized category using roofs. I follow the explanation of Miličić’s

notes [2] almost verbatim, simply rearranging the diagrams and omitting

details. No originality is claimed.

Localization is too general to have interesting properties, so we restrict to
certain classes of morphisms.

Fix a category A.

Definition 1. A class of morphisms S in A is a localizing class if it satisfies the
following properties:
(LC1) For every M ∈ Ob(A), idM ∈ S.
(LC2) If (s : M→ N), (t : N → P) ∈ S, then t ◦ s ∈ S.
(LC3a) For every ( f : M → L) ∈ Mor(A) and every (s : N → L) ∈ S, there exist

(g : K → N) ∈ Mor(A) and (t : K → M) ∈ S making the diagram

K

M N

L

∼
t g

f
∼

s

commutative.
1I thank Adrian Iovita for organizing the seminar.
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(LC3b) For every ( f : L → N) ∈ Mor(A) and every (s : L → M) ∈ S, there exist
(g : M→ K) ∈ Mor(A) and (t : N → K) ∈ S making the diagram

L

M N

K

∼
s f

g
∼

t

commutative.
(LC4) Let f , g ∈ Mor(A). The existence of s ∈ S such that s ◦ f = s ◦ g is

equivalent to the existence of t ∈ S such that f ◦ t = g ◦ t.

Remark. As in the first talk, an arrow with a tilde ∼ represents a morphism in S.

From now on, let S be a fixed localizing class for A. In the last talk we saw a
description of A[S−1] in which morphisms are paths formed by arrows of Mor(A)
(the arrows which go to the left are inverses of morphisms in S). Composition and
(LC2) allow us to combine several arrows going in the same direction, whereas
(LC3) allows us to switch directions of adjacent arrows. Thus, all paths can be
reduced by a finite number of such operations to paths of the form

M L N∼
s f

or, alternatively, to paths of the form

M L N.
f

s
∼

This motivates the following definition.

Definition 2. Let M, N ∈ Ob(A). A left roof (resp. right roof ) from M to N is a
diagram

L

M N
∼

(
resp.

M N

L

∼

)
.

Remark. Replacing A with Aop switches left and right roofs, so we can simply
focus on left roofs.
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Definition 3. Let M, N ∈ Ob(A). Two left roofs

L

M N
∼

and
K

M N
∼

are equivalent if there is a commutative diagram

X

L K

M N

∼ ∼

such that the induced diagram

X

M N
∼

is a left roof. (The analogous notion of equivalence of right roofs is defined by
reversing all arrows.)

As we will see later, equivalent roofs represent the same morphism in A[S−1].

Lemma 4. Equivalence of left roofs is an equivalence relation.

Proof (transitivity). Consider two equivalences

X

L K

M N

∼ ∼

and

Y

K H

M N

∼ ∼

.
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By (LC3a), we obtain a diagram

Z

X Y

K

M

∼

∼
∼

where the two paths from Z to M are the same. But now by (LC4) there exists a
morphism (T −→

∼
Z) ∈ S such that the two paths from T to K in

T

Z

X Y

K

∼

∼

∼

are the same. All in all, the induced diagram

T

L H

M N

X Y

∼ ∼

is an equivalence. (The morphism T → M is in S because it is the composition
T → Z → X → L→ M of morphisms in S.)

Proposition 5. Let M, N ∈ Ob(A). Property (LC3) induces a bijection between the
equivalence classes of left and right roofs between M and N.

Proof. Omitted (similar to the previous proof).
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Definition 6. Let M, N, P ∈ Ob(A). The composition of two equivalence classes of
left roofs

L

M N
∼

and
K

N P
∼

is the equivalence class of a left roof

U

M P
∼

obtained from (LC3a) as follows:

U

L (LC3a) K

M N P

∼

∼ ∼

(The analogous notion of composition of equivalence classes of right roofs is
defined by reversing all arrows and using (LC3b) instead of (LC3a).)

Remark. Composition is well-defined.
• If

X

L L′

M N

∼ ∼
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is an equivalence and we consider two possible compositions

U

L K

M N P

∼

∼ ∼

and

U′

L′ K

M N P

∼

∼ ∼

,

then we can use (LC3a) three times to obtain a commutative diagram as
follows:

Y

V (LC3a) V′

U (LC3a) X (LC3a) U′

L L′

N

∼

∼
∼

∼ ∼

Thus, in
Y

V V′

K

N

∼

U U′

∼

the two paths from R to N are the same and so, by (LC4), there exists
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(Z −→
∼

Y) ∈ S such that the two paths from Z to K in

Z

Y

V V′

K

∼

∼

∼

are the same. All in all,

Z

U U′

M P

∼ ∼

is an equivalence.
• If

X

K K′

N P

∼ ∼

is an equivalence, we can use (LC3a) to obtain a commutative diagram

U

L X

N

∼

∼
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and then both

U

L K

M N P

∼ X

∼ ∼

and

U

L K′

M N P

∼ X′

∼ ∼

are possible compositions (in fact, the same one).

Proposition 7. The bijection between equivalence classes of left and right roofs given by
(LC3) (cf. proposition 5) is compatible with composition.

Proof. Omitted.

Lemma 8. The equivalence classes of left roofs
M

M M
∼

idM idM


for M ∈ Ob(A) are identity elements for composition.

Proposition 9. Composition of equivalence classes of (left) roofs is associative.

Proof. Consider three left roofs

L

M N
∼

,
K

N P
∼

and
H

P Q
∼

.

Applying (LC3a) three times, we obtain the following commutative diagram:

W

U (LC3a) V

L (LC3a) K (LC3a) H

M N P Q

∼

∼ ∼

∼ ∼ ∼
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The roof
X

M Q
∼

can be interpreted as both the compositions

W

U H

M P Q

∼

∼ ∼

and

W

L V

M N Q

∼

∼ ∼

.

Definition 10. We define a category Al
S (resp. Ar

S)
• whose objects are Ob(A) and
• whose morphisms are equivalence classes of left roofs (resp. right roofs).

Corollary 11. Property (LC3) induces an equivalence of categories between Al
S and Ar

S
(cf. propositions 5 and 7).

Remark. From now on, we simply write AS (and mostly work with left roofs,
taking into account that all results are valid for right roofs too).

Remember that the notion of roofs appeared naturally when trying to under-
stand the possible morphisms inA[S−1] (provided that S is a localizing class). Our
next goal is to prove that in fact AS provides an alternative (more manageable)
description of the localization of A by S.

First, we have to construct the structure functor Q : A → AS of localization:
• For every M ∈ Ob(A), we set Q(M) = M ∈ Ob(AS).
• For every ( f : M→ N) ∈ Mor(A), we set

Q( f ) =


M

M N
∼

idM f

.

9



This is indeed a functor: given ( f : M→ N), (g : N → P) ∈ Mor(A),

Q(g) ◦Q( f ) =



M

M N

M N P

∼
idM f

∼
idM f

∼
idN g


= Q(g ◦ f ).

Theorem 12. Suppose (as above) that S is a localizing class of morphisms of A. The pair
(AS, Q : A → AS) is a localization of A by S.

Proof. We have to check the two characterizing properties of localization.
(1) For every (s : M→ N) ∈ S, Q(s) is an isomorphism with inverse

Q(s)−1 =


M

N M
∼

s idM

.

Indeed,

Q(s)−1 ◦Q(s) =



M

M M

M N M

∼
idM idM

∼
idM s

∼
s idM


and

Q(s) ◦Q(s)−1 =



M

M M

N M N

∼
idM idM

∼
s idM

∼
idM s


=


N

N N
∼

idN idN
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because
M

M N

N N

idM s

∼
s s

∼
idN

idN

is an equivalence.
(2) The pair (AS, Q : A → AS) is universal with this property. Let F : A → B be

another functor such that F(s) is an isomorphism for all s ∈ S. We have to
prove that there exists a unique G : AS → B making the diagram

A B

AS

F

Q
∃! G

commutative. The only possibility is to define
• G(M) = F(M) for every M ∈ Ob(AS) = Ob(A) and,
• for every

ϕ =


L

M N
∼

s f

 ∈ Mor(AS),

G(ϕ) = G(Q( f ) ◦Q(s)−1) = G(Q( f )) ◦ G(Q(s))−1 = F( f ) ◦ F(s)−1.
We obtain a well-defined functor:

• Given an equivalence

U

L K

M N

u h

∼
s f

∼
t

g

,
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we have

F( f ) ◦ F(s)−1 = F( f ) ◦ F(u) ◦ F(u)−1 ◦ F(s)−1 =

= F( f ◦ u) ◦ F(s ◦ u)−1 = F(g ◦ h) ◦ F(t ◦ h)−1 =

= F(g) ◦ F(h) ◦ F(h)−1 ◦ F(t)−1 = F(g) ◦ F(t)−1.

Here, we used that F(u) (resp. F(h)) is an isomorphism because both
F(s) and F(s ◦ u) (resp. F(t) and F(t ◦ h)) are.

• Given a composition

ψ ◦ ϕ =



U

L K

M N P

∼
u h

∼
s f

∼
t g


,

we have

G(ψ ◦ ϕ) = F(g ◦ h) ◦ F(s ◦ u)−1 = F(g) ◦ F(h) ◦ F(u)−1 ◦ F(s)−1 =

= F(g) ◦ F(t)−1 ◦ F( f ) ◦ F(s)−1 = G(ψ) ◦ G(ϕ).

Therefore, Q satisfies the desired universal property.

One of the main results that one can prove using roofs to characterize the
localization is the following:

Theorem 13. Suppose (as above) that S is a localizing class of morphisms of A.
(1) If A is additive, then AS is additive and the structure functor Q : A → AS is

additive.
(2) If A is abelian, then AS is abelian and the structure functor Q : A → AS is exact.

The proof of this theorem consists of a number of tedious but straight-forward
computations and diagram chases similar to what we have done. We omit all the
details and just state how sums, kernels and cokernels are built. To do so, we need
an intermediate result.

Lemma 14 (“common denominator”). Let M, N ∈ Ob(AS) and consider morph-
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isms

ϕi =


Li

M N
∼

si fi

 ∈ HomAS(M, N)

for 1 ≤ i ≤ n. There exist (s : L → M) ∈ S and (gi : L → N) ∈ HomA(L, N) for
1 ≤ i ≤ n such that

ϕi =


L

M N
∼

s gi

.

for 1 ≤ i ≤ n.

Proof. Arguing by induction, it suffices to treat the case n = 2. By (LC3a), we get a
commutative diagram

L

L1 L2

M

∼
t1 t2

∼
s1

∼
s2

.

We can take s = si ◦ ti and gi = fi ◦ ti, 1 ≤ i ≤ 2. By construction, the commutative
diagrams

L

Li L

M N

ti idL

∼
si fi

∼
s

gi

are equivalences of roofs.

Given two morphisms ϕ, ψ ∈ HomAS(M, N), we may choose representative
left roofs

ϕ =


L

M N
∼

s f

 and ψ =


L

M N
∼

s g
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by lemma 14. Then,

ϕ + ψ =


L

M N
∼

s f+g

.

Given ϕ ∈ HomAS(M, N), we may choose representative left and right roofs

ϕ =


L

M N
∼

s f

 =


M N

L
g

∼
t

.

Then we can define the objects Ker(ϕ) = Ker(g) and Coker(ϕ) = Coker( f )
together with the structure morphisms

(
Ker(ϕ) M

)
=


Ker(g)

Ker(g) M
∼


and

(
N Coker(ϕ)

)
=


N

N Coker( f )
∼

.
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