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Abstract

These are the notes for a two-hour-talk given virtually (through a web con-

ferencing tool) in the students seminar1 of Montréal’s number theory group

on Lawrence–Venkatesh’s new proof of Faltings’s theorem. The talk itself is

independent and introduces the background material related to algebraic de

Rham cohomology, including relevant tools in homological algebra. The text

here is admittedly insufficient to learn everything from scratch. I prepared

it in the hope that it would be a good review for people acquainted with the

topic and, more importantly, that it could convey a few important ideas to

newcomers. Generality and comprehensiveness were not among my goals.

The notes are a summary of various sources and contain no original results.

0 Motivation

One can compute cohomology of a smooth manifold X via its differential structure:
let ΩX/R be the sheaf of smooth differentials on X, set Ωn

X/R
=
∧n ΩX/R for each

n ∈ Z≥1 and consider the complex

Ω•X/R
: 0 OX = Ω0

X/R
Ω1

X/R
Ω2

X/R
· · ·d d

Using Poincaré’s lemma and a standard argument with partitions of unity, one
can prove that Ω•X/R

is an acyclic resolution of the constant sheaf RX. Therefore,
for each n ∈ Z≥0,

Hn(X, RX) = Hn(Γ(X, Ω•X/R)
)

1I thank Henri Darmon, Adrian Iovita, Jackson Morrow and Marc-Hubert Nicole for organizing
the seminar.
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and this last group is usually called the n–th (real) de Rham cohomology group of X,
usually written as Hn

dR(X/R).
We want an algebraic analogue of this situation. As an intermediate step, con-

sider now a complex analytic manifold X (which, under suitable hypotheses, will
be an algebraic variety over C). Let ΩX/C be the sheaf of holomorphic differentials
on X. The de Rham complex Ω•X/C

, defined as before, is again a resolution of the
constant sheaf CX but in this case is not acyclic (note that partitions of unity do
not make sense in a complex analytic setting). Thus, the group Hn(Γ(X, Ω•X/C

)
)

does not seem a good candidate for the definition of Hn
dR(X/C), as de Rham

cohomology should compute the sheaf cohomology of X. In fact, we need to use a
generalization of sheaf cohomology.

1 Hypercohomology

Let A and B be abelian categories. Suppose that A has enough injectives. Let
F : A → B be a left-exact functor.

Let Com(A) denote the category of cochain complexes in A that are concen-
trated in degrees ≥ 0.2

Definition 1. Let C• ∈ Ob
(
Com(A)

)
.

(1) An injective resolution of C• is a quasi-isomorphism from C• to a complex of
injective objects I•; i.e., a sequence of morphisms

C• : 0 C0 C1 C2 · · ·

I• : 0 I0 I1 I2 · · ·

(vertical arrows) which induce isomorphisms on cohomology.
(2) Let n ∈ Z≥0. The n–th right hyperderived functor RnF : Com(A)→ B is given

by
RnF(C•) = Hn(F(I•)

)
(for a choice of injective resolution C• → I•).

Remark. By hypothesis on A, we can always find injective resolutions. Moreover,
by the properties of injectives, the object RnF(C•) is well-defined (up to unique
isomorphism).

2Some hypotheses can be weakened and one could use other conventions. I made choices for
the sake of simplicity.
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Definition 2. Let n ∈ Z≥0.
(1) Let X be a smooth variety over a field K. Let ΩX/K be the sheaf of Kähler

differentials of X and consider the de Rham complex

Ω•X/K : 0 OX Ω1
X/K Ω2

X/K · · · ,

where Ωn
X/K =

∧n ΩX/K. The n–th de Rham cohomology of X/K is the group

Hn
dR(X/K) = Hn(X, Ω•X/K) = RnΓ(X,−)(Ω•X/K).

(2) More generally, let π : X → Y be a smooth morphism of schemes. Let ΩX/Y

be the sheaf of Kähler differentials of X relative to Y and consider the relative
de Rham complex Ω•X/Y. The n–th (relative) de Rham cohomology of X/Y is the
sheaf (on Y)

H n
dR(X/Y) = Rnπ∗(Ω•X/Y).

2 Computations

Often the only hope to explicitly compute sheaf cohomology is Čech cohomology.
Suppose that π : X → Y is a separated smooth morphism and, up to shrinking,

that Y is affine, say Y = Spec(R). Let U = (Ui)i∈I be an affine open covering
of X with a total order on I. We restrict to quasi-coherent sheaves of modules,
which over affines are acyclic (Serre). We write QCoh(X) for the category of
quasi-coherent OX–modules.

For every finite J ⊆ I, write

UJ =
⋂
j∈J

Uj

and let ι J : UJ ↪→ X be the natural inclusion. Since X is separated, both UJ and
ι J are affine. Then (ι J)∗ and (ι J)

∗ are exact functors on QCoh(UJ) and QCoh(X),
respectively.

For F ∈ Ob
(
QCoh(X)

)
and n ∈ Z≥0, define sheaves

C n(U , F ) = ∏
|J|=n+1

(ι J)∗(F |UJ )

and morphisms δn : C n(U , F ) → C n+1(U , F ) given by δn((xJ)J
)
= (yJ′)J′ on
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sections, where

yJ′ =
n+1

∑
i=0

(−1)ixJ′\{ji} if J′ = { j0 < j1 < · · · < jn+1 }.

(Here, we omit restrictions to UJ′ by abuse of notation.)
In this way, given F • ∈ Ob

(
Com(QCoh(X))

)
, we get a double complex C •,•

with C i,j = C j(U , F i):

...
...

... . . .

C 0,2 C 1,2 C 2,2 · · ·

C 0,1 C 1,1 C 2,1 · · ·

C 0,0 C 1,0 C 2,0 · · ·

0 F 0 F 1 F 2 · · ·

(where the vertical arrows d•,•ver are the ones defined in the previous paragraph and
the horizontal arrows d•,•hor are naturally induced by the connecting morphisms of
the complex F •).

Theorem 3. With the assumptions above, the total complex T• = Tot(C •,•), defined by

Tn =
⊕

i+j=n

C i,j and dn
T = ∑

i+j=n

[
di,j

hor + (−1)i di,j
ver

]
: Tn → Tn+1

for each n ∈ Z≥0, is an acyclic resolution of F • and

Rnπ∗(F
•) = Hn(π∗(T•)) for all n ∈ Z≥0.

Example 4. Let E be an elliptic curve over a field K given by an equation

E : Y2Z = X(X− Z)(X− λZ) with λ ∈ K \ { 0, 1 }.

Take the open covering U = {U, V }, where U = { Z 6= 0 } and V = {Y 6= 0 }.
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We can compute the cohomology groups Hn
dR(E/K) from the diagram

0 0

0 OE(U ∩V) Ω1
E(U ∩V) 0

0 OE(U)⊕OE(V) Ω1
E(U)⊕Ω1

E(V) 0

0 OE(E) Ω1
E(E) 0

d

d

(+,−) (−,+)

(where the arrows are the obvious ones except for some signs that need to be
accounted for). In particular,

H1
dR(E/K) =

{
( f , α, β) ∈ OE(U ∩V)⊕Ω1

E(U)⊕Ω1
E(V) :

d f − α + β = 0 in Ω1
E(U ∩V)

}
{
(g− h, dg, dh) : (g, h) ∈ OE(U)⊕OE(V)

} .

Using that

H1(E, OE) = Ȟ1
(U , OE) =

OE(U ∩V){
g− h : (g, h) ∈ OE(U)⊕OE(V)

} ,

one can check that

0 H0(E, Ω1
E) H1

dR(E/K) H1(E, OE) 0

ω (0, ω, ω)

( f , α, β) f

is a short exact sequence (known as the Hodge filtration of E). A basis of H1
dR(E/K)

is
ω =

(
0,

dx
y

,
dx
y

)
, η =

(2y
x

,
x dx

y
,

x dx
y

)
.

(Here, x and y are the usual affine coordinates in U.)

3 Spectral sequences

We need a tool in homological algebra generalizing long exact sequences.
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Definition 5. A spectral sequence is a sequence (Er, dr)r≥r0 , where each page Er is a
bigraded group

Er =
⊕
i,j≥0

Ei,j
r

with connecting morphisms di,j
r : Ei,j

r → Ei+r,j−r+1
r , such that dr ◦ dr = 0 and

Ei,j
r+1 = Hi,j(E•,•r ) =

Ker
(
Ei,j

r
dr−→ Ei+r,j−r+1

r
)

Im
(
Ei−r,j+r−1

r −→
dr

Ei,j
r
) for all r ≥ r0.

If at some s ≥ r0 we have Es = Es+1 = Es+2 = · · ·, we write E∞ = Es and call it
the limit of the spectral sequence.

Remark. Viewing the superindices as coordinates in the first quadrant of the
cartesian plane, we have sequences of complexes with arrows in the following
patterns:

• • •

E0 : • • •

• • •

• • •

E1 : • • •

• • •

• • •

E2 : • • •

• • •

· · ·

(From one page to the next, the tip of each arrow moves one position to the right and
one position downwards.)3

Theorem 6. Let C• = Fil0 C• ⊃ Fil1 C• ⊃ · · · ⊃ Filn+1 C• = 0 be a complex with a
bounded (decreasing) filtration. There exists a spectral sequence (Er, dr)r≥0 with

Ei,j
0 = Gri Ci+j,

Ei,j
1 = Hi+j(Gri C•) and

Ei,j
∞ = Gri Hi+j(C•)

for all i, j ≥ 0, where the filtration on Hn(C•) is the following:

Fili Hn(C•) = Im
(
Hn(Fili C•)→ Hn(C•)

)
.

(In this situation, we write
Ei,j

r =⇒ Hi+j(C•)

and say that the spectral sequence converges or abuts to Hn(C•).)
3Of course, there are other conventions that make as much sense.
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In the setting of section 1, take

Tn =
⊕

i+j=n

C i,j and Filk Tn =
⊕

i+j=n
i≥k

C i,j.

The corresponding filtration on

Hn(π∗(T•)) = H n
dR(X/Y)

is called the Hodge filtration and we get the Hodge–de Rham spectral sequence

Ei,j
1 = Rjπ∗(Ωi

X/Y) =⇒ H
i+j

dR (X/Y)

from theorem 6.

4 Connections

Let Y → S be a smooth morphism of schemes and let E ∈ Ob
(
QCoh(Y)

)
.

Definition 7.
(1) A connection on E is a morphism ∇ : E → Ω1

Y/S ⊗OY E of abelian sheaves
such that

∇( f e) = d f ⊗ e + f∇(e) on sections f ∈ OY(U) and e ∈ E (U)

(for any open subset U of Y).
(2) A section e ∈ E (U) is called horizontal if ∇(e) = 0.
(3) For i ∈ Z≥1, define ∇i : Ωi

Y/S ⊗OY E → Ωi+1
Y/S ⊗OY E by

∇i(ω⊗ e) = dω⊗ e + (−1)iω ∧∇(e)

on sections ω ∈ Ωi
Y/S(U) and e ∈ E (U) (for any open subset U of Y).

(4) We say that ∇ is integrable if ∇1 ◦ ∇ = 0.

A connection can be interpreted as a tool to “differentiate along a direction (in
the tangent space)”. Consider the sheaf of derivations

Der OS(OY, OY) ∼= Hom OY(Ω
1
Y/S, OY).
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To the connection ∇ we attach a morphism

Der OS(OY, OY) Hom OS(E , E )

D
(
∇D : E

∇−→ Ω1
Y/S ⊗OY E

D⊗1−−→ OY ⊗OY E ∼= E
)

and every ∇D satisfies the Leibniz rule

∇D( f e) = D( f ) · e + f · ∇D(e) on sections f ∈ OY(U) and e ∈ E (U)

(for any open subset U of Y).
We use ∇ to give isomorphisms between fibres of E (locally in open subsets of

Y) via parallel transport: for y0 ∈ Y and y in a “small enough” neighbourhood U
of y0, we define an isomorphism Ey0

∼= Ey by choosing a path γ : [0, 1]→ U with
γ(0) = y0 and γ(1) = y and solving the differential equations{

∇γ′(e) = 0

e(0) = e0 ∈ Ey0

to obtain a map
e0 7→ e(1) ∈ Ey.

If∇ is integrable and U is simply connected, this map is independent of the choice
of γ and we obtain a canonical isomorphism Ey0

∼= Ey.4

5 The Gauss–Manin connection

Let S be a scheme and consider two smooth S–schemes X and Y. Let π : X → Y
be a smooth S–morphism. We want to define a canonical integrable connection ∇
on the sheaf H n

dR(X/Y). To do so, we can use the exact sequence

0 π∗(Ω1
Y/S) Ω1

X/S Ω1
X/Y 0

to define the Koszul filtration

Fili Ω•X/S = Im
(
π∗(Ωi

Y/S)⊗OX Ω•−i
X/S → Ω•X/S

)
.

4As the reader will have noted, I am cheating in the sense that I only gave an idea of the
situation in differential geometry. To actually understand how connections give isomorphisms on
stalks in algebraic geometry, one needs to study the Riemann–Hilbert correspondence. Adrian
Iovita will explain that in the next talk.
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It is easy to check (by locally freeness) that

Gri Ω•X/S
∼= π∗(Ωi

Y/S)⊗X/S Ω•−i
X/Y.

Consider the functor R0π∗ : Com(QCoh(X)) → QCoh(Y), whose right de-
rived functors are the functors Riπ∗ for i ≥ 0. Choose an injective resolution

0 Ω•X/S I•0 I•1 · · ·

(in the category Com(QCoh(X))) with filtrations on the complexes I•n for n ∈ Z≥0

that are compatible with the Koszul filtration in the following sense: for every
i ∈ Z≥0,

0 Fili Ω•X/S Fili I•0 Fili I•1 · · ·

is an injective resolution.5 For each n ∈ Z≥0, we obtain an induced filtration on
R0π∗(I•n) ∈ Ob

(
QCoh(Y)

)
. Now we can apply theorem 6 to the filtered complex

0 R0π∗(I•0 ) R0π∗(I•1 ) · · ·

to obtain a spectral sequence (Er, dr)r≥0 converging to the relative hypercohomo-
logy Rnπ∗(Ω•X/S), n ∈ Z≥0, with

Ei,j
1 = Ri+jπ∗(Gri Ω•X/S)

∼= Ri+jπ∗
(
π∗(Ωi

Y/S)⊗OX Ω•−i
X/Y

)
∼= Ωi

Y/S ⊗OY Rjπ∗(Ω•X/Y) = Ωi
Y/S ⊗OY H

j
dR(X/Y)

(where the second isomorphism comes from the facts that the differential acts only
on the second piece and that ΩY/S is locally free).

Definition 8. Consider the construction explained in the previous paragraphs and
let n ∈ Z≥0. The Gauss–Manin connection is the composition

∇ : H n
dR(X/Y) ∼= E0,n

1
d0,n

1−−→ E1,n
1
∼= Ω1

Y/S ⊗OY H n
dR(X/Y).

Remark. We can compute the maps di,j
1 as the connecting homomorphisms of the

5Such an injective resolution with compatible filtrations exists and can be constructed by
induction on the length of the filtration. See lemma 13.6.2 of EGA chap. 0III.
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functors Rjπ∗ applied to the short exact sequences

0 Gri+1 Ω•X/S
Fili Ω•X/S

Fili+2 Ω•X/S

Gri Ω•X/S 0.

Example 9. Let K be a field and let E π−→ Y = P1
K \ { 0, 1, ∞ } → Spec(K) be the

Legendre family (i.e., the fibre Eλ over each closed point λ in Y is the curve from
example 4). Since E/Y is a curve, the Koszul filtration has Fil2 = 0. We can apply
the functor R0π∗ to the short exact sequence of the previous remark, which takes
the form

0 π∗(Ω1
Y/K)⊗OE Ω•−1

E/Y Ω•E/K Ω•E/Y 0,

to find the connecting homomorphism

R1π∗(Ω•E/Y) R2π∗
(
π∗(Ω1

Y/K)⊗OE Ω•−1
E/Y

)
H 1

dR(E/Y) Ω1
Y/K ⊗OY H 1

dR(E/Y)

δ

= ∼=

∇

(which, as the diagram shows, is essentially the Gauss–Manin connection on
H 1

dR(E/Y)). It is an interesting (although too long for this talk) exercise to compute
this map locally in terms of a basis ω, η of H 1

dR(E/Y).
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