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Abstract

These are the informal notes for a two-hour talk given in the CRM seminar1

on the BGG complex. The objective of the talk is to review the classical theory

of representations of (complex) semisimple Lie algebras, with sl2 as the main

example. The notes follow (parts of) chapters IV, VI and VII of Serre’s book

[1] and contain no original results.

1 Setting

We continue with the notation introduced in the previous talk by Giovanni.
Namely, we consider

• a semisimple Lie algebra g over C,
• a Cartan subalgebra h of g,
• a root system ∆ for g (relative to h) and
• the set ∆+ of positive roots in ∆.

2 Representations

To begin with, we introduce the notion of representations of g and their basic
properties.

Definition 1. A representation of g is a homomorphism of Lie algebras of the form

ρ : g→ End(V),

where V is a C–vector space. Equivalently, we say that V is a g–module.
1I am grateful to Adrian Iovita for organizing the seminar for the thematic semester at the CRM.
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Remark. For simplicity, we write

xv = ρ(x)(v) for all x ∈ g and v ∈ V.

The condition that ρ is a homomorphism means that

[x, y]v = xyv− yxv for all x, y ∈ g and all v ∈ V.

Examples.
(1) The adjoint representation ad : g→ End(g) is defined by

ad(x)(y) = [x, y] for all x, y ∈ g.

(2) The standard representation of sl2 is C2 with the action given by(
a b
c −a

)(
z1
z2

)
=

(
az1 + bz2

cz1 − az2

)
for all

(
a b
c −a

)
∈ sl2 and all

(
z1
z2

)
∈ C2.

(3) If g arises from a Lie group G, then every representation of G induces a
representation of g by differentiation.

Definition 2. Let V1 and V2 be two g–modules.
(1) The direct sum V1 ⊕V2 is naturally a g–module with the action given by

x(v1 + v2) = xv1 + xv2 for all x ∈ g, v1 ∈ V1 and v2 ∈ V2.

(2) The tensor product V1⊗C V2 is naturally a g–module with the (diagonal) action
given by

x(v1 ⊗ v2) = (xv1)⊗ v2 + v1 ⊗ (xv2) for all x ∈ g, v1 ∈ V1 and v2 ∈ V2.

(3) The dual space V∗1 = HomC(V1, C) is naturally a g–module with the action
defined by

(x f )(v1) = − f (xv1) for all x ∈ g, v1 ∈ V1 and f ∈ V∗1 .

More generally, the space H = HomC(V1, V2) is naturally a g–module with
the action defined by

(x f )(v1) = x( f (v1))− f (xv1) for all x ∈ g, v1 ∈ V1 and f ∈ H.

Definition 3.
(1) A g–module V is called irreducible (or simple) if V 6= 0 and it has no non-trivial

g–submodules; i.e., the g–submodules of V are 0 and V.
(2) A g–module V is called completely reducible (or semisimple) if V is a direct sum

of irreducible g–modules.

Remark. The name semisimple might be ambiguous for g: a general Lie algebra g

could be semisimple as a g–module (meaning that the adjoint representation of g
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is completely reducible) but not as a Lie algebra. In these notes, we always assume
that g is a semisimple Lie algebra and there will be no possible confusion by the
next result.

Theorem 4 (Weyl, complete reducibility). Under our assumption that the Lie al-
gebra g is semisimple, all g–modules of finite dimension (over C) are completely reducible.

Proof. See section VI.3 of Serre’s book [2].

3 Weights and primitive vectors

Recall that a root α ∈ ∆ encodes the eigenvalues of a simultaneous eigenvector for
the restriction ad|h : h→ End(g) of the adjoint representation of g to h. Then, we
saw that there is an eigenspace decomposition

g = h⊕
(⊕

α∈∆

gα

)
.

Our next goal is to generalize this construction to other representations.

Definition 5. Let V be a g–module and let λ ∈ h∗ = HomC(h, C). Define

Vλ = { v ∈ V : Hv = λ(H)v for all H ∈ h }.

If Vλ 6= 0, we say that λ is a weight of V of multiplicity dimC(Vλ) and we say that
the elements of Vλ \ { 0 } have weight λ.

Lemma 6. Let V be a representation of g. For every λ ∈ h∗ and α ∈ ∆,

gαVλ ⊆ Vα+λ.

Proof. Take X ∈ gα, H ∈ h and v ∈ Vλ. Then

HXv = [H, X]v + XHv = α(H)Xv + Xλ(H)v =
(
α(H) + λ(H)

)
Xv.

Proposition 7. Let V be a g–module. The sum of C–vector spaces

∑
λ∈h∗

Vλ

is direct and defines a g–submodule of V.

Remark. Without additional assumptions, this sum of eigenspaces can be a proper
submodule of V.
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Proof. The sum of eigenspaces with distinct eigenvalues is clearly direct. The fact
that we obtain a g–submodule follows from lemma 6.

The decomposition

g = h⊕
(⊕

α∈∆

gα

)
can be rewritten as g = n− ⊕ h⊕ n, where

n =
⊕

α∈∆+

gα and n− =
⊕

α∈∆+

g−α,

and b = h⊕ n is a Borel subalgebra with [b, b] = n. We also want to consider
simultaneous eigenvectors for b:

Definition 8. Let V be a g–module and let λ ∈ h∗. We say that v ∈ V is a primitive
vector of weight λ if

(i) v ∈ Vλ \ { 0 } and
(ii) nv = 0.

Equivalently, as n = [b, b], we can extend λ : h → C to λ : b → C by setting
λ(n) = 0 and then v is a primitive vector of weight λ if v 6= 0 and Bv = λ(B)v for
all B ∈ b.

Remark. Since b is solvable, every g–module V 6= 0 of finite dimension (over C)
contains a primitive vector (Lie’s theorem).

4 The basic example: sl2

For this section, consider

g = sl2 = { A ∈ Mat2(C) : tr(A) = 0 }.

Fix the basis of sl2

H =

(
1 0
0 −1

)
, X2 =

(
0 1
0 0

)
, Y2 = X−2 =

(
0 0
1 0

)
.

One checks easily that

[H, X2] = 2X2, [H, Y2] = −2Y2, [X2, Y2] = H.

Taking h = CH, we get the set of roots ∆ = {±2 } with g2 = CX2 and g−2 = CY2.
(Here, we identify h∗ with C by evaluating at H.)

Let V be a representation of sl2.

Lemma 9. Let v0 be a primitive vector of weight λ in V. Define vk = Yk
2 v0 for all

k ∈ Z≥1 (and v−1 = 0). Then, for every k ≥ 0,
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(1) Hvk = (λ− 2k)vk and
(2) X2vk = k(λ− k + 1)vk−1.

Remark. Condition (1) says that λ− 2k is another weight of V if vk 6= 0.

Proof.
(1) This follows from lemma 6 (applied k times).
(2) We argue by induction on k. The base case k = 0 follows from the definition

of primitive vector. Now, assuming that k > 0 and that the identity is true
for k− 1, we compute

X2vk = X2Y2vk−1 = [X2, Y2]vk−1 + Y2X2vk−1

= Hvk−1 + Y2(k− 1)(λ− k + 2)vk−2

= (λ− 2k + 2)vk−1 + (k− 1)(λ− k + 2)vk−1 = k(λ− k + 1)vk−1,

where we used both (1) and (2) for k− 1.

Corollary 10. In the situation of lemma 9, there are two possibilities:
either (a) the vectors (vk)k≥0 are linearly independent,
or (b) the weight λ is an integer m ≥ 0, the vectors v0, v1, . . . , vm are linearly

independent and vk = 0 for all k > m.
If V is finite-dimensional, only (b) can occur.

Proof. Since eigenvectors with different eigenvalues are linearly independent, we
only need to consider whether some vk, for k ≥ 0, is 0.

Suppose that not all the vectors vk, for k ∈ Z≥0, are non-zero (i.e., condition (a)
does not hold). There must exist m ∈ Z≥0 such that the vectors v0, v1, . . . , vm are
6= 0 but vm+1 = vm+2 = · · · = 0. By lemma 9,

0 = X2vm+1 = (m + 1)(λ−m)vm,

which is only possible if λ = m. Therefore, condition (b) holds.

In case (b) of corollary 10, the subspace of V generated by v0, . . . , vm is a g–
submodule that must be irreducible, by the formulae relating these vectors (see
lemma 9). In fact, these are the only such representations of sl2:

Theorem 11. Let m ∈ Z≥0 and let Wm be a C–vector space with basis w0, w1, . . . , wm.
Define an sl2–module structure on Wm by

(1) Hwk = (m− 2k)wk,
(2) Y2wk = wk+1 and
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(3) X2wk = k(m− k + 1)wk−1

for all k ∈ { 0, 1, . . . , m } (with the convention that w−1 = wm+1 = 0). If V is irreducible
(as a g–module) and dimC(V) = m + 1, then V ∼= Wm.

Proof. Since V is finite-dimensional, it contains a primitive vector v0 and we can
apply lemma 9 and corollary 10. But V is irreducible; hence, the g–submodule
generated by v0 must be the whole V and, comparing dimensions, the weight of
v0 must be m. In this way, we obtain an isomorphism V ∼= Wm defined by

vk 7→ wk for all k ∈ { 0, 1, . . . , m }.

Corollary 12. If V is finite-dimensional, it is a direct sum of sl2–modules of the form Wm

for m ∈ Z≥0. We also have a decomposition

V =
⊕
n∈Z

Vn

as C–vector spaces.

Proof. This result follows combining theorems 4 and 11 and proposition 7.

It is easy to see from this description that finite-dimensional representations of
sl2 are classified (up to isomorphism) by the weights of their primitive elements
(counted with multiplicities). We can use the following invariant too:

Definition 13. Suppose that V is a finite-dimensional representation of sl2. The
formal character of V is

ch(V) = ∑
n∈Z

dimC(Vn)tn ∈ Z[t, t−1].

Theorem 14. Two finite-dimensional representations V1 and V2 of sl2 are isomorphic if
and only if ch(V1) = ch(V2).

Proof. This result can be proved easily by induction on the dimension of V1 using
theorem 11 and corollary 12.

5 A structure theorem

Let us go back to the study of representations of a general (semisimple) Lie algebra
g. But first we want to reinterpret the decomposition

g = h⊕
(⊕

α∈∆+

(
gα ⊕ g−α

))
to reduce some proofs to the case of sl2.
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Theorem 15. Let α, β ∈ ∆.
(1) The subspace gα has dimension 1 (over C).
(2) If α + β 6= 0, then [gα, gβ] = gα+β.
(3) Define hα = [gα, g−α] ⊆ h. The subspace h is 1–dimensional and there exists a

unique Hα ∈ hα such that α(Hα) = 2.
(4) Fix Xα ∈ gα \ { 0 }. There is a unique Yα ∈ g−α such that [Xα, Yα] = Hα.

Moreover, [Hα, Xα] = 2Xα and [Hα, Yα] = −2Yα. Therefore, the subalgebra
sα = g−α ⊕ hα ⊕ gα is isomorphic to sl2.

Proof. See section VI.2 of Serre’s book [1].

From now on, we use freely the notation introduced in theorem 15 (namely,
the elements Hα, Xα and Yα of g for α ∈ ∆).

6 Classification of (finite) representations

Let V be a representation of g.

Proposition 16. Let v ∈ V be a primitive vector of weight λ and let E be the g–submodule
of V generated by v.

(1) If ∆+ = { α1, . . . , αr }, then E is spanned (as a C–vector space) by the vectors

Yk1
α1 · · ·Y

kr
αr v for k1, . . . , kr ∈ Z≥0.

(2) The weights of E are of the form

λ− ∑
α∈∆+

kαα with kα ∈ Z≥0 for all α ∈ ∆+

and have finite multiplicity. In particular, λ has multiplicity 1.
In this situation, we say that λ is the highest weight of E.

Remark. This result is analogous to lemma 9. Both here and in loc. cit., the
existence of a primitive vector in V is a hypothesis (it is not automatic unless, say,
V is finite-dimensional).

Proof. See proposition 2 in section VII.2 of Serre’s book [1].

Theorem 17. For every λ ∈ h∗, there exists a unique (up to isomorphism) irreducible
g–module Wλ with highest weight λ.

Remark. This result is analogous to theorem 11. We will see these modules Wλ

(known as Verma modules) in the next talk, so we omit all details here.
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Corollary 18. If V is finite-dimensional, it is a direct sum of g–modules of the form Wλ

for λ ∈ h∗. We also have a decomposition

V =
⊕

λ∈h∗
Vλ

as C–vector spaces. Moreover, if λ is a weight of V, then

λ(Hα) ∈ Z for all α ∈ ∆.

Remark. This result is analogous to corollary 12.

Proof. The first part follows from theorems 4 and 17. The second part is now a
consequence of proposition 7. For the last claim, regard V as a representation of
sα
∼= sl2 and use the results of section 4.

Even if we have several weights, we can still classify (isomorphism classes of)
finite-dimensional representations of g using Laurent polynomials.

Definition 19. Consider

Λ = { λ ∈ h∗ : λ(Hα) ∈ Z for all α ∈ ∆ }

(fact: Λ is a free abelian group) and let Z[Λ] be the corresponding group ring,
with Z–basis (eλ)λ∈Λ. Suppose that V is a finite-dimensional representation of g.
The formal character of V is

ch(V) = ∑
λ∈Λ

dimC(Vλ)eλ ∈ Z[Λ].

Theorem 20. Two finite-dimensional representations V1 and V2 of g are isomorphic if
and only if ch(V1) = ch(V2).

Remark. This result is analogous to theorem 14.

Proof. The theorem follows easily by induction on dimC(V1) using theorem 17
and corollary 18. See proposition 5 in section VII.7 of Serre’s book [1] for more
details.
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