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This seminar talk has two main goals. On the one hand, we are going to
continue to study the Dedekind zeta function and obtain the class number formula.
This formula is important because it relates certain algebraic invariants of a number
field to the analytic properties of the zeta function. On the other hand, we are
going to apply the theory of L–series and zeta functions in order to prove a classical
result about the number of primes appearing in an arithmetic progression, namely:

Dirichlet’s prime number theorem. For any two relatively prime positive integers a
and m, the arithmetic progression

a, a + m, a + 2m, a + 3m, . . .

contains infinitely many prime numbers. Equivalently, there are infinitely many prime
numbers p such that p ≡ a (mod m).

Note that the arithmetic progressions excluded from the theorem are precisely
those for which all the elements have a common non-trivial divisor. Clearly, one
such arithmetic progression contains at most one prime number.

As a matter of fact, we are going to prove a stronger theorem about the distri-
bution of primes: we are going to see that the prime numbers are in some sense
equally distributed among the congruence classes of (Z / mZ)× (for each m ∈N).

The class number formula

Let K be a number field with [K : Q] = n. Let r1 be the number of real embeddings
of K and let r2 be the number of pairs of complex conjugate embeddings of K, so
that n = r1 + 2r2, and write r = r1 + r2. Let w be the number of roots of unity in K
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and let d, Cl, h, R and d denote the discriminant, the class group, the class number,
the regulator and the different of K, respectively.

At the end of the last talk, we proved the following result:

Theorem 1. For each [a] ∈ Cl, the function

Z([a], s) = Z∞(s)ζK([a], s)

(defined for Re(s) > 1) admits an analytic continuation to C \ { 0, 1 }, which has simple
poles at s = 0 and s = 1 with residues

−2rR
w

and
2rR
w

,

respectively. Moreover, these functions satisfy functional equations

Z([a], s) = Z([a−1d], 1− s) .

Summing over all the classes of Cl, we obtain an analogous result for the
completed zeta function

ZK(s) = Z∞(s)ζK(s) = ∑
[a]∈Cl

Z([a], s) .

Corollary 2. The completed zeta function ZK(s) (defined for Re(s) > 1) admits an
analytic continuation to C \ { 0, 1 }, which has simple poles at s = 0 and s = 1 with
residues

−2rhR
w

and
2rhR

w
,

respectively. Moreover, it satisfies the functional equation

ZK(s) = ZK(1− s) .

As in the case of Dirichlet L–series, we can obtain more general results twisting
by a character. That is to say, consider a character χ : Cl→ S1 and define

ζ(χ, s) = ∑
a⊆OK ideal

χ(a)

N(a)s

(where we write χ(a) for χ([a])) and

Z(χ, s) = Z∞(s)ζ(χ, s) = ∑
[a]∈Cl

χ(a)Z([a], s) .

By theorem 1, we obtain the functional equation

Z(χ, s) = χ(d)Z(χ, 1− s)

Also, if χ is not the trivial character, we have that

∑
[a]∈Cl

χ(a) = 0
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and, as the Z([a], s) for [a] ∈ Cl have all the same residues at the two simple poles
0 and 1, this implies that Z(χ, s) is an entire function.

Since we had already studied the factor Z∞(s) in a previous talk, the results
about the completed zeta function give us a similar description of the behaviour
of the original Dedekind zeta function.

Theorem 3. The Dedekind zeta function ζK(s) (defined for Re(s) > 1) admits an ana-
lytic continuation to C \ { 1 }, which has a simple pole at s = 1 with residue

2r1(2π)r2 hR
w
√
|d|

.

Moreover, it satisfies the functional equation

ζK(1− s) = A(s)ζK(s) ,

where
A(s) = |d|s−1/2

(
cos

πs
2

)r(
sin

πs
2

)r2
LC(s)n .

Proof. By the definition of the completed zeta function,

ζK(s) =
ZK(s)
Z∞(s)

=
ZK(s)

|d|s/2LR(s)r1 LC(s)r2
,

where we use the functions

LR(s) = π−s/2Γ
( s

2

)
and LC(s) = 2(2π)−sΓ(s)

defined in a previous talk. Recall that Euler’s gamma function has no zeros and
has a simple pole at 0. Also, a straight-forward computation yields that

Z∞(1) =

√
|d|

πr2
.

This, together with corollary 2, implies that ζK(s) admits an analytic continuation
to C \ { 1 } having a simple pole at s = 1 with

Ress=1 ζK(s) = πr2 |d|−1/2 Ress=1 ZK(s) =
2r1(2π)r2 hR

w
√
|d|

.

The functional equation for ζK follows immediately from the functional equations
ZK(s) = ZK(1− s) and LR(s)r1 LC(s)r2 = A(s)LR(1− s)r1 LC(1− s)r2 .

The formula for Ress=1 ζK(s) is known as the class number formula.

Dirichlet’s prime number theorem

In this section, we fix a positive integer m and write G = (Z / mZ)×. Recall that
the order of G is ϕ(m). Also, let P be the set of prime numbers.
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The key point of the proof of Dirichlet’s theorem on arithmetic progressions
uses the behaviour of the Dirichlet L–series at 1. Thus, we first relate these series
to Dedekind’s zeta functions.

Proposition 4. Let K = Q(µm) be the m–th cyclotomic field. One has the identity

ζK(s) = F(s) ∏
χ∈Ĝ

L(χ, s) ,

where
F(s) = ∏

p|m

1
1−N(p)−s .

Proof. Let p ∈ P and let p ⊂ OK be a prime ideal over p. We know that the
ramification index and the inertia degree are given by

e(p) = e(p
∣∣ p) = ϕ(pvp(m))

and

f (p) = f (p
∣∣ p) = [(Z / m′Z)× : 〈p + m′Z〉] , where m′ =

m
pvp(m)

,

and that N(p) = p f (p). Write r(p) for the number of prime ideals over p. Using
Euler’s product formula, we obtain that

ζK(s) = ∏
p∈SpecOK

1
1−N(p)−s = ∏

p∈P

∏
p|p

1
1−N(p)−s = ∏

p∈P

(
1

1− p− f (p)s

)r(p)
.

On the other hand,

∏
χ∈Ĝ

L(χ, s) = ∏
χ∈Ĝ

∏
p∈P

1
1− χ(p)p−s = ∏

p|-m
∏
χ∈Ĝ

1
1− χ(p)p−s ,

where we used that χ(p) = 0 if p
∣∣ m. Now, for p

∣∣- m, write Gp for the subgroup of
G generated by p, so that |Gp| = f (p) and [G : Gp] = r(p). There is a short exact
sequence

1 −→ ̂(G / Gp) −→ Ĝ −→ Ĝp −→ 1

(the only non-obvious part is the surjectivity, which can be checked by induction
on [G : Gp] and using that C× contains all roots of unity). As a character on Gp is
uniquely determined by its value at p and this can be any f (p)–th root of unity,
this implies that for each ξ ∈ µ f (p) there are exactly r(p) characters χ ∈ Ĝ such
that χ(p) = ξ. Therefore,

∏
χ∈Ĝ

1
1− χ(p)p−s = ∏

ξ∈µ f (p)

(
1

1− ξ p−s

)r(p)
=

(
1

1− p− f (p)s

)r(p)
.

Putting everything together, we obtain the required formula.
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Corollary 5. For every non-trivial character χ ∈ Ĝ,

L(χ, 1) 6= 0 .

Proof. Let χ0 ∈ Ĝ be the trivial character. By proposition 4, we can write

ζK(s) = F(s)L(χ0, s) ∏
χ 6=χ0

L(χ, s) = F(s)ζ(s) ∏
p|m

(1− p−s) ∏
χ 6=χ0

L(χ, s) .

But we know that both ζK(s) and ζ(s) have a simple pole at s = 1 and that the
remaining factors in the right-hand side are holomorphic at s = 1. In conclusion,
L(χ, s) 6= 0 for χ 6= χ0.

With this, we have the main ingredient of the proof of Dirichlet’s theorem.
Next, we introduce the concept of density which appears in the (stronger version)
of the theorem.

Lemma 6. When s→ 1 (in the half-plane Re(s) > 1), one has that

∑
p∈P

1
ps ∼ log

1
s− 1

and that the series

∑
p∈P

∑
k≥2

1
pks

remains bounded.

Proof. Using Euler’s product formula for the Riemann zeta function and the power
series expansion of the logarithm, we get that

log ζ(s) = ∑
p∈P

log
1

1− p−s = ∑
p∈P

∑
k≥1

1
kpks = ∑

p∈P

1
ps + ψ(s) ,

where
ψ(s) = ∑

p∈P

∑
k≥2

1
kpks .

But ψ(s) (for Re(s) > 1) is majorized by the series

∑
p∈P

∑
k≥2
|p−s|k = ∑

p∈P

|p−s|2
1− |p−s| = ∑

p∈P

1
|ps|(|ps| − 1)

≤ ∑
p∈P

1
p(p− 1)

≤ ∑
n≥2

1
n(n− 1)

= ∑
n≥2

(
1

n− 1
− 1

n

)
= 1 .

The other part of the lemma follows from the fact that ζ(s) has a simple pole at
s = 1 with residue 1.
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Definition 7. We say that a subset A of P has analytic density (or Dirichlet density)
δ ∈ [0, 1] ⊂ R if

lim
s→1

[(
∑

p∈A

1
ps

)/(
log

1
s− 1

)]
= δ

(provided that this limit, taken in the half-plane Re(s) > 1, exists).

We are finally in a position to state the refinement of Dirichlet’s theorem which
we are going to prove.

Theorem 8. Let a ∈ Z such that (a, m) = 1. The set

Pa = { p ∈ P : p ≡ a (mod m) }

has analytic density ϕ(m)−1.

This theorem clearly implies the theorem on arithmetic progressions from the
beginning, as any finite set has analytic density zero. For the proof of the theorem,
we need a previous lemma.

For a character χ ∈ Ĝ, set

fχ(s) = ∑
p∈P

χ(p)
ps ,

the series being convergent for Re(s) > 1.

Lemma 9. If χ0 ∈ Ĝ is the trivial character, then

fχ0(s) ∼ log
1

s− 1

as s→ 1 (in the half-plane Re(s) > 1). In contrast, for every non-trivial character χ ∈ Ĝ,
fχ(s) remains bounded as s→ 1 (in the half-plane Re(s) > 1).

Proof. The result for fχ0(s) follows from lemma 6, as fχ0(s) differs from the series

∑
p∈P

1
ps

by a finite number of terms.
For χ 6= χ0, we do as in the proof of lemma 6 and express

log L(χ, s) = ∑
p∈P

log
1

1− χ(p)p−s = ∑
p∈P

∑
k≥1

χ(p)k

kpks = fχ(s) + Fχ(s) ,

where

Fχ(s) = ∑
p∈P

∑
k≥2

χ(p)k

kpks .
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It is clear that Fχ(s) is majorized by the series we used in the proof of lemma 6
for ψ(s), so that Fχ(s) remains bounded as s → 1. And the fact that L(χ, 1) 6= 0
implies that log L(χ, s) also remains bounded as s→ 1. Therefore, the same holds
for fχ(s).

Proof of theorem 8. We have to study the behaviour of the function

ga(s) = ∑
p∈Pa

1
ps

as s→ 1 (in the half-plane Re(s) > 1). We claim that

ga(s) =
1

ϕ(m) ∑
χ∈Ĝ

χ(a)−1 fχ(s) .

Indeed, we can write

∑
χ∈Ĝ

χ(a)−1 fχ(s) = ∑
χ∈Ĝ

∑
p∈P

χ(a)−1χ(p)
ps = ∑

p∈P

(
∑

χ∈Ĝ

χ(a−1p)
)

1
ps

and, using that

∑
χ∈Ĝ

χ(a−1p) =

{
ϕ(m) if a−1p ≡ 1 (mod m),

0 otherwise,

we obtain the function ϕ(m)ga(s).
Thus, lemma 9 implies that

ga(s) ∼
1

ϕ(m)
log

1
s− 1

as s→ 1, as desired.

We conclude with some remarks about densities. Instead of the analytic density
introduced in definition 7, one usually considers another notion of density: we
say that a subset A of P has natural density (or asymptotic density) δ ∈ [0, 1] ⊂ R if

lim
N→∞

|{ p ∈ A : p ≤ N }|
|{ p ∈ P : p ≤ N }| = δ

(provided that this limit exists). One can prove that, if A has natural density δ,
then A has analytic density δ as well. However, the converse is not true in general.
That is, there exist subsets A of P which have a well-defined analytic density but
no natural density.

In any case, the subsets Pa (with (a, m) = 1) of primes which we considered
are “nice enough” to have a natural density, which must then agree with their
analytic density. To prove that the subset Pa has natural density ϕ(m)−1, one can
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proceed as in the proof of the prime number theorem, which states that

|{ p ∈ P : p ≤ N }| ∼ N
log N

as N → ∞. The proof of this result is also based on analytic methods. The
argument, together with the techniques about Dirichlet series we have studied,
can be modified to show that

|{ p ∈ Pa : p ≤ N }| ∼ N
ϕ(m) log N

as N → ∞. See Kedlaya’s notes [1] for more details.
These results about densities of subsets of prime numbers can be further gener-

alized to the case of number fields. More precisely, one can compute the densities
of certain subsets of prime ideals of a number field using the theory of Dedekind
zeta functions and L–series. A remarkable example of such generalizations is
Chebotarev’s density theorem, which was one of the first results in class field
theory.
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