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Seminar talks on 19th December 2016 and 9th January 2017

Throughout this document, K always denotes a field. In addition, A and B will
be K–algebras and D will be a division K–algebra.

In the last talk, the Brauer group Br K was introduced as the set of similarity
classes of central-simple K–algebras. Moreover, as the name suggests, this set can
be endowed with a group structure. Thus, the main objective of these two talks is
to prove that Br K together with the tensor product is an abelian group.

Tensor products

Definition 1. The K–algebra A⊗K B is the tensor product of A and B (as K–vector
spaces) together with the product defined by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for all a, a′ ∈ A and b, b′ ∈ B .

We regard A and B as subalgebras of A⊗K B through the natural maps a 7→ a⊗ 1
and b 7→ 1⊗ b.

Since we want the tensor product to induce a well-defined operation on Br K,
we would like to prove that the tensor product of two central-simple K–algebras is
also a central-simple K–algebra. To this aim, we first study some basic properties
of the tensor product algebra and its centre and how these relate to the two
components.

Definition 2. The K–algebra A⊗K A◦ is called the enveloping algebra of A. There
is a natural morphism

A⊗K A◦ −→ EndK(A)

a⊗ a′ 7−→ aA ◦ Aa′
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(as left multiplication and right multiplication commute) and so A can be viewed
as an (A⊗K A◦)–module with the scalar multiplication given by

(a⊗ a′)x = axa′ .

Proposition 3. The (A⊗K A◦)–module A is simple if and only if the K–algebra A is
simple.

Proof. This is immediate from the fact that the (A⊗K A◦)–submodules of A are
precisely its (two-sided) ideals as a ring.

Proposition 4. EndA⊗K A◦(A) ∼= Z(A).

Proof. EndA⊗K A◦(A) is the subalgebra of EndA◦(A) ∼= A consisting of those ele-
ments which commute with multiplication by elements of A.

Definition 5. If B is a K–subalgebra of A, we define the centralizer of B in A to be

ZA(B) = { a ∈ A : ab = ba for all b ∈ B } .

We call ZA(ZA(B)) the bicentralizer of B in A.

Proposition 6. EndB⊗K A◦(A) ∼= ZA(B).

Proof. Analogous to the proof of proposition 4.

Proposition 7. If A′ and B′ are K–subalgebras of A and B, respectively,

ZA⊗KB(A′ ⊗K B′) = ZA(A′)⊗K ZB(B′)

as subalgebras of A⊗K B. In particular, Z(A⊗K B) ∼= Z(A)⊗K Z(B).

Proof. It is clear that ZA(A′)⊗K ZB(B′) ⊆ ZA⊗KB(A′ ⊗K B′), so we only need to
prove the converse.

Let (ai)i∈I be a K–basis of A. Take z ∈ ZA⊗KB(A′ ⊗K B′) and express it as

z = ∑
i∈I

ai ⊗ bi

for some elements bi ∈ B, all but finitely many of which are 0. For every b′ ∈ B′,
we have that z(1⊗ b′) = (1⊗ b′)z by definition of z and so bib′ = b′bi for all i ∈ I.
This implies that z ∈ A⊗K ZB(B′). Analogously, z ∈ ZA(A′)⊗K B. Now, if we use
a K–basis (ai)i∈I of A extending a K–basis of ZA(A′) in the previous argument, we
see that the terms ai ⊗ bi with bi 6= 0 must belong to ZA(A′)⊗K ZB(B′).

Lemma 8. If A is simple and central over K, every (two-sided) ideal T of A⊗K B is of
the form A⊗K I for the ideal I = T ∩ B of B.
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Proof. Since, I ⊆ T, it is clear that A ⊗K I ⊆ T. We need to prove the other
inclusion.

Fix a K–basis (xi)i∈I of A. Every t ∈ T can be expressed in the form

t =
n

∑
j=1

xij ⊗ yj .

On the other hand,
EndA⊗K A◦(A) ∼= Z(A) ∼= K

and, since A is a simple (and so semisimple too) (A⊗K A◦)–module, Jacobson’s
density theorem states that for every f ∈ EndEndA⊗K A◦ (A)(A) = EndK(A) there
exists a ∈ A⊗K A◦ such that axij = f (xij). In particular, for each j ∈ { 1, . . . , n },
we can apply this to the endomorphism f j defined by f j(xij) = 1 and f j(xl) = 0
for l 6= ij and obtain thus the corresponding aj ∈ A⊗K A◦. Since T is a two-sided
ideal and multiplying by aj corresponds to taking a sum of terms obtained after
multiplying by elements of A (both to the left and to the right),

n

∑
l=1

ajxil ⊗ yl = 1⊗ yj ∈ T .

Then yj = 1⊗ yj ∈ T ∩ B = I for each j ∈ { 1, . . . , n }. Therefore, t ∈ A⊗K I.

Theorem 9. If A and B are simple and one of them is central over K, A⊗K B is simple.

Proof. Suppose that A is central over K. Since the only ideals of B are (0) and B,
the ideals of A⊗K B are A⊗K (0) = (0) and A⊗K B (by the previous lemma).

Proposition 10. If A⊗K B is simple (resp. artinian), so are A and B.

Proof. It is obvious from the fact that A and B are K–subalgebras of A⊗K B.

Lemma 11. If A : K = n < ∞ and B is artinian, A⊗K B is artinian.

Proof. We have that A⊗K B ∼= Kn ⊗K B ∼= Bn as B–modules and Bn is artinian
because B is.

Corollary 12. If both A and B are simple and artinian, at least one of them is finite-
dimensional over K and at least one of them is central over K, then A⊗K B is also simple
and artinian.

Proof. This follows from theorem 9 and lemma 11.

We are finally in a position to prove the previously hinted theorem (which is
now just a corollary of the results we have seen.)
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Theorem 13. If A and B are central-simple, so is A⊗K B.

Proof. A⊗K B is simple by theorem 9. Moreover,

Z(A⊗K B) ∼= Z(A)⊗K Z(B) ∼= K⊗K K ∼= K

and (A⊗K B) : K = (A : K)(B : K) < ∞.

The Brauer group

The associativity and commutativity (up to isomorphism) of the tensor product of
K–algebras are clear from the same properties of the tensor product of K–vector
spaces. Next we see what the inverses in the Brauer group are going to be.

Proposition 14. If A is central-simple, the natural map

φ : A⊗K A◦ −→ EndK(A)

is an isomorphism of K–algebras. Consequently, if A : K = n,

A⊗K A◦ ∼= Mn(K) .

Proof. A⊗K A◦ is simple because it is the tensor product of two central-simple
algebras. Hence, by Schur’s lemma, φ is injective. But looking at the dimensions
as K–vector spaces we see that (A⊗K A◦) : K = n2 = EndK(A) : K, so that φ is
surjective as well.

With this, we are almost ready to prove that Br K admits an abelian group
structure induced by the tensor product of K–algebras. Using Wedderburn’s
theorem, we are going to reduce ourselves to the case of matrix algebras, where
the computations can be made explicit.

Lemma 15. For every natural number n, A⊗K Mn(K) ∼= Mn(A).

Proof. Let (Eij)1≤i,j≤n be the canonical K–basis of Mn(K). Then (1⊗ Eij)1≤i,j≤n is
clearly an A–basis of A⊗K Mn(K) satisfying that

(1⊗ Eij)(1⊗ Ekl) =

{
1⊗ Eil if j = k ,

0 otherwise.

These relations define the product in Mn(A) in terms of its canonical A–basis.

Theorem 16. The set Br K together with the operation induced by the tensor product of
K–algebras is an abelian group.
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Proof. First, we have to prove that the group operation is well-defined. We already
know that the tensor product of two central-simple K–algebras is a central-simple
K–algebra (by theorem 13), so we only need to prove that this tensor product is
compatible with the similarity equivalence relation. Indeed, if A ∼= Mp(D1) and
B ∼= Mq(D2) for some central-simple division K–algebras D1 and D2, we can use
the previous lemma to compute

A⊗K B ∼= D1 ⊗K Mp(K)⊗K Mq(K)⊗K D2
∼= D1 ⊗K Mp(Mq(K))⊗K D2

∼= D1 ⊗K D2 ⊗K Mpq(K) ∼= Mpq(D1 ⊗K D2)

so that the similarity class of A⊗K B depends only on the similarity classes of A
and B (i.e., on the isomorphism classes of D1 and D2). Here, we have already been
using that the tensor product of K–algebras is associative and commutative, as
mentioned above.

Thus, the tensor product operation on Br K is well-defined, associative and
commutative. Moreover, A⊗K K ∼= A and so [K] is the neutral element. Finally,
proposition 14 implies that the inverse of [A] is [A◦].

Example 17. In some cases, the structure of the Brauer group is very simple.
(i) If K is algebraically closed, Br K is trivial because every finite-dimensional

simple K–algebra is isomorphic to Mn(K) for some n.
(ii) If K is finite, Br K is trivial because every finite division K–algebra is a field.

(iii) If K is real-closed (i.e., K is not algebraically closed but K(
√
−1) is), Br K is

cyclic of order 2.

Base change and splitting fields

To conclude this part of the seminar, we study how the Brauer group behaves with
respect to field extensions. To this aim, we need to introduce a way to extend a
K–algebra to a larger field and study some properties of this construction.

In what follows, let L be an extension field of K.

Definition 18. The L–algebra

AL = A⊗K L

is said to arise from A by base change to L.

Proposition 19. Base change satisfies the following properties.
(i) AL : L = A : K.

(ii) If A is central over K, AL is central over L.
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(iii) If A is simple and central over K, AL is simple and central over L.
(iv) If A is a central-simple K–algebra, AL is a central-simple L–algebra.

Proof. A K–basis (xi)i∈I of A is also an L–basis of AL by the definition of AL. This
proves (i). For (ii), if A is central over K, Z(AL) ∼= Z(A)⊗K Z(L) ∼= K⊗K L ∼= L.
Now (iii) follows from theorem 9. Finally, (iv) is a consequence of the other three
properties.

Corollary 20. If A is central-simple, A : K is a perfect square.

Proof. Consider an algebraic closure K of K. A : K = AK : K and this last number
is a square because every finite-dimensional simple K–algebra is isomorphic to
Mn(K) for some n.

Corollary 21. If the division K–algebra D is central over K, D : K is either infinite or a
perfect square.

Proof. Since D is a division algebra, it is obviously simple. Therefore, D : K < ∞
implies that D is central-simple and the previous corollary applies.

Lemma 22. Base change to L induces a group homomorphism Br K → Br L.

Proof. If [A] ∈ Br K, then A ∼= Mr(D) for some central-simple division K–algebra
D. In this situation,

AL
∼= D⊗K Mr(K)⊗K L ∼= D⊗K Mr(L) ∼= D⊗K L⊗L Mr(L) ∼= Mr(D⊗K L) ,

which implies that [AL] depends only on the isomorphism class of D. Therefore,
the map [A] 7→ [AL] is well-defined. Moreover, this is a morphism. Indeed, if
[A], [B] ∈ Br K,

(A⊗K B)L
∼= A⊗K L⊗K B ∼= A⊗K L⊗L L⊗K B ∼= AL ⊗L BL .

Definition 23. The restriction map of the Brauer group with respect to L / K is the
group homomorphism

resL/K : Br K −→ Br L

[A] 7−→ [AL]

and its kernel is
Br(L / K) = { [A] ∈ Br K : AL ∼ L } .

If [A] ∈ Br(L / K), we say that L is a splitting field of A (or of [A]) or that A splits
over L.

6



Corollary 24. Suppose that A is central-simple. L is a splitting field of A if and only if
A⊗K L ∼= Mn(L) with n2 = A : K.

The name restriction is due to the following property, which is basically the
functoriality of the Brauer group construction.

Proposition 25. If F is an intermediate field of L / K,

resL/F ◦ resF/K = resL/K .

Proof. It is immediate that A⊗K F⊗F L ∼= A⊗K L.

Definition 26. If D is central-simple, we can define the Schur index of D to be the
natural number s =

√
D : K. More generally, if A is central-simple and A ∼ D,

we say that s is the Schur index of A or even of [A] and write s = s(A) = s([A]).
In this situation, we also define the reduced degree of A to be the natural number
n =
√

A : K.

From now on, suppose that A is central-simple.

Proposition 27. A splits over L if and only if s(AL) = 1.

Proof. By the definition of the Schur index, s(AL) = 1 is equivalent to AL ∼ L.

Proposition 28. Let r, s and n denote the length, the Schur index and the reduced degree
of A, respectively. Then

n = rs .

In particular, A : K = s2 if and only if A is a division algebra.

Proof. Wedderburn’s theorem yields an isomorphism of K–algebras A ∼= Mr(D).
Therefore, n2 = A : K = (A : D)(D : K) = r2s2.

Corollary 29. s(AL) divides s(A).

Proof. As the Schur index depends only on the similarity class, it suffices to prove
this result in the case that A = D is a division algebra. Now, by the previous
proposition, s(DL) divides

√
DL : L =

√
D : K = s(D).

Thus, in some sense, the Schur index measures how far we are from a splitting
field. These facts are going to be discussed in more detail in the following talk.
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