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Throughout this document, let k be a field. By an algebraic variety over k, we
mean a geometrically integral and separated scheme of finite type over k. (Note
that, in Milne’s notes [1], an algebraic variety is not assumed to be geometrically
irreducible but only geometrically reduced.)

The main objective of this talk is to define abelian varieties. An abelian variety
is roughly a complete algebraic variety endowed with a group structure on its
sets of points. We are also going to prove that the existence of such a group
structure forces the underlying variety to be smooth and that the group law must
be commutative (i.e., abelian).

Group varieties

If X is an algebraic variety over k, a group structure on X must give a group law
on the set X(R) of R–valued points of X for every k–algebra R. Moreover, the
assignment of such a group law must be functorial in the following sense: given a
morphism R→ R′ of k–algebras, the corresponding map X(R)→ X(R′) must be
a group homomorphism.

But a group structure on a set is defined by a multiplication map, an inverse
map and an identity element satisfying certain conditions. Thus, by the Yoneda
lemma, defining such functorial group structures on the sets X(R) is equivalent to
giving a multiplication map, an inverse map and an identity element on X. (In
fact, since we are dealing with varieties, this is also equivalent to having a group
structure on X(k) for an algebraic closure k of k.)

Definition 1. A group variety over k is an algebraic variety X over k together with
two k–morphisms m : X×k X → X (multiplication) and i : X → X (inversion) and
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a k–rational point e ∈ X(k) (identity element) such that the following diagrams
are commutative:

(i) (associativity)

X×k X×k X X×k X

X×k X X

m×idX

idX ×m m

m

;

(ii) (identity element)

X×k Spec(k) X×k X

X X

idX×e

m

idX

and

Spec(k)×k X X×k X

X X

e×idX

m

idX

(where we identify X ×k Spec(k) and Spec(k)×k X with X through the ca-
nonical isomorphisms given by the projections), and

(iii) (inverses)

X X×k X

Spec(k) X

(idX ,i)

π m

e

and

X X×k X

Spec(k) X

(i,idX)

π m

e

(where π : X → Spec(k) is the structure morphism).

This definition is easily generalized to schemes over some other scheme S,
obtaining what are known as group schemes (over S).

Definition 2. Let (X, mX, iX, eX) and (Y, mY, iY, eY) be two group varieties over k.
A morphism of k–varieties f : X → Y is called a homomorphism of group varieties if

f ◦mX = mY ◦ ( f × f ) ,

in which case f ◦ eX = eY and f ◦ iX = iY ◦ f as well.

Definition 3. Let X be a group variety over k. For every k–rational point x ∈ X(k),
we define the right translation tx : X → X to be the composition

tx : X ∼= X×k Spec(k) X×k X X
idX ×x m .

Similarly, the left translation t′x : X → X is

t′x : X ∼= Spec(k)×k X X×k X X
x×idX m .
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More generally, let T be a k–scheme and let x : T → X be a T–valued point of
X. We define the right translation tx : XT → XT and the left translation t′x : XT → XT

(where XT = X×k T) as follows:

tx : XT
∼= XT ×T T XT ×T XT

∼= X×k X×k T X×k T = XT ,

t′x : XT
∼= T ×T XT XT ×T XT

∼= X×k X×k T X×k T = XT ,

idXT ×xT m×idT

xT×idXT m×idT

where xT = (x, idT) : T → X×k T = XT.

One can check that, for x, y ∈ X(T), ty ◦ tx = tm◦(x,y). Also, if eT : T → X is the
composition of the structural morphism T → Spec(k) and e, teT = idXT . Therefore,
ti◦x = t−1

x . The analogous identities for the left translations also hold.
In particular, for any x, y ∈ X(k), there is a translation sending x to y (the

translation defined by m ◦ (i ◦ x, y)) and this translation is an automorphism of X.
That is, X “looks everywhere the same”. This fact allows us to extend a property
which holds locally at a point to all points of our variety.

Proposition 4. Every group variety X over k is smooth over k. Furthermore, if TX,e is
the tangent space of X at e, there are natural isomorphisms TX/k

∼= TX,e ⊗k OX and
Ωn

X/k
∼= (

∧n T∨X,e)⊗k OX. In particular, if dim X = g, then Ωg
X/k
∼= OX.

Sketch of the proof. Since X is a variety, the smooth locus Xsm of X over k is open
and dense. But the translates of Xsm cover X and the smooth locus is stable under
translation, so Xsm = X.

For the remainder of the proposition, we observe that tangent spaces, tangent
sheaves and sheaves of differentials behave well under base change. Therefore,
we may assume that k is algebraically closed (up to replacing k with an algebraic
closure k and X with the corresponding pull-back).

Given a tangent vector τ : Spec(k[ε] / (ε2)) → X at e, composing τ with the
translation tx yields a tangent vector at x for all x ∈ X(k) and these tangent vectors
can be glued to a section of the tangent sheaf TX/k = Derk(OX,OX). Thus, we
obtain a k–linear map TX,e → Γ(X, TX/k) which in turn induces a morphism of
OX–modules α : TX,e ⊗k OX → TX/k.

We want to prove that α is an isomorphism. Indeed, since both TX,e ⊗k OX and
TX/k are locally free OX–modules of the same rank (because X is a non-singular
variety), it suffices to prove that α is surjective. But, for every x ∈ X(k), the map

(αx mod mx) : TX,e = TX,e ⊗k k −→ (TX/k)x ⊗OX,x k = TX,x

is the isomorphism given by tx. Hence, by Nakayama’s lemma, the maps on stalks
αx : TX,e ⊗k OX,x → (TX/k)x = TX,x are surjective for all closed points x ∈ X and
so α is surjective.
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Now the other isomorphism follows immediately from the duality relation
TX/k = HomOX(Ω

1
X/k,OX) and from the identity Ωn

X/k =
∧n Ω1

X/k.

With this, we can already move on to our object of study: abelian varieties.

Abelian varieties

Definition 5. An abelian variety over k is a complete group variety over k. (Recall
that an algebraic variety X over k is called complete if the structure morphism
X → Spec(k) is proper.)

The name of abelian varieties comes from the fact that their group structure
must be commutative (i.e., they are equipped with abelian group structures), as
we shall see next.

Lemma 6 (rigidity theorem). Let X, Y and Z be three algebraic varieties over k and
assume that X is complete. Let f : X×Y → Z be a morphism of k–varieties. If there exist
k–rational points y0 ∈ Y(k) and z0 ∈ Z(k) such that f (X × { y0 }) = { z0 }, then f
factors through the projection πY : X×Y → Y.

Proof. Since all the hypotheses continue to hold after base change to k, we may
assume that k is algebraically closed. We choose a point x0 ∈ X(k) and define
g : Y → Z given by g(y) = f (x0, y). We want to prove that f = g ◦ πY. Since
X × Y is reduced and all our morphisms are separated, it suffices to prove that
these two morphisms coincide on closed points.

Let U ⊆ Z be an open affine neighbourhood of z0. Since X is complete, πY

is closed and so T = πY( f−1(Z \U)) is a closed subset of Y. Also, by definition,
T consists of the second coordinates of the points of X × Y which are mapped
outside of U under f . Therefore, a point y of Y lies outside of T if and only if
f (X× { y }) ⊆ U. But, as X× { y } is complete and U is affine, f (X× { y }) must
be a single point. That is, f (x, y) = f (x0, y) = g(y) for all x, which means that f
and g ◦ πY coincide in the non-empty open set X× (Y \ T). In fact, f and g ◦ πY

coincide everywhere because X×Y is a variety.

Proposition 7. Every morphism of k–varieties f : X → Y between abelian varieties over
k is the composition of a homomorphism of abelian varieties (i.e., of group varieties) and
a translation. More precisely, f = t f (eX) ◦ h, where h : X → Y is a homomorphism of
abelian varieties.
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Proof. Let y = iY( f (eX)) and define h = ty ◦ f , so that h(eX) = eY. Consider the
two morphisms

g1 : X× X X Y ,

g2 : X× X Y×Y Y ;

mX h

h×h mY

these two morphisms should agree, as we want to prove that h is a homomorphism.
Thus, we define another morphism

g : X× X Y×Y Y
(g1,iY◦g2) mY

(which is given on k–valued points by g(x, x′) = h(x + x′)− (h(x) + h(x′)), using
additive notation for the group law). But we observe that

g({ eX } × X) = { eY } = g(X× { eX }) .

Therefore, by the rigidity lemma, g factors both through the first and through the
two projections X× X → X. That is to say, g is constant equal to eY. From this, we
conclude that h is a homomorphism of abelian varieties.

Corollary 8. The group law on an abelian variety is commutative. That is, every abelian
variety (X, m, i, e) satisfies that m ◦ s = m, where s : X× X → X× X is the morphism
which swaps the two coordinates of X× X.

Proof. Abelian groups are precisely those groups for which the map sending an
element to its inverse is a group homomorphism. And the previous proposition
implies that i : X → X is a homomorphism of abelian varieties, as it sends the
identity element to the identity element.

Now that we know that abelian varieties are indeed abelian as group varieties,
it is justified to use additive notation for the group law on an abelian variety. Also,
there is no need to distinguish between right and left translations on an abelian
variety.

The group law on abelian varieties defines in the obvious way (pointwise) a
group law on homomorphisms of abelian varieties. That is to say, for any two
abelian varieties X and Y, the set Hom(AV)(X, Y) of homomorphisms of abelian
varieties from X to Y has a natural structure of abelian group. By proposition 7,
Hom(AV)(X, Y) is the subgroup of Hom(Sch /k)(X, Y) = Y(X) consisting of the
morphisms f : X → Y such that f (0) = 0.

Another interesting consequence of the rigidity of abelian varieties is that
the group structure of an abelian variety is uniquely determined by its identity
element, in the same way as for elliptic curves.
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Proposition 9. Let X be a complete algebraic variety over k and let e ∈ X(k). There is
at most one structure of abelian variety on X for which e is the identity element.

Proof. Suppose that (X, m, i, e) and (X, n, j, e) are two abelian varieties with the
same underlying algebraic variety X and the same identity element e. Since both
m and n are equal when restricted to X× { e } and to { e } × X, the morphism

g : X× X X× X X
(m,i◦n) m

is constant equal to e when restricted to X×{ e } and to { e }×X. Now the rigidity
lemma implies that m = n. From this, we obtain that i = j as well.
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