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Abstract

These are the notes for two one-hour talks given in the students seminar1

on Katz’s correspondence. I introduce the basic notions of étale morphisms

and a couple of results on the corresponding Galois theory. The notes mostly

follow parts of Milne’s book [1] and contain no original results.

0 Motivation

In topology, there is a kind of Galois theory of covering spaces. If X is a path-
connected and semilocally simply connected topological space, there is a cor-
respondence between path-connected coverings Y → X and subgroups of the
fundamental group π1(X). Also, such coverings have nice lifting properties and
the elements of π1 can be seen as automorphisms acting on coverings, more or
less like in the Galois theory of field extensions.

Our objective is to develop an analogous theory on a certain class of morphisms
of rings or, rather, of (affine) schemes.

Let A be a ring. The sets

V(S) = { p ∈ Spec(A) : S ⊆ p } for S ⊆ A

are the closed subsets of a topology on Spec(A), the Zariski topology. However,
this topology is too coarse to give a satisfactory theory of covering spaces, so we
need a different construction.

Notation In what follows, we use the symbols
• S, X, Y for schemes and OS, OX, OY for their structure sheaves,

1I am grateful to Giacomo Graziani for organizing the seminar.
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• s, x, y for points of schemes, OS,s, OX,x, OY,y for the corresponding local
rings, ms, mx, my for their maximal ideals and κ(s), κ(x), κ(y) for their
residue fields,

• A, B, C for rings,
• p, q, r for prime ideals and κ(p), κ(q), κ(r) for the corresponding residue

fields and
• f : X → S, g : Y → X and h : Y → S for morphisms of schemes.

1 Étale morphisms

Definition 1. A morphism of schemes f : X → S is unramified if it is locally of
finite type and, for every x ∈ X,

(i) m f (x)OX,x = mx and
(ii) the extension of fields κ(x) / κ( f (x)) is finite and separable.

Proposition 2. A morphism f : X → S locally of finite type is unramified if and only if
all the fibres fs : Xs = X×S Spec(κ(s))→ Spec(κ(s)), s ∈ S, are unramified. (That is,
the property of being unramified can be checked fibrewise.)

Sketch of the proof. Let x ∈ X and consider s = f (x). There are isomorphisms

OX,x /msOX,x
∼= κ(s)⊗OS,s OX,x

∼= OXs,x

(where, by abuse of notation, we write x for the point of Xs corresponding to
x ∈ X).

Corollary 3. If f : X → S is unramified, then it is locally quasi-finite.

Proof. Working locally, we may assume that S = Spec(A) and X = Spec(B).
Choose p ∈ Spec(A) and define B(p) = B⊗A κ(p). Take q ∈ Spec(B(p)). We have
a tower of extensions

κ(p) ⊆ B(p) / q ⊆ κ(q).

But, by hypothesis, κ(q) / κ(p) is finite. Therefore, the domain B(p) / q must be a
field. Since q was arbitrary, this shows that B(p) has Krull dimension 0. All in all,
B(p) is artinian and Spec(B(p)) has only finitely many points.

Proposition 4. Let f : X → S be a morphism locally of finite type. The following
conditions are equivalent:

(1) f is unramified;
(2) ΩX / S = 0, and
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(3) the diagonal morphism ∆X / S : X → X×S X is an open immersion.

Remark. The proof of this result is technical. Localization and Nakayama’s lemma
can be used to reduce it to the case of fields. For the details, see proposition 3.5 in
chapter I of Milne’s book [1].

Definition 5. A morphism f : X → S is called étale if it is flat, locally of finite
presentation and unramified.

Example 6. Every open immersion is étale.

We can now state the basic permanence properties of étale morphisms. The
proofs of the following results are standard arguments (see the corresponding
parts of section I.3 of Milne’s book [1] for the details).

Proposition 7. If f : X → S and g : Y → X are étale morphisms, then g ◦ f : Y → S is
étale too.

Proposition 8. Let f : X → S be an étale morphism. For every cartesian square

X×S Y Y

X S

fY

p

f

étale

(i.e., a base change of f ), the morphism fY is étale too.

Sketch of the proof. Since the property of being unramified can be checked fibrewise,
we may restrict to the case in which S and Y are spectra of fields. But finite
separable algebras over a field k are finite products of separable field extensions of
k, so the result follows.

Proposition 9. Consider a commutative diagram

Y X

S

g

hétale

f

un
ra

m
ifi

ed

with f : X → S unramified and h : Y → S étale. Then, g : Y → X is étale.

Proposition 10. Let f : X → S be a morphism locally of finite presentation. The set of
x ∈ X for which the induced map of local rings OS, f (x) → OX,x is flat and (ΩX/S)x = 0
is open in X. Hence, the locus where f is étale is open.
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We are finally in a position to see the first kind of lifting property of étale
morphisms.

Theorem 11. Let S be a connected scheme. If f : X → S is an étale (resp. étale and
separated) morphism, then each section σ : S → X of f is an open immersion (resp.
induces an isomorphism from S to a connected component of X). That is, there is a bijective
correspondence between sections of f and open (resp. open and closed) subschemes Y ↪→ X
such that f induces an isomorphism Y ∼= S.

Sketch of the proof. From the commutative diagram

S X

S

σ

étale

f

ét
al

e

we deduce that σ is étale by proposition 9.
Moreover, if f is separated, then σ is a closed immersion because f ◦ σ = idS

is. But σ is also flat and locally of finite presentation. Therefore, σ is an open
immersion too.

If f is étale but not separated, we can find a covering of X such that the
restrictions of f are separated and use the previous case on every restriction.

Corollary 12. If S is connected and f : X → S is étale and separated, then a section
σ : S→ X of f is uniquely determined by the value σ(s) at (any) one point s ∈ S.

Proof. Let x = σ(s) and let Y ↪→ X be the connected component of X containing x.
The diagram

Y

X S

∼=

f

σ

shows that σ is the composition S ∼= Y ↪→ X.

Corollary 13. Suppose that Y is connected. Consider a commutative diagram

X

Y S

f

étale
separated

g1

g2

h
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with f : X → S étale and separated. If there exists y ∈ Y such that g1(y) = g2(y) = x
and such that the induced morphisms on residue fields g]1, g]2 : κ(x)→ κ(y) coincide, then
g1 = g2. That is, a lift of h to X is uniquely determined by its value at (any) one base
point.

Proof. Consider the graph Γi : Y → Y×S X of gi, i = 1 and 2, and the projections
π1 : Y×S X → Y and π2 : Y×S X → X. Since π1 is obtained from f by base change,
it must be étale and separated. Also, π1 ◦ Γi = idY by definition. Corollary 12
implies that Γ1 = Γ2, whence g1 = π2 ◦ Γ1 = π2 ◦ Γ2 = g2.

The previous results are a first indicator that étale morphisms might be the
right analogue in algebraic geometry to coverings in topology. Following the
analogy, étale morphisms should locally look all the same (as coverings are all
local homeomorphisms).

Example 14. Let A be a ring and take a monic polynomial P ∈ A[T]. Define
B = A[T] / (P), so that B ∼= Adeg(P) as A–modules. We observe that P is separable
if and only if (P, P′) = A[T] or, equivalently, P′ ∈ B×. But this can be checked
locally: P′ is a unit in B = A[T] / (P) if and only if, for every p ∈ Spec(A), the
ring B⊗A κ(p) = κ(p)[T] / (P) is unramified over κ(p). In this case, B is étale over
A. More generally, for b ∈ B, Bb is étale over A if and only if P′ ∈ B×b .

Definition 15. A standard étale morphism is a morphism of affine schemes of the
form Spec(Bb) → Spec(A), where B = A[T] / (P) and b ∈ B with P′ ∈ B×b (as in
example 14).

The following result shows that étale morphisms are locally standard étale.

Theorem 16. Let f : X → S be an étale morphism. For every x ∈ X, there exist open
affine neighbourhoods V of x and U of f (x) such that the restriction f |V : V → U is
standard étale.

Remark. The proof of this result is technical and quite difficult in general. See
theorem 3.14 of chapter I of Milne’s book [1] for a proof in the noetherian case. For
the general case, see proposition 00UE in the Stacks project [3].

This characterization is useful to prove results about local properties. But there
is also a functorial characterization of étale morphisms which will be useful in the
next talk about the étale fundamental group.
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Definition 17. Let X
f−→ S be an S–scheme and consider the associated functor

XS = HomS( · , X) : (Sch / S)op → Set. We say that f (or XS) is formally étale if, for
every morphism h : Spec(C) → S and every nilpotent ideal J of C, the natural
map XS(C) → XS(C / J) is bijective. That is, for each g0 ∈ XS(C / J), there is a
unique g ∈ XS(C) making the diagram

Spec(C / J) X

Spec(C) S

g0

f

h

∃!g

commutative.

Remark. The schemes Spec(C) and Spec(C / J) have the same underlying topolo-
gical space. Thus, the functor XS is formally étale if and only if it only sees the
underlying reduced subschemes of affine schemes.

Theorem 18. A morphism f : X → S is étale if and only if it is formally étale and locally
of finite presentation.

Remark. Remark 3.22 of chapter I of Milne’s book [1] has a proof of this result in
the noetherian case. For the general case, see lemma 02HM in the Stacks project [3].

From the relation between étale and formally étale morphisms and the defini-
tion of the latter, we obtain the topological invariance of étale morphisms.

Theorem 19. Let S0 be a closed subscheme of S defined by a nilpotent ideal sheaf. The
functor Sch / S→ Sch / S0 given by

X 7→ X0 = X×S S0

induces an equivalence between the categories of étale S–schemes and of étale S0–schemes.

Remark. See theorem 3.23 of chapter I of Milne’s book [1] for some more details.

2 Henselian rings

We begin by recalling the definition of henselian rings, which will appear in several
proofs in the following talks.

Theorem 20. Let (A,m, κ) be a local ring and consider S = Spec(A) with its closed
point ξ. The following conditions are equivalent:
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(1) if f ∈ A[T] is monic and its reduction f ∈ κ[T] factors as f = g0 · h0 with
(g0, h0) = κ[T], there exist lifts g, h ∈ A[T] such that f = g · h, g = g0 and
h = h0;

(2) every finite A–algebra B is of the form

B ∼= ∏
n∈Max(B)

Bn,

and
(3) every étale morphism f : X → S such that there is a point x ∈ X satisfying that

f (x) = ξ and κ(x) = κ(ξ) = κ admits a section σ : S→ X.

Remark. See theorem 4.2 of chapter I of Milne’s book [1] for these and other
caracterizations of henselian rings.

Definition 21. A henselian ring is a local ring (A,m, κ) satisfying conditions (1)
to (3) of theorem 20.

Corollary 22. If A is a henselian ring, every finite A–algebra B and every quotient A / I
are henselian too.

Proposition 23. Every complete local ring is henselian.

Remark. This result can be proved using condition (3) and Hensel’s lemma to lift
sections from κ to A. See proposition 4.5 of chapter I of Milne’s book [1] for the
details.

In later talks, there will be some results whose proofs consist of a sequence of
reductions to simpler and simpler cases (e.g., from schemes to rings, then to local
noetherian rings, to complete local noetherian rings, and finally to fields). The
following results are important tools for this kind of proofs.

Theorem 24. Let (A,m, κ) be a henselian ring. The functor Sch / A → Sch / κ given
by

X 7→ X⊗A κ

induces an equivalence between the categories of finite étale A–schemes and of finite étale
κ–schemes.

Remark. See proposition 4.4 of chapter I of Milne’s book [1] for a proof.

Corollary 25. Let (A,m, κ) be a noetherian henselian ring and let Â be its m–adic
completion. The functor Sch / A→ Sch / Â given by

X 7→ X⊗A Â

induces an equivalence between the categories of finite étale A–schemes and of finite étale
Â–schemes.
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3 Galois theory

We can finally introduce a couple of results which justify the existence of a Galois
theory of coverings via a certain class of étale morphisms. (This analogy with
Galois theory will be even more apparent in the next talk, after the introduction of
the étale fundamental group.)

Definition 26. A finite étale covering (or just covering if there is no ambiguity) is a
surjective finite étale morphism of schemes.

Remark. One should think of coverings as the analogue of field extensions in
algebraic geometry. Later, we will have to restrict to a narrower class of coverings
to get the right Galois theory with the lattice of subgroups of automorphisms.

Definition 27. Let X
f−→ S be a morphism of schemes. We define the group of

automorphisms of X over S to be

Aut(X / S) = { σ : X → X automorphism : f ◦ σ = f }.

Proposition 28. Let f : X → S be a covering. If X is connected, the group Aut(X / S)
acts freely on each geometric fibre (i.e., σ ∈ Aut(X / S) \ { idX } has no fixed points). In
particular, since fibres are finite, Aut(X / S) is finite.

Proof. Let σ ∈ Aut(X / S). If there exists x ∈ X such that σ(x) = x, we see that
σ = idX by corollary 13 (applied to the two lifts σ and idX of f ).

Proposition 29. Let f : X → S be a covering with X connected. For every subgroup H
of Aut(X / S), the quotient map π : X → H \X and the induced map f̃ : H \X → S
are coverings.

Remark. The proof of this result is based on another caracterization of finite étale
coverings analogous to the existence of (local) trivializations for coverings in
topology. See propositions 5.2.9 and 5.3.7 of Szamuely’s book [2] for the details.

We can finally define the analogue of Galois extensions of fields.

Definition 30. A Galois (finite étale) covering is a covering f : X → S with X con-
nected and such that Aut(X / S) acts transitively on each geometric fibre.

The next result should be seen as the main theorem of Galois theory in the setting
of schemes. (In fact, one can recover the usual Galois theory from this theorem by
focusing on spectra of fields.)
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Theorem 31. Let f : X → S be a Galois covering and set G = Aut(X / S). For every
commutative diagram

X Z

S

π

fGalois covering

g

covering

with Z connected and g : Z → S a covering, π : X → Z is a Galois covering and induces
an isomorphism Z ∼= H \X for some subgroup H of G. In addition, g is a Galois covering
if and only if H is a normal subgroup of G. Thus, there is a bijective correspondence
between (normal) subgroups of G and (Galois) intermediate coverings of f .

Sketch of the proof. Since f and g are finite étale, so is π. Also, π is surjective be-
cause Z is connected and the image of π must be both open and closed. Therefore,
π is a covering.

Now H = Aut(X / Z) is a subgroup of G which can be seen to act transitively
on each geometric fibre of π. Indeed, given two points x1 and x2 of some geometric
fibre of π, they also belong to the same geometric fibre of f and so there exists
σ ∈ G such that σ(x1) = x2. By construction, (π ◦ σ)(x1) = π(x1) and from
corollary 13 we deduce that π ◦ σ = π (i.e., σ ∈ H).

All in all, π : X → Z is a Galois covering and H \X ∼= Z. The other claims of
the statement can be proved as in the usual Galois theory of field extensions.
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