
ABELIAN VARIETIES

The theorem of the cube

FRANCESC GISPERT

Seminar talk on 31th May 2017

Throughout this document, we consider always algebraic varieties over a fixed
algebraically closed field k. (As a matter of fact, the results explained here hold for
an arbitrary field k after replacing closed points with k–rational points wherever
necessary, as the proofs can be performed after base change to an algebraic closure
of k.) In particular, varieties are assumed to be irreducible, as in the first talk.

We are going to give a proof of a result which will be useful in the study of line
bundles over abelian varieties, namely:

Theorem of the cube. Let X and Y be two complete varieties and let Z be any variety.
Let L be a line bundle over X × Y × Z. If there exist closed points x0, y0 and z0 of X,
Y and Z such that the restrictions L|{x0}×Y×Z, L|X×{y0}×Z and L|X×Y×{z0} are trivial,
then L is trivial.

This theorem can be interpreted in the following way. Let P+
k be the category of

pointed complete varieties over k, whose objects are complete varieties X together
with a base (closed) point x0 ∈ X(k). Consider n + 1 objects X0, . . . , Xn of P+

k and
a contravariant functor F : P+

k  Ab. For each i, we have a canonical projection

πi : X0 × · · · × Xn −→ X0 × · · · × X̂i × · · · × Xn

and a canonical inclusion

σi : X0 × · · · × X̂i × . . . Xn −→ X0 × · · · × Xn

(mapping the missing coordinate to the base point). Using these, we define two
morphisms

αn =
n

∑
i=0

F(πi) :
n⊕

i=0

F(X0 × · · · × X̂i × · · · × Xn) −→ F(X0 × · · · × Xn)
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and

βn = (F(σ0), . . . , F(σn)) : F(X0 × · · · × Xn) −→
n⊕

i=0

F(X0 × · · · × X̂i × · · · × Xn)

in opposite directions.

Lemma 1. In the above setting, F(X0 × · · · × Xn) = Im(αn)⊕Ker(βn).

Proof. We argue by induction on n. For ∅ ( I ⊆ { 0, . . . , n }, define

βI : F
(

∏
i∈I

Xi

)
−→

⊕
j∈I

F
(

∏
i∈I\{j}

Xi

)
to be the map induced by the canonical inclusions, by analogy with βn. We are
also going to prove that

F
( n

∏
i=0

Xi

)
= F(Spec(k))⊕

[⊕
∅(I⊆{0,...,n}

Ker(βI)
]

(where the groups in the right-hand side are regarded as subgroups of the group
F(X0 × · · · × Xn) through the morphisms induced by the canonical projections).

For n = 0, we have

α0 = F(π0) : F(X0) −→ F(Spec(k))

and
β0 = F(σ0) : F(Spec(k)) −→ F(X0) .

Since π0 ◦ σ0 = idSpec(k), we have that β0 ◦ α0 = idF(Spec(k)) and we obtain a split
short exact sequence

0 Ker(β0) F(X0) F(Spec(k)) 0
β0

α0

which yields the decomposition F(X0) = Ker(β0)⊕ Im(α0).
Now consider n ≥ 1 and assume the statement holds for n− 1. By the induction

hypothesis, we can express

βn : F
( n

∏
i=0

Xi

)
−→

n⊕
j=0

F
( n

∏
i=0
i 6=j

Xi

)
=

n⊕
j=0

{
F(Spec(k))⊕

[⊕
∅(I⊆{0,...,n}\{j}

Ker(βI)
]}

and this factors over the canonical morphism

β̃n : F
( n

∏
i=0

Xi

)
−→ F(Spec(k))⊕

[⊕
∅(I({0,...,n}

Ker(βI)
]

in the obvious way. In particular, Ker(βn) = Ker(β̃n). Moreover, the morphism β̃n

has a section induced by the canonical projections, from which we obtain a split
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short exact sequence

0 Ker(βn) F
( n

∏
i=0

Xi

)
F(Spec(k))⊕

[⊕
∅(I({0,...,n}

Ker(βI)
]

0
β̃n

α̃n

We observe that, for every ∅ ( I ( { 0, . . . , n }, the projection
n

∏
i=0

Xi −→∏
i∈I

Xi

factors over πj for some j 6∈ I. As α̃n is defined in terms of these projections, we
deduce that Im(α̃n) ⊆ Im(αn). Hence, Im(αn) + Ker(βn) = F(X0 × · · · × Xn) and
it only remains to prove that Im(αn) ∩Ker(βn) = 0. Indeed, we observe that, for
each i ∈ { 0, . . . , n },

F(σi) ◦ F(πi) = F(πi ◦ σi) = idF(X0×···×X̂i×···×Xn)

and so Im(F(πi))∩Ker(F(σi)) = 0. By the definitions of αn and of βn, this implies
that Im(αn) ∩Ker(βn) = 0.

In this situation, we say that F is of order n (or linear if n = 1, quadratic if n = 2,
etc.) if βn is injective or, equivalently, αn is surjective. In particular, the theorem of
the cube implies that the functor Pic : P+

k  Ab which gives the Picard group of a
complete variety is quadratic. (The theorem is slightly stronger than this because
we do not assume Z to be complete.)

Let us now see some easy consequences of the theorem of the cube.

Corollary 2. Let X, Y and Z be complete varieties. Every element of Pic(X×Y× Z) is
of the form

p∗12L12 ⊗ p∗13L13 ⊗ p∗23L23

for some line bundles L12, L13 and L23 over X×Y, X× Z and Y× Z, respectively, where
p12, p13 and p23 are the projections from X×Y× Z to X×Y, X× Z and Y× Z.

Proof. Since Pic : P+
k  Ab is quadratic, the map

α2 : Pic(X×Y)× Pic(X× Z)× Pic(Y× Z) −→ Pic(X×Y× Z)

is surjective.

Corollary 3. Let Y be a variety and let X be an abelian variety. For every three morphisms
f , g, h : Y → X and every line bundle L over X, the line bundle

( f + g + h)∗L⊗ ( f + g)∗L−1 ⊗ ( f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f ∗L⊗ g∗L⊗ h∗L

over Y is trivial.
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Proof. It suffices to prove the result in the case when Y = X and f , g and h are the
three projections p1, p2, p3 : X × X × X → X; the general case then follows from
taking the pull-back under ( f , g, h) : Y → X× X× X.

Consider the morphism i : X× X → X× X× X given by i(x1, x2) = (0, x1, x2).
The pull-back under i of the line bundle which we want to be trivial is

(p2 + p3)
∗L⊗ p∗2 L−1 ⊗ p∗3 L−1 ⊗ (p2 + p3)

∗L−1 ⊗ 0∗L⊗ p∗2 L⊗ p∗3 L

and this is trivial in Pic({ 0 }×X×X). Analogously, we obtain that the restrictions
to X × { 0 } × X and X × X × { 0 } are also trivial. Therefore, we can apply the
theorem of the cube to conclude.

Corollary 4. Let X be an abelian variety. For any integer n, write nX : X → X for the
morphism given by multiplication by n. For all line bundles L over X and all integers n,

n∗X L ∼= L(n2+n)/2 ⊗ (−1)∗X L(n2−n)/2 .

Proof. We apply corollary 3 to nX, 1X and (−1)X and obtain that

(n + 1)∗X L ∼= n∗X L2 ⊗ (n− 1)∗X L−1 ⊗ L⊗ (−1)∗X L .

Since the required result is obvious for n = 0 and n = 1, we can prove it for n ∈N

by induction, using the following identities:

[(n + 1)2 + (n + 1)]/2 = (n2 + n)− [(n− 1)2 + (n− 1)]/2 + 1 ,

[(n + 1)2 − (n + 1)]/2 = (n2 − n)− [(n− 1)2 − (n− 1)]/2 + 1 .

A similar induction argument proves the result for the negative integers.

Corollary 5 (theorem of the square). Let X be an abelian variety. For all line bundles
L over X and all closed points x and y of X,

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL .

Consequently, for each line bundle L over X, the map

φL : X(k) −→ Pic(X)

x 7−→ t∗xL⊗ L−1

is a homomorphism of groups.

Proof. This is an application of corollary 3 to idX and the two morphisms which
are constant equal to x and y (described in terms of closed points).

We now turn to the proof of the theorem of the cube. But, first, we need a
couple of lemmata.

4



Lemma 6 (see-saw principle). Let X be a complete variety and let T be any variety.
Let L be a line bundle over X × T with the property that the restrictions L|X×{t} are
trivial for all closed points t of T. If there exists a closed point x0 of X such that L|{x0}×T

is trivial, then L is trivial.

Proof. By the version of the see-saw principle which was proved in the previous
talk, we know that L ∼= p∗2 M for some line bundle M over T, where p2 : X× T → T
is the canonical projection. We consider the inclusion i : T → X× T given in terms
of closed points by t 7→ (x0, t). Then,

L|{x0}×T
∼= i∗L ∼= i∗p∗2 M = id∗T M = M

and so M is trivial by hypothesis. Therefore, L is also trivial.

Lemma 7. Let X be a complete variety. For any two distinct closed points x0 and x1 of
X, there exists a complete curve C on X (i.e., a subvariety of dimension 1) passing through
both x0 and x1.

Proof. If X itself is a curve, there is nothing to prove, so we assume that dim X > 1.
Since X is complete, Chow’s lemma yields a surjective birational morphism from
a projective variety X′ to X. Thus, it suffices to prove the lemma in the case of a
projective variety X. Moreover, by induction on dim X, we only need to find a
closed subvariety Y of codimension ≥ 1 in X containing both x0 and x1.

Let π : X̃ → X be the blow-up of X along { x0, x1 } (in particular, X̃ is also a
projective variety, π is a surjective birational morphism and π−1(x0) and π−1(x1)

are effective Cartier divisors). We choose a closed immersion X̃ ↪→ Pn
k with n

minimal. By Bertini’s theorem, for almost all hyperplanes H in Pn
k , the intersection

H ∩ X̃ = Ỹ is irreducible (hence, defines a variety): we pick one such H. Since
dim X̃ > 1 and π−1(xi) is an effective Cartier divisor (for i ∈ { 0, 1 }), we obtain
that dim π−1(xi) ≥ 1, whence dim(H ∩ π−1(xi)) ≥ 0 and so H ∩ π−1(xi) 6= ∅. In
conclusion, Y = π(Ỹ) is a proper closed subvariety of X which contains both x0

and x1.

Proof of the theorem of the cube. Since L|X×{y0}×Z is trivial, by lemma 6 it suffices to
prove that L|{x}×Y×{z} is trivial for all closed points (x, z) of X× Z. Actually, it is
enough to show this for a dense subset of X× Z, as the locus

T1 = { (x, z) ∈ X(k)× Z(k) : L|{x}×Y×{z} is trivial }

is closed.
Lemma 7 states that, for every closed point x of X, we can find a complete

curve C passing through x0 and x. Let i : C ↪→ X be the inclusion. Consider the
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normalization π : C̃ → C and define ϕ = (i ◦π, idY, idZ) : C̃×Y×Z → X×Y×Z.
It suffices to prove that ϕ∗L is trivial. Thus, up to replacing X with C̃, x0 with a
point of C̃ lying over x0 and L with ϕ∗L, we assume further that X is a complete
normal curve, and so smooth too. In this situation, we are going to prove that
there is a non-empty open (and so dense) subset Z′ of Z such that L|X×Y×Z′ is
trivial.

Let Ω1 be the canonical bundle of X and let g = dim H0(X, Ω1). We can find
g closed points P1, . . . , Pg of X such that, for the Weil divisor D = P1 + · · ·+ Pg,
dim H0(X, Ω1 ⊗OX(−D)) = 0 (that is, Ω1 ⊗OX(−D) is a non-trivial line bundle
over X of degree 0 and so has no non-zero global sections). Let p1 : X×Y×Z → X
be the canonical projection and consider L′ = L⊗ p∗1OX(D). Since L|X×Y×{z0} is
trivial, L′|X×{y}×{z0}

∼= OX(D) for every closed point y of Y. In particular,

dim H1(X, L′
∣∣
X×{y}×{z0}) = dim H0(X, Ω1 ⊗OX(−D)) = 0 .

Therefore, the subset F = { (y, z) ∈ Y(k)× Z(k) : dim H1(X, L′|X×{y}×{z}) > 0 }
of Y× Z, which is closed by upper-semicontinuity, is disjoint from Y× { z0 }. But,
since Y is complete, the projection p′2 : Y× Z → Z is closed, so p′2(F) is closed and
we find an open neighbourhood Z′ = Z \ p′2(F) of z0 such that (Y× Z′) ∩ F = ∅.
After replacing Z with Z′, we may assume that dim H1(X, L′|X×{y}×{z}) = 0 for
all closed points (y, z) of Y × Z. Let p23 : X × Y × Z → Y × Z be the canonical
projection. By the semicontinuity theorem applied to the morphism p23 and the
sheaf L′, the Euler characteristic of L′|X×{y}×{z} is locally constant as a function
of (y, z) and so, after restriction to a smaller open neighbourhood of z0, we may
assume that this Euler characteristic is constant as a function of z. Therefore, using
the Riemann–Roch theorem, we obtain that

dim H0(X, L′
∣∣
X×{y}×{z}) = χ(L′

∣∣
X×{y}×{z}) = χ(L′

∣∣
X×{y}×{z0})

= χ(OX(D)) = 1− g + deg(D) = 1

for all closed points (y, z) of Y× Z. In this situation, the theorem of cohomology
and base from the last talk yields isomorphisms

(p23)∗L′ ⊗OY×Z κ(y, z)→ H0(X, L′
∣∣
X×{y}×{z})

for all closed points (y, z) of Y× Z.
Let U be any open subset of Y × Z over which (p23)∗L′ is trivial and take a

generating section σU ∈ Γ(U, (p23)∗L′) = Γ(p−1
23 (U), L′). We define D̃U to be the

divisor of zeros of σU in p−1
23 (U). Since two such sections differ (wherever both are

defined) by an invertible function (by reason of dimension), these divisors can be
glued together to a well-defined effective divisor D̃ on X×Y× Z. By definition,
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for each closed point (y, z) of Y× Z, the restriction of D̃ to X× { y } × { z } is the
divisor of zeros of a generating section of L′|X×{y}×{z}. In particular, D̃ restricted
to either X × { y } × { z0 } for y ∈ Y(k) or X × { y0 } × { z } for z ∈ Z(k) must
coincide with D, as the corresponding restrictions of L′ are isomorphic to OX(D)

and all these divisors are effective. That is to say, for P ∈ X(k) \ { P1, . . . , Pg }, the
support S of D̃ |{P}×Y×Z intersects neither { P } ×Y× { z0 } nor { P } × { y0 } × Z.
Hence, the projection of S on Z is a proper closed subset T of Z (it does not contain
z0) and, since S is of pure codimension 1 in { P } ×Y× Z, it must be of the form

S =
m⊔

i=1

({ P } ×Y× Ti)

for some closed subsets Ti of codimension 1 in Z. But we have already seen that
S ∩ ({ P } × { y0 } × Z) = ∅, and this is only possible for S = ∅. This shows that
the support of D̃ does not intersect { P } ×Y× Z for P 6= Pi , 1 ≤ i ≤ g. All in all,

D̃ =
g

∑
i=1

ni({ Pi } ×Y× Z)

for some ni ∈ Z. Moreover, restricting D̃ to X× { y0 } × { z0 } (where it coincides
with D), we see that ni = 1 for each i ∈ { 1, . . . , g }. All in all,

D̃ =
g

∑
i=1

({ Pi } ×Y× Z) .

This means that, for every closed point (y, z) of Y× Z,

L|X×{y}×{z} ⊗OX(D) ∼= (L⊗ p∗1OX(D))|X×{y}×{z} = L′
∣∣
X×{y}×{z}

∼= OX(D) ,

whence L|X×{y}×{z} must be trivial. Finally, lemma 6 implies that L is trivial.
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