Representations of semisimple Lie algebras

FRANCESC GISPERT

Montréal, 19th October 2020

Abstract

These are the informal notes for a two-hour talk given in the CRM seminar¹ on the BGG complex. The objective of the talk is to review the classical theory of representations of (complex) semisimple Lie algebras, with \mathfrak{sl}_2 as the main example. The notes follow (parts of) chapters IV, VI and VII of Serre's book [1] and contain no original results.

1 Setting

We continue with the notation introduced in the previous talk by Giovanni. Namely, we consider

- a semisimple Lie algebra g over C,
- a Cartan subalgebra h of g,
- a root system Δ for \mathfrak{g} (relative to \mathfrak{h}) and
- the set Δ^+ of positive roots in Δ .

2 Representations

To begin with, we introduce the notion of representations of \mathfrak{g} and their basic properties.

Definition 1. A *representation of* \mathfrak{g} is a homomorphism of Lie algebras of the form

$$\rho \colon \mathfrak{g} \to \operatorname{End}(V),$$

where *V* is a \mathbb{C} -vector space. Equivalently, we say that *V* is a \mathfrak{g} -module.

¹I am grateful to Adrian Iovita for organizing the seminar for the thematic semester at the CRM.

Remark. For simplicity, we write

 $xv = \rho(x)(v)$ for all $x \in \mathfrak{g}$ and $v \in V$.

The condition that ρ is a homomorphism means that

[x, y]v = xyv - yxv for all $x, y \in \mathfrak{g}$ and all $v \in V$.

Examples.

(1) The *adjoint representation* ad: $\mathfrak{g} \to \text{End}(\mathfrak{g})$ is defined by

$$\operatorname{ad}(x)(y) = [x, y]$$
 for all $x, y \in \mathfrak{g}$.

(2) The *standard representation* of \mathfrak{sl}_2 is \mathbb{C}^2 with the action given by

$$\begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 \\ cz_1 - az_2 \end{pmatrix} \text{ for all } \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}_2 \text{ and all } \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2.$$

(3) If g arises from a Lie group *G*, then every representation of *G* induces a representation of g by differentiation.

Definition 2. Let V_1 and V_2 be two \mathfrak{g} -modules.

(1) The *direct sum* $V_1 \oplus V_2$ is naturally a \mathfrak{g} -module with the action given by

 $x(v_1+v_2) = xv_1 + xv_2$ for all $x \in \mathfrak{g}$, $v_1 \in V_1$ and $v_2 \in V_2$.

(2) The *tensor product* $V_1 \otimes_{\mathbb{C}} V_2$ is naturally a \mathfrak{g} -module with the (*diagonal*) action given by

$$x(v_1 \otimes v_2) = (xv_1) \otimes v_2 + v_1 \otimes (xv_2)$$
 for all $x \in \mathfrak{g}$, $v_1 \in V_1$ and $v_2 \in V_2$.

(3) The *dual space* $V_1^* = \text{Hom}_{\mathbb{C}}(V_1, \mathbb{C})$ is naturally a g-module with the action defined by

 $(xf)(v_1) = -f(xv_1)$ for all $x \in \mathfrak{g}, v_1 \in V_1$ and $f \in V_1^*$.

More generally, the space $H = \text{Hom}_{\mathbb{C}}(V_1, V_2)$ is naturally a \mathfrak{g} -module with the action defined by

$$(xf)(v_1) = x(f(v_1)) - f(xv_1)$$
 for all $x \in \mathfrak{g}, v_1 \in V_1$ and $f \in H$.

Definition 3.

- (1) A g-module *V* is called *irreducible* (or *simple*) if $V \neq 0$ and it has no non-trivial g-submodules; i.e., the g-submodules of *V* are 0 and *V*.
- (2) A g-module *V* is called *completely reducible* (or *semisimple*) if *V* is a direct sum of irreducible g-modules.

Remark. The name *semisimple* might be ambiguous for \mathfrak{g} : a general Lie algebra \mathfrak{g} could be semisimple as a \mathfrak{g} -module (meaning that the adjoint representation of \mathfrak{g}

is completely reducible) but not as a Lie algebra. In these notes, we always assume that \mathfrak{g} is a semisimple Lie algebra and there will be no possible confusion by the next result.

Theorem 4 (Weyl, complete reducibility). Under our assumption that the Lie algebra \mathfrak{g} is semisimple, all \mathfrak{g} -modules of finite dimension (over \mathbb{C}) are completely reducible.

Proof. See section VI.3 of Serre's book [2].

3 Weights and primitive vectors

Recall that a root $\alpha \in \Delta$ encodes the eigenvalues of a *simultaneous eigenvector* for the restriction $ad|_{\mathfrak{h}} \colon \mathfrak{h} \to End(\mathfrak{g})$ of the adjoint representation of \mathfrak{g} to \mathfrak{h} . Then, we saw that there is an *eigenspace decomposition*

$$\mathfrak{g}=\mathfrak{h}\oplus\left(igoplus_{lpha\in\Delta}\mathfrak{g}_{lpha}
ight).$$

Our next goal is to generalize this construction to other representations.

Definition 5. Let *V* be a \mathfrak{g} -module and let $\lambda \in \mathfrak{h}^* = \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$. Define

$$V_{\lambda} = \{ v \in V : Hv = \lambda(H)v \text{ for all } H \in \mathfrak{h} \}.$$

If $V_{\lambda} \neq 0$, we say that λ is a *weight* of *V* of *multiplicity* dim_C(V_{λ}) and we say that the elements of $V_{\lambda} \setminus \{0\}$ have weight λ .

Lemma 6. Let *V* be a representation of \mathfrak{g} . For every $\lambda \in \mathfrak{h}^*$ and $\alpha \in \Delta$,

 $\mathfrak{g}_{\alpha}V_{\lambda}\subseteq V_{\alpha+\lambda}.$

Proof. Take $X \in \mathfrak{g}_{\alpha}$, $H \in \mathfrak{h}$ and $v \in V_{\lambda}$. Then

$$HXv = [H, X]v + XHv = \alpha(H)Xv + X\lambda(H)v = (\alpha(H) + \lambda(H))Xv.$$

Proposition 7. *Let V be a* \mathfrak{g} *-module. The sum of* \mathbb{C} *-vector spaces*

$$\sum_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$

is direct and defines a \mathfrak{g} *-submodule of V.*

Remark. Without additional assumptions, this sum of eigenspaces can be a proper submodule of *V*.

Proof. The sum of eigenspaces with distinct eigenvalues is clearly direct. The fact that we obtain a \mathfrak{g} -submodule follows from lemma 6.

The decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\left(igoplus_{lpha\in\Delta}\mathfrak{g}_{lpha}
ight)$$

can be rewritten as $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}$, where

$$\mathfrak{n} = igoplus_{lpha \in \Delta^+} \mathfrak{g}_lpha \quad ext{and} \quad \mathfrak{n}^- = igoplus_{lpha \in \Delta^+} \mathfrak{g}_{-lpha},$$

and $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$ is a Borel subalgebra with $[\mathfrak{b}, \mathfrak{b}] = \mathfrak{n}$. We also want to consider *simultaneous eigenvectors* for \mathfrak{b} :

Definition 8. Let *V* be a \mathfrak{g} -module and let $\lambda \in \mathfrak{h}^*$. We say that $v \in V$ is a *primitive vector of weight* λ if

(i) $v \in V_{\lambda} \setminus \{0\}$ and

(ii)
$$\mathfrak{n} v = 0$$
.

Equivalently, as $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$, we can extend $\lambda \colon \mathfrak{h} \to \mathbb{C}$ to $\lambda \colon \mathfrak{b} \to \mathbb{C}$ by setting $\lambda(\mathfrak{n}) = 0$ and then v is a primitive vector of weight λ if $v \neq 0$ and $Bv = \lambda(B)v$ for all $B \in \mathfrak{b}$.

Remark. Since b is solvable, every \mathfrak{g} -module $V \neq 0$ of finite dimension (over \mathbb{C}) contains a primitive vector (Lie's theorem).

4 The basic example: \mathfrak{sl}_2

For this section, consider

$$\mathfrak{g} = \mathfrak{sl}_2 = \{ A \in \operatorname{Mat}_2(\mathbb{C}) : \operatorname{tr}(A) = 0 \}.$$

Fix the basis of \mathfrak{sl}_2

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y_2 = X_{-2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

One checks easily that

$$[H, X_2] = 2X_2, \quad [H, Y_2] = -2Y_2, \quad [X_2, Y_2] = H.$$

Taking $\mathfrak{h} = \mathbb{C}H$, we get the set of roots $\Delta = \{\pm 2\}$ with $\mathfrak{g}_2 = \mathbb{C}X_2$ and $\mathfrak{g}_{-2} = \mathbb{C}Y_2$. (Here, we identify \mathfrak{h}^* with \mathbb{C} by evaluating at H.)

Let *V* be a representation of \mathfrak{sl}_2 .

Lemma 9. Let v_0 be a primitive vector of weight λ in V. Define $v_k = Y_2^k v_0$ for all $k \in \mathbb{Z}_{\geq 1}$ (and $v_{-1} = 0$). Then, for every $k \geq 0$,

- (1) $Hv_k = (\lambda 2k)v_k$ and
- (2) $X_2 v_k = k(\lambda k + 1)v_{k-1}$.

Remark. Condition (1) says that $\lambda - 2k$ is another weight of *V* if $v_k \neq 0$.

Proof.

- (1) This follows from lemma 6 (applied *k* times).
- (2) We argue by induction on k. The base case k = 0 follows from the definition of primitive vector. Now, assuming that k > 0 and that the identity is true for k 1, we compute

$$\begin{aligned} X_2 v_k &= X_2 Y_2 v_{k-1} = [X_2, Y_2] v_{k-1} + Y_2 X_2 v_{k-1} \\ &= H v_{k-1} + Y_2 (k-1) (\lambda - k + 2) v_{k-2} \\ &= (\lambda - 2k + 2) v_{k-1} + (k-1) (\lambda - k + 2) v_{k-1} = k(\lambda - k + 1) v_{k-1}, \end{aligned}$$

 \square

where we used both (1) and (2) for k - 1.

Corollary 10. *In the situation of lemma 9, there are two possibilities:*

- either (a) the vectors $(v_k)_{k>0}$ are linearly independent,
- or (b) the weight λ is an integer $m \ge 0$, the vectors v_0, v_1, \ldots, v_m are linearly independent and $v_k = 0$ for all k > m.

If V is finite-dimensional, only (b) can occur.

Proof. Since eigenvectors with different eigenvalues are linearly independent, we only need to consider whether some v_k , for $k \ge 0$, is 0.

Suppose that not all the vectors v_k , for $k \in \mathbb{Z}_{\geq 0}$, are non-zero (i.e., condition (a) does not hold). There must exist $m \in \mathbb{Z}_{\geq 0}$ such that the vectors v_0, v_1, \ldots, v_m are $\neq 0$ but $v_{m+1} = v_{m+2} = \cdots = 0$. By lemma 9,

$$0 = X_2 v_{m+1} = (m+1)(\lambda - m)v_m,$$

which is only possible if $\lambda = m$. Therefore, condition (b) holds.

In case (b) of corollary 10, the subspace of *V* generated by $v_0, ..., v_m$ is a g-submodule that must be irreducible, by the formulae relating these vectors (see lemma 9). In fact, these are the only such representations of \mathfrak{sl}_2 :

Theorem 11. Let $m \in \mathbb{Z}_{\geq 0}$ and let W_m be a \mathbb{C} -vector space with basis w_0, w_1, \ldots, w_m . Define an \mathfrak{sl}_2 -module structure on W_m by

- (1) $Hw_k = (m-2k)w_k,$
- (2) $Y_2 w_k = w_{k+1}$ and

(3) $X_2w_k = k(m-k+1)w_{k-1}$

for all $k \in \{0, 1, ..., m\}$ (with the convention that $w_{-1} = w_{m+1} = 0$). If V is irreducible (as a g-module) and dim_C(V) = m + 1, then $V \cong W_m$.

Proof. Since *V* is finite-dimensional, it contains a primitive vector v_0 and we can apply lemma 9 and corollary 10. But *V* is irreducible; hence, the g–submodule generated by v_0 must be the whole *V* and, comparing dimensions, the weight of v_0 must be *m*. In this way, we obtain an isomorphism $V \cong W_m$ defined by

$$v_k \mapsto w_k \quad \text{for all } k \in \{0, 1, \dots, m\}.$$

Corollary 12. If V is finite-dimensional, it is a direct sum of \mathfrak{sl}_2 -modules of the form W_m for $m \in \mathbb{Z}_{>0}$. We also have a decomposition

$$V = \bigoplus_{n \in \mathbb{Z}} V_n$$

as \mathbb{C} -vector spaces.

Proof. This result follows combining theorems 4 and 11 and proposition 7. \Box

It is easy to see from this description that finite-dimensional representations of \mathfrak{sl}_2 are classified (up to isomorphism) by the weights of their primitive elements (counted with multiplicities). We can use the following invariant too:

Definition 13. Suppose that *V* is a finite-dimensional representation of \mathfrak{sl}_2 . The *formal character* of *V* is

$$\operatorname{ch}(V) = \sum_{n \in \mathbb{Z}} \dim_{\mathbb{C}}(V_n) t^n \in \mathbb{Z}[t, t^{-1}].$$

Theorem 14. Two finite-dimensional representations V_1 and V_2 of \mathfrak{sl}_2 are isomorphic if and only if $ch(V_1) = ch(V_2)$.

Proof. This result can be proved easily by induction on the dimension of V_1 using theorem 11 and corollary 12.

5 A structure theorem

Let us go back to the study of representations of a general (semisimple) Lie algebra g. But first we want to reinterpret the decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\left(igoplus_{lpha\in\Delta^+}(\mathfrak{g}_lpha\oplus\mathfrak{g}_{-lpha})
ight)$$

to reduce some proofs to the case of \mathfrak{sl}_2 .

Theorem 15. *Let* α *,* $\beta \in \Delta$ *.*

- (1) The subspace \mathfrak{g}_{α} has dimension 1 (over \mathbb{C}).
- (2) If $\alpha + \beta \neq 0$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- (3) Define $\mathfrak{h}_{\alpha} = [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \subseteq \mathfrak{h}$. The subspace \mathfrak{h} is 1-dimensional and there exists a unique $H_{\alpha} \in \mathfrak{h}_{\alpha}$ such that $\alpha(H_{\alpha}) = 2$.
- (4) Fix $X_{\alpha} \in \mathfrak{g}_{\alpha} \setminus \{0\}$. There is a unique $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[X_{\alpha}, Y_{\alpha}] = H_{\alpha}$. Moreover, $[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}$ and $[H_{\alpha}, Y_{\alpha}] = -2Y_{\alpha}$. Therefore, the subalgebra $\mathfrak{s}_{\alpha} = \mathfrak{g}_{-\alpha} \oplus \mathfrak{h}_{\alpha} \oplus \mathfrak{g}_{\alpha}$ is isomorphic to \mathfrak{sl}_2 .

Proof. See section VI.2 of Serre's book [1].

From now on, we use freely the notation introduced in theorem 15 (namely, the elements H_{α} , X_{α} and Y_{α} of \mathfrak{g} for $\alpha \in \Delta$).

6 Classification of (finite) representations

Let *V* be a representation of \mathfrak{g} .

Proposition 16. Let $v \in V$ be a primitive vector of weight λ and let E be the \mathfrak{g} -submodule of V generated by v.

(1) If $\Delta^+ = \{ \alpha_1, ..., \alpha_r \}$, then *E* is spanned (as a \mathbb{C} -vector space) by the vectors

$$Y_{\alpha_1}^{k_1}\cdots Y_{\alpha_r}^{k_r}v$$
 for $k_1,\ldots,k_r\in\mathbb{Z}_{\geq 0}$.

(2) The weights of E are of the form

$$\lambda - \sum_{lpha \in \Delta^+} k_{lpha} lpha \quad with \ k_{lpha} \in \mathbb{Z}_{\geq 0} \ for \ all \ lpha \in \Delta^+$$

and have finite multiplicity. In particular, λ has multiplicity 1. In this situation, we say that λ is the highest weight of *E*.

Remark. This result is analogous to lemma 9. Both here and in loc. cit., the existence of a primitive vector in *V* is a hypothesis (it is not automatic unless, say, *V* is finite-dimensional).

Proof. See proposition 2 in section VII.2 of Serre's book [1]. \Box

Theorem 17. For every $\lambda \in \mathfrak{h}^*$, there exists a unique (up to isomorphism) irreducible \mathfrak{g} -module W_{λ} with highest weight λ .

Remark. This result is analogous to theorem 11. We will see these modules W_{λ} (known as Verma modules) in the next talk, so we omit all details here.

Corollary 18. If V is finite-dimensional, it is a direct sum of \mathfrak{g} -modules of the form W_{λ} for $\lambda \in \mathfrak{h}^*$. We also have a decomposition

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$

as \mathbb{C} -vector spaces. Moreover, if λ is a weight of V, then

$$\lambda(H_{\alpha}) \in \mathbb{Z}$$
 for all $\alpha \in \Delta$.

Remark. This result is analogous to corollary 12.

Proof. The first part follows from theorems 4 and 17. The second part is now a consequence of proposition 7. For the last claim, regard *V* as a representation of $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ and use the results of section 4.

Even if we have several weights, we can still classify (isomorphism classes of) finite-dimensional representations of g using Laurent polynomials.

Definition 19. Consider

$$\Lambda = \{ \lambda \in \mathfrak{h}^* : \lambda(H_\alpha) \in \mathbb{Z} \text{ for all } \alpha \in \Delta \}$$

(fact: Λ is a free abelian group) and let $\mathbb{Z}[\Lambda]$ be the corresponding group ring, with \mathbb{Z} -basis $(e_{\lambda})_{\lambda \in \Lambda}$. Suppose that *V* is a finite-dimensional representation of \mathfrak{g} . The *formal character* of *V* is

$$\operatorname{ch}(V) = \sum_{\lambda \in \Lambda} \dim_{\mathbb{C}}(V_{\lambda}) e_{\lambda} \in \mathbb{Z}[\Lambda].$$

Theorem 20. Two finite-dimensional representations V_1 and V_2 of \mathfrak{g} are isomorphic if and only if $ch(V_1) = ch(V_2)$.

Remark. This result is analogous to theorem 14.

Proof. The theorem follows easily by induction on $\dim_{\mathbb{C}}(V_1)$ using theorem 17 and corollary 18. See proposition 5 in section VII.7 of Serre's book [1] for more details.

References

- [1] Serre, J.-P. *Complex semisimple Lie algebras*. Trans. by Jones, G. A. Springer monographs in mathematics. Berlin, Germany: Springer-Verlag, 2001. 75 pp.
- Serre, J.-P. Lie algebras and Lie groups. 1964 lectures given at Harvard University.
 2nd ed. Lecture notes in mathematics 1500. Corrected 5th printing. Berlin, Germany: Springer-Verlag, 2006. 173 pp.