Integrality of the *j*–invariant of elliptic curves with complex multiplication

Francesc Gispert

10th April 2019

Lemma

- Let *K* be a *p*-adic field with normalized valuation $v_K \colon K^{\times} \to \mathbb{Z}$.
- Let E/K be an elliptic curve with $v_K(j(E)) < 0$.
- Take a prime $\ell \notin \{2, p\}$ such that and $\ell \nmid v_K(j(E))$.
- There exist σ in the inertia subgroup I_K of G_K and a basis (P_1, P_2) of $E[\ell]$ such that

$$\begin{pmatrix} P_1^{\sigma} & P_2^{\sigma} \end{pmatrix} = \begin{pmatrix} P_1 & P_2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Proof

• Since $j(E) \notin \mathcal{O}_K$, we have a G_K -equivariant isomorphism

$$E(\overline{K}) \cong \overline{K}^{\times} / q^{\mathbb{Z}}$$

for some $q \in K^{\times}$ with $v_K(q) > 0$.

• In particular, $E[\ell]$ corresponds to

$$\zeta_{\ell}^{i} \cdot (q^{1/\ell})^{j}$$
 for $0 \leq i, j < \ell$,

where

ζ_ℓ is a fixed primitive ℓ-th root of 1 and
 q^{1/ℓ} is a fixed ℓ-th root of q.

The condition ℓ ∤ v_K(j(E)) is preserved under finite extensions L/K with ℓ ∤ [L : K] because

$$v_L|_K = e(L/K)v_K.$$

- Up to replacing *K* with a quadratic extension of *K*, we may assume that $E \cong E_q$ over *K*.
- Up to replacing *K* with $K(\zeta_{\ell})$, we may assume that $\zeta_{\ell} \in K$.

• Recall that $v_K(q) > 0$ and

$$j(E) = j(E_q) = \frac{1}{q} + 744 + 196884q + \cdots$$

- Therefore, $v_K(j(E)) = v_K\left(\frac{1}{q}\right) = -v_K(q).$
- Now ℓ ∤ v_K(q), whence K(q^{1/ℓ}) / K is totally ramified of degree ℓ.

Proof

• Choose
$$\overline{\sigma} \in G_{K(q^{1/\ell})/K}$$
 such that

$$(q^{1/\ell})^{\overline{\sigma}} = \zeta_\ell \cdot q^{1/\ell}.$$

- Since $K(q^{1/\ell})/K$ is totally ramified, there exists a lift $\sigma \in G_K$ such that $\sigma|_{K^{ur}} = id_{K^{ur}}$. That is, $\sigma \in I_K$.
- By construction,

$$\zeta_{\ell}^{\sigma} = \zeta_{\ell}$$
 and $(q^{1/\ell})^{\sigma} = \zeta_{\ell} \cdot q^{1/\ell}.$

- Let *K* be a number field.
- Let E/K be an elliptic curve with $j(E) \notin \mathcal{O}_K$.
- Then $\operatorname{End}(E) = \mathbb{Z}$.

- Let $\psi \in \text{End}(E)$. We want to prove that $\psi \in \mathbb{Z}$.
- Up to replacing *K* with a finite extension, we may assume that *ψ* ∈ End_{*K*}(*E*).
- Recall:

$$(X - \psi)(X - \widehat{\psi}) = X^2 - \tau X + \delta,$$

where

•
$$\delta = \psi \widehat{\psi} = \deg(\psi) \in \mathbb{Z}$$
 and
• $\tau = \psi + \widehat{\psi} = 1 + \deg(\psi) - \deg(1 - \psi) \in \mathbb{Z}.$

• Key idea: we want $\tau = 2\psi$.

- Pick a prime \mathfrak{p} of \mathcal{O}_K such that $v_{\mathfrak{p}}(j(E)) < 0$.
- Fix an embedding

and identify G_{K_p} with the corresponding decomposition subgroup of G_K .

- We write E/K_p for the base change of E/K under $K \hookrightarrow K_p$ (abuse of notation).
- For every *large enough* prime number ℓ , the lemma yields $\sigma_{\ell} \in G_K$ such that, under $\rho_{\ell} \colon G_K \to \text{End}(T_{\ell}(E))$,

$$\rho_{\ell}(\sigma_{\ell}) \equiv \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mod{\ell}$$

in terms of an appropriate basis (P_{ℓ}, Q_{ℓ}) of $T_{\ell}(E)$.

• Note: $\sigma_{\ell} \in I_{K_{\mathfrak{p}}} \subseteq G_{K_{\mathfrak{p}}} \subset G_K$ and $E[\ell] \subset E(\overline{K}) \subset E(\overline{K}_{\mathfrak{p}})$.

- Let ψ_{ℓ} be the image of ψ under $\operatorname{End}_{K}(E) \hookrightarrow \operatorname{End}_{K}(T_{\ell}(E))$.
- In terms of the basis (P_{ℓ}, Q_{ℓ}) ,

$$\psi_{\ell} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{for some } a, b, c, d \in \mathbb{Z}_{\ell}.$$

• Recall: $\delta = \det(\psi_{\ell})$ and $\tau = \operatorname{tr}(\psi_{\ell})$.

• As ψ_{ℓ} is defined over *K*, ψ_{ℓ} and $\rho_{\ell}(\sigma_{\ell})$ commute:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mod{\ell}.$$

- A straight-forward calculation shows that
 - $c \equiv 0 \mod \ell$ and
 - $\blacktriangleright a \equiv d \mod \ell.$
- In particular, $\tau = a + d \equiv 2a \equiv 2d \mod \ell$.

• Therefore,

$$\tau - 2\psi_{\ell} = \begin{pmatrix} \tau & 0 \\ 0 & \tau \end{pmatrix} - \begin{pmatrix} 2a & 2b \\ 2c & 2d \end{pmatrix} \equiv \begin{pmatrix} 0 & -2b \\ 0 & 0 \end{pmatrix} \mod \ell$$

and so

$$\deg(\tau-2\psi)=\det(\tau-2\psi_\ell)\equiv 0 \mod \ell.$$

• But this congruence holds for infinitely many primes ℓ , so

$$\deg(\tau-2\psi)=0.$$

• All in all,

$$\psi = rac{ au}{2} \in rac{1}{2} \mathbb{Z} \subset \mathbb{Q}.$$

- But End(*E*) is either ℤ or an order in a quadratic imaginary field (as char(*K*) = 0).
- Thus, ψ must be integral over \mathbb{Z} .
- This can happen only if $\psi \in \mathbb{Z}$.

Silverman, J. H. (1994). Advanced topics in the arithmetic of elliptic curves. Graduate texts in mathematics 151. New York, NY, USA: Springer-Verlag. Chap. V.6, pp. 445–448.