Representations of semisimple Lie algebras

Francesc Gispert

Montréal, 19th October 2020

Abstract

These are the informal notes for a two-hour talk given in the CRM seminar ${ }^{1}$ on the BGG complex. The objective of the talk is to review the classical theory of representations of (complex) semisimple Lie algebras, with $\mathfrak{s l}_{2}$ as the main example. The notes follow (parts of) chapters IV, VI and VII of Serre's book [1] and contain no original results.

1 Setting

We continue with the notation introduced in the previous talk by Giovanni. Namely, we consider

- a semisimple Lie algebra \mathfrak{g} over \mathbb{C},
- a Cartan subalgebra \mathfrak{h} of \mathfrak{g},
- a root system Δ for \mathfrak{g} (relative to \mathfrak{h}) and
- the set Δ^{+}of positive roots in Δ.

2 Representations

To begin with, we introduce the notion of representations of \mathfrak{g} and their basic properties.

Definition 1. A representation of \mathfrak{g} is a homomorphism of Lie algebras of the form

$$
\rho: \mathfrak{g} \rightarrow \operatorname{End}(V),
$$

where V is a \mathbb{C}-vector space. Equivalently, we say that V is a \mathfrak{g}-module.

[^0]Remark. For simplicity, we write

$$
x v=\rho(x)(v) \quad \text { for all } x \in \mathfrak{g} \text { and } v \in V .
$$

The condition that ρ is a homomorphism means that

$$
[x, y] v=x y v-y x v \quad \text { for all } x, y \in \mathfrak{g} \text { and all } v \in V
$$

Examples.

(1) The adjoint representation ad: $\mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is defined by

$$
\operatorname{ad}(x)(y)=[x, y] \quad \text { for all } x, y \in \mathfrak{g} .
$$

(2) The standard representation of $\mathfrak{s l}_{2}$ is \mathbb{C}^{2} with the action given by

$$
\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{a z_{1}+b z_{2}}{c z_{1}-a z_{2}} \quad \text { for all }\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \in \mathfrak{s l}_{2} \text { and all }\binom{z_{1}}{z_{2}} \in \mathbb{C}^{2} .
$$

(3) If \mathfrak{g} arises from a Lie group G, then every representation of G induces a representation of \mathfrak{g} by differentiation.

Definition 2. Let V_{1} and V_{2} be two \mathfrak{g}-modules.
(1) The direct sum $V_{1} \oplus V_{2}$ is naturally a \mathfrak{g}-module with the action given by

$$
x\left(v_{1}+v_{2}\right)=x v_{1}+x v_{2} \quad \text { for all } x \in \mathfrak{g}, v_{1} \in V_{1} \text { and } v_{2} \in V_{2} .
$$

(2) The tensor product $V_{1} \otimes_{\mathbb{C}} V_{2}$ is naturally a \mathfrak{g}-module with the (diagonal) action given by

$$
x\left(v_{1} \otimes v_{2}\right)=\left(x v_{1}\right) \otimes v_{2}+v_{1} \otimes\left(x v_{2}\right) \quad \text { for all } x \in \mathfrak{g}, v_{1} \in V_{1} \text { and } v_{2} \in V_{2} .
$$

(3) The dual space $V_{1}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, \mathbb{C}\right)$ is naturally a \mathfrak{g}-module with the action defined by

$$
(x f)\left(v_{1}\right)=-f\left(x v_{1}\right) \quad \text { for all } x \in \mathfrak{g}, v_{1} \in V_{1} \text { and } f \in V_{1}^{*} .
$$

More generally, the space $H=\operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right)$ is naturally a \mathfrak{g}-module with the action defined by

$$
(x f)\left(v_{1}\right)=x\left(f\left(v_{1}\right)\right)-f\left(x v_{1}\right) \quad \text { for all } x \in \mathfrak{g}, v_{1} \in V_{1} \text { and } f \in H
$$

Definition 3.

(1) A \mathfrak{g}-module V is called irreducible (or simple) if $V \neq 0$ and it has no non-trivial \mathfrak{g}-submodules; i.e., the \mathfrak{g}-submodules of V are 0 and V.
(2) A \mathfrak{g}-module V is called completely reducible (or semisimple) if V is a direct sum of irreducible \mathfrak{g}-modules.

Remark. The name semisimple might be ambiguous for \mathfrak{g} : a general Lie algebra \mathfrak{g} could be semisimple as a \mathfrak{g}-module (meaning that the adjoint representation of \mathfrak{g}
is completely reducible) but not as a Lie algebra. In these notes, we always assume that \mathfrak{g} is a semisimple Lie algebra and there will be no possible confusion by the next result.

Theorem 4 (Weyl, complete reducibility). Under our assumption that the Lie algebra \mathfrak{g} is semisimple, all \mathfrak{g}-modules of finite dimension (over \mathbb{C}) are completely reducible.

Proof. See section VI. 3 of Serre's book [2].

3 Weights and primitive vectors

Recall that a root $\alpha \in \Delta$ encodes the eigenvalues of a simultaneous eigenvector for the restriction ad $\left.\right|_{\mathfrak{h}}: \mathfrak{h} \rightarrow \operatorname{End}(\mathfrak{g})$ of the adjoint representation of \mathfrak{g} to \mathfrak{h}. Then, we saw that there is an eigenspace decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right) .
$$

Our next goal is to generalize this construction to other representations.
Definition 5. Let V be a \mathfrak{g}-module and let $\lambda \in \mathfrak{h}^{*}=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$. Define

$$
V_{\lambda}=\{v \in V: H v=\lambda(H) v \text { for all } H \in \mathfrak{h}\} .
$$

If $V_{\lambda} \neq 0$, we say that λ is a weight of V of multiplicity $\operatorname{dim}_{\mathbb{C}}\left(V_{\lambda}\right)$ and we say that the elements of $V_{\lambda} \backslash\{0\}$ have weight λ.

Lemma 6. Let V be a representation of \mathfrak{g}. For every $\lambda \in \mathfrak{h}^{*}$ and $\alpha \in \Delta$,

$$
\mathfrak{g}_{\alpha} V_{\lambda} \subseteq V_{\alpha+\lambda} .
$$

Proof. Take $X \in \mathfrak{g}_{\alpha}, H \in \mathfrak{h}$ and $v \in V_{\lambda}$. Then

$$
H X v=[H, X] v+X H v=\alpha(H) X v+X \lambda(H) v=(\alpha(H)+\lambda(H)) X v .
$$

Proposition 7. Let V be a \mathfrak{g}-module. The sum of \mathbb{C}-vector spaces

$$
\sum_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}
$$

is direct and defines $a \mathfrak{g}$-submodule of V.
Remark. Without additional assumptions, this sum of eigenspaces can be a proper submodule of V.

Proof. The sum of eigenspaces with distinct eigenvalues is clearly direct. The fact that we obtain a \mathfrak{g}-submodule follows from lemma 6 .

The decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)
$$

can be rewritten as $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$, where

$$
\mathfrak{n}=\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha} \quad \text { and } \quad \mathfrak{n}^{-}=\bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{-\alpha}
$$

and $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}$ is a Borel subalgebra with $[\mathfrak{b}, \mathfrak{b}]=\mathfrak{n}$. We also want to consider simultaneous eigenvectors for \mathfrak{b} :

Definition 8. Let V be a \mathfrak{g}-module and let $\lambda \in \mathfrak{h}^{*}$. We say that $v \in V$ is a primitive vector of weight λ if
(i) $v \in V_{\lambda} \backslash\{0\}$ and
(ii) $\mathfrak{n v}=0$.

Equivalently, as $\mathfrak{n}=[\mathfrak{b}, \mathfrak{b}]$, we can extend $\lambda: \mathfrak{h} \rightarrow \mathbb{C}$ to $\lambda: \mathfrak{b} \rightarrow \mathbb{C}$ by setting $\lambda(\mathfrak{n})=0$ and then v is a primitive vector of weight λ if $v \neq 0$ and $B v=\lambda(B) v$ for all $B \in \mathfrak{b}$.

Remark. Since \mathfrak{b} is solvable, every \mathfrak{g}-module $V \neq 0$ of finite dimension (over \mathbb{C}) contains a primitive vector (Lie's theorem).

4 The basic example: $\mathfrak{S l}_{2}$

For this section, consider

$$
\mathfrak{g}=\mathfrak{s l}_{2}=\left\{A \in \operatorname{Mat}_{2}(\mathbb{C}): \operatorname{tr}(A)=0\right\} .
$$

Fix the basis of $\mathfrak{s l}_{2}$

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad X_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y_{2}=X_{-2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

One checks easily that

$$
\left[H, X_{2}\right]=2 X_{2}, \quad\left[H, Y_{2}\right]=-2 Y_{2}, \quad\left[X_{2}, Y_{2}\right]=H
$$

Taking $\mathfrak{h}=\mathbb{C} H$, we get the set of roots $\Delta=\{ \pm 2\}$ with $\mathfrak{g}_{2}=\mathbb{C} X_{2}$ and $\mathfrak{g}_{-2}=\mathbb{C} \Upsilon_{2}$. (Here, we identify \mathfrak{h}^{*} with \mathbb{C} by evaluating at H.)

Let V be a representation of $\mathfrak{s l}_{2}$.
Lemma 9. Let v_{0} be a primitive vector of weight λ in V. Define $v_{k}=Y_{2}^{k} v_{0}$ for all $k \in \mathbb{Z}_{\geq 1}$ (and $v_{-1}=0$). Then, for every $k \geq 0$,
(1) $H v_{k}=(\lambda-2 k) v_{k}$ and
(2) $X_{2} v_{k}=k(\lambda-k+1) v_{k-1}$.

Remark. Condition (1) says that $\lambda-2 k$ is another weight of V if $v_{k} \neq 0$.

Proof.

(1) This follows from lemma 6 (applied k times).
(2) We argue by induction on k. The base case $k=0$ follows from the definition of primitive vector. Now, assuming that $k>0$ and that the identity is true for $k-1$, we compute

$$
\begin{aligned}
X_{2} v_{k} & =X_{2} Y_{2} v_{k-1}=\left[X_{2}, Y_{2}\right] v_{k-1}+Y_{2} X_{2} v_{k-1} \\
& =H v_{k-1}+Y_{2}(k-1)(\lambda-k+2) v_{k-2} \\
& =(\lambda-2 k+2) v_{k-1}+(k-1)(\lambda-k+2) v_{k-1}=k(\lambda-k+1) v_{k-1},
\end{aligned}
$$

where we used both (1) and (2) for $k-1$.

Corollary 10. In the situation of lemma 9, there are two possibilities:
either (a) the vectors $\left(v_{k}\right)_{k \geq 0}$ are linearly independent,
or (b) the weight λ is an integer $m \geq 0$, the vectors $v_{0}, v_{1}, \ldots, v_{m}$ are linearly independent and $v_{k}=0$ for all $k>m$.
If V is finite-dimensional, only (b) can occur.

Proof. Since eigenvectors with different eigenvalues are linearly independent, we only need to consider whether some v_{k}, for $k \geq 0$, is 0 .

Suppose that not all the vectors v_{k}, for $k \in \mathbb{Z}_{\geq 0}$, are non-zero (i.e., condition (a) does not hold). There must exist $m \in \mathbb{Z}_{\geq 0}$ such that the vectors $v_{0}, v_{1}, \ldots, v_{m}$ are $\neq 0$ but $v_{m+1}=v_{m+2}=\cdots=0$. By lemma 9,

$$
0=X_{2} v_{m+1}=(m+1)(\lambda-m) v_{m},
$$

which is only possible if $\lambda=m$. Therefore, condition (b) holds.

In case (b) of corollary 10 , the subspace of V generated by v_{0}, \ldots, v_{m} is a $\mathfrak{g}-$ submodule that must be irreducible, by the formulae relating these vectors (see lemma 9). In fact, these are the only such representations of $\mathfrak{s l}_{2}$:

Theorem 11. Let $m \in \mathbb{Z}_{\geq 0}$ and let W_{m} be a \mathbb{C}-vector space with basis $w_{0}, w_{1}, \ldots, w_{m}$. Define an $\mathfrak{s l}_{2}$-module structure on W_{m} by
(1) $H w_{k}=(m-2 k) w_{k}$,
(2) $Y_{2} w_{k}=w_{k+1}$ and
(3) $X_{2} w_{k}=k(m-k+1) w_{k-1}$
for all $k \in\{0,1, \ldots, m\}$ (with the convention that $w_{-1}=w_{m+1}=0$). If V is irreducible (as a \mathfrak{g}-module) and $\operatorname{dim}_{\mathbb{C}}(V)=m+1$, then $V \cong W_{m}$.

Proof. Since V is finite-dimensional, it contains a primitive vector v_{0} and we can apply lemma 9 and corollary 10 . But V is irreducible; hence, the \mathfrak{g}-submodule generated by v_{0} must be the whole V and, comparing dimensions, the weight of v_{0} must be m. In this way, we obtain an isomorphism $V \cong W_{m}$ defined by

$$
v_{k} \mapsto w_{k} \quad \text { for all } k \in\{0,1, \ldots, m\} .
$$

Corollary 12. If V is finite-dimensional, it is a direct sum of $\mathfrak{s l}_{2}$-modules of the form W_{m} for $m \in \mathbb{Z}_{\geq 0}$. We also have a decomposition

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n}
$$

as C -vector spaces.
Proof. This result follows combining theorems 4 and 11 and proposition 7.
It is easy to see from this description that finite-dimensional representations of $\mathfrak{s l}_{2}$ are classified (up to isomorphism) by the weights of their primitive elements (counted with multiplicities). We can use the following invariant too:

Definition 13. Suppose that V is a finite-dimensional representation of $\mathfrak{s l}_{2}$. The formal character of V is

$$
\operatorname{ch}(V)=\sum_{n \in \mathbb{Z}} \operatorname{dim}_{\mathbb{C}}\left(V_{n}\right) t^{n} \in \mathbb{Z}\left[t, t^{-1}\right]
$$

Theorem 14. Two finite-dimensional representations V_{1} and V_{2} of $\mathfrak{s l}_{2}$ are isomorphic if and only if $\operatorname{ch}\left(V_{1}\right)=\operatorname{ch}\left(V_{2}\right)$.

Proof. This result can be proved easily by induction on the dimension of V_{1} using theorem 11 and corollary 12.

5 A structure theorem

Let us go back to the study of representations of a general (semisimple) Lie algebra \mathfrak{g}. But first we want to reinterpret the decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta^{+}}\left(\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}\right)\right)
$$

to reduce some proofs to the case of $\mathfrak{s l}_{2}$.

Theorem 15. Let $\alpha, \beta \in \Delta$.
(1) The subspace \mathfrak{g}_{α} has dimension 1 (over \mathbb{C}).
(2) If $\alpha+\beta \neq 0$, then $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}$.
(3) Define $\mathfrak{h}_{\alpha}=\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right] \subseteq \mathfrak{h}$. The subspace \mathfrak{h} is 1-dimensional and there exists a unique $H_{\alpha} \in \mathfrak{h}_{\alpha}$ such that $\alpha\left(H_{\alpha}\right)=2$.
(4) Fix $X_{\alpha} \in \mathfrak{g}_{\alpha} \backslash\{0\}$. There is a unique $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $\left[X_{\alpha}, Y_{\alpha}\right]=H_{\alpha}$. Moreover, $\left[H_{\alpha}, X_{\alpha}\right]=2 X_{\alpha}$ and $\left[H_{\alpha}, Y_{\alpha}\right]=-2 Y_{\alpha}$. Therefore, the subalgebra $\mathfrak{s}_{\alpha}=\mathfrak{g}_{-\alpha} \oplus \mathfrak{h}_{\alpha} \oplus \mathfrak{g}_{\alpha}$ is isomorphic to $\mathfrak{s l}_{2}$.

Proof. See section VI. 2 of Serre's book [1].

From now on, we use freely the notation introduced in theorem 15 (namely, the elements H_{α}, X_{α} and Y_{α} of \mathfrak{g} for $\alpha \in \Delta$).

6 Classification of (finite) representations

Let V be a representation of \mathfrak{g}.
Proposition 16. Let $v \in V$ be a primitive vector of weight λ and let E be the \mathfrak{g}-submodule of V generated by v.
(1) If $\Delta^{+}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, then E is spanned (as a \mathbb{C}-vector space) by the vectors

$$
Y_{\alpha_{1}}^{k_{1}} \cdots Y_{\alpha_{r}}^{k_{r}} \text { v for } k_{1}, \ldots, k_{r} \in \mathbb{Z}_{\geq 0}
$$

(2) The weights of E are of the form

$$
\lambda-\sum_{\alpha \in \Delta^{+}} k_{\alpha} \alpha \quad \text { with } k_{\alpha} \in \mathbb{Z}_{\geq 0} \text { for all } \alpha \in \Delta^{+}
$$

and have finite multiplicity. In particular, λ has multiplicity 1 .
In this situation, we say that λ is the highest weight of E.

Remark. This result is analogous to lemma 9. Both here and in loc. cit., the existence of a primitive vector in V is a hypothesis (it is not automatic unless, say, V is finite-dimensional).

Proof. See proposition 2 in section VII. 2 of Serre's book [1].
Theorem 17. For every $\lambda \in \mathfrak{h}^{*}$, there exists a unique (up to isomorphism) irreducible \mathfrak{g}-module W_{λ} with highest weight λ.

Remark. This result is analogous to theorem 11. We will see these modules W_{λ} (known as Verma modules) in the next talk, so we omit all details here.

Corollary 18. If V is finite-dimensional, it is a direct sum of \mathfrak{g}-modules of the form W_{λ} for $\lambda \in \mathfrak{h}^{*}$. We also have a decomposition

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}
$$

as \mathbb{C}-vector spaces. Moreover, if λ is a weight of V, then

$$
\lambda\left(H_{\alpha}\right) \in \mathbb{Z} \quad \text { for all } \alpha \in \Delta .
$$

Remark. This result is analogous to corollary 12.
Proof. The first part follows from theorems 4 and 17. The second part is now a consequence of proposition 7. For the last claim, regard V as a representation of $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ and use the results of section 4 .

Even if we have several weights, we can still classify (isomorphism classes of) finite-dimensional representations of \mathfrak{g} using Laurent polynomials.

Definition 19. Consider

$$
\Lambda=\left\{\lambda \in \mathfrak{h}^{*}: \lambda\left(H_{\alpha}\right) \in \mathbb{Z} \text { for all } \alpha \in \Delta\right\}
$$

(fact: Λ is a free abelian group) and let $\mathbb{Z}[\Lambda]$ be the corresponding group ring, with \mathbb{Z}-basis $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$. Suppose that V is a finite-dimensional representation of \mathfrak{g}. The formal character of V is

$$
\operatorname{ch}(V)=\sum_{\lambda \in \Lambda} \operatorname{dim}_{\mathbb{C}}\left(V_{\lambda}\right) e_{\lambda} \in \mathbb{Z}[\Lambda] .
$$

Theorem 20. Two finite-dimensional representations V_{1} and V_{2} of \mathfrak{g} are isomorphic if and only if $\operatorname{ch}\left(V_{1}\right)=\operatorname{ch}\left(V_{2}\right)$.

Remark. This result is analogous to theorem 14.
Proof. The theorem follows easily by induction on $\operatorname{dim}_{\mathbb{C}}\left(V_{1}\right)$ using theorem 17 and corollary 18. See proposition 5 in section VII. 7 of Serre's book [1] for more details.

References

[1] Serre, J.-P. Complex semisimple Lie algebras. Trans. by Jones, G. A. Springer monographs in mathematics. Berlin, Germany: Springer-Verlag, 2001. 75 pp.
[2] Serre, J.-P. Lie algebras and Lie groups. 1964 lectures given at Harvard University. 2nd ed. Lecture notes in mathematics 1500. Corrected 5th printing. Berlin, Germany: Springer-Verlag, 2006. 173 pp.

[^0]: ${ }^{1}$ I am grateful to Adrian Iovita for organizing the seminar for the thematic semester at the CRM.

